首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homopolymeric α-2,8-linked sialic acid (PSA) has been found as a capsular component of sepsis- and meningitis-causing bacterial pathogens, and on eukaryotic cells as a post-translational modification of the neural cell adhesion molecule (NCAM). The polysaccharide is specifically recognized and degraded by a phage-encoded enzyme, the endo-N-acetylneuraminidase E (Endo NE). Endo NE therefore has become a valuable tool in the study of bacterial pathogenesis and eukaryotic morphogenesis. In this report we describe the molecular cloning of Endo NE and the expression of a functionally active recombinant enzyme. The cloned DNA sequence (2436 bp) encodes a polypeptide of 811 amino acids, which at the 5′ end contains a totally conserved neuraminidase motif. Expressed in Escherichia coli, the enzyme migrates as a single band of approximately 74 kDa in SDS-PAGE. A central domain of 669 amino acid residues is about 90% homologous to the recently cloned Endo NF. Both phage-induced lysis of bacteria and the catalysis of PSA degradation by the recombinant enzyme are efficiently inhibited by a polyclonal antiserum raised against the intact phage particle. The C-terminal region seems to be essential to enzymatic functions, as truncation of 32 amino acids outside the homology domain completely abolishes Endo NE activity. Our data also indicate that the 38 kDa protein, previously assumed to be a subunit of the Endo NE holoenzyme, is the product of a separate gene locus and is not necessary for in vitro depolymerase activity.  相似文献   

2.
A cDNA clone of a keratin-related, intermediate filament protein, designated Endo B, was constructed from size-fractionated parietal endodermal mRNA and characterized. The 1466-nucleotide cDNA insert contains an open reading frame of 1272 nucleotides that would result in 5' and 3' noncoding sequences of 54 and 60 nucleotides, respectively. The predicted amino acid composition, molecular weight (47,400), and peptide pattern correlate well with data obtained on the isolated protein. The predicted amino acid sequence fits easily into the general domain structure suggested for all intermediate filament proteins with a unique amino-terminal head domain, a large conserved central domain of predominantly alpha-helical structure, and a relatively unique carboxyl-terminal or tail domain. Over the entire molecule, Endo B is 43% identical with human 52-kDa epidermal type I keratin. However, over two of the three regions contained in the central domain that are predicted to form coiled-coil structures, the Endo B is 54-68% identical with other type I keratin sequences. This homology, along with the presence of the completely conserved sequence DNARLAADDFR-KYE, which is found in all type I keratins, permits the unambiguous identification of Endo B as a type I keratin. Comparison of the Endo B sequence to other intermediate filament proteins reveals 22 residues which are identical in all intermediate filament proteins regardless of whether filament formation requires only one type of protein subunit (vimentin, desmin, glial fibrillar acidic protein, or a neurofilament protein) or two dissimilar types (type I and type II keratins). Endo B mRNA was detectable in RNA isolated from F9 cells treated with retinoic acid for 48 h. Approximately three to five genes homologous to Endo B were detected in the mouse genome.  相似文献   

3.
Mitochondrial F1-ATPases purified from several dicotyledonous plants contain six different subunits of alpha, beta, gamma, delta, delta' and epsilon. Previous N-terminal amino acid sequence analyses indicated that the gamma-, delta-, and epsilon-subunits of the sweet potato mitochondrial F1 correspond to the gamma-subunit, the oligomycin sensitivity-conferring protein and the epsilon-subunit of animal mitochondrial F1F0 complex (Kimura, T., Nakamura, K., Kajiura, H., Hattori, H., Nelson, N., and Asahi, T. (1989) J. Biol. Chem. 264, 3183-3186). However, the N-terminal amino acid sequence of the delta'-subunit did not show any obvious homologies with known protein sequences. A cDNA clone for the delta'-subunit of the sweet potato mitochondrial F1 was identified by oligonucleotide-hybridization selection of a cDNA library. The 1.0-kilobase-long cDNA contained a 600-base pair open reading frame coding for a precursor for the delta'-subunit. The precursor for the delta'-subunit contained N-terminal presequence of 21-amino acid residues. The mature delta'-subunit is composed of 179 amino acids and its sequence showed similarities of about 31-36% amino acid positional identity with the delta-subunit of animal and fungal mitochondrial F1 and about 18-25% with the epsilon-subunit of bacterial F1 and chloroplast CF1. The sweet potato delta'-subunit contains N-terminal sequence of about 45-amino acid residues that is absent in other related subunits. It is concluded that the six-subunit plant mitochondrial F1 contains the subunit that is homologous to the oligomycin sensitivity-conferring protein as one of the component in addition to five subunits that are homologous to subunits of animal mitochondrial F1.  相似文献   

4.
Rabbit liver cDNA coding for alpha-1-antiproteinase F has been isolated and sequenced. The protein sequence deduced from the nucleotide sequence consists of a 24 amino acid signal peptide and 389 amino acids of the mature polypeptide. Rabbit alpha-1-antiproteinase F showed 74 and 64% homology to human alpha-1-antiproteinase at the nucleotide and amino acid levels, respectively, but the N-terminal five amino acids are lacking in the rabbit protein. The sequences of alpha-1-antiproteinase F of rabbit, human, baboon, sheep, rat, and mouse show about 40% identity, and the reactive site (Met-Ser) is conserved. On the other hand, variable regions are located in the second half to the C-terminal as well as in the N-terminal region.  相似文献   

5.
Colandene JD  Topal MD 《Biochemistry》2000,39(45):13703-13707
NaeI is a type IIe endonuclease that interacts with two DNA recognition sequences to cleave DNA. One DNA sequence serves as a substrate and the other serves to activate cleavage. NaeI is divided into two domains whose structures parallel the two functionalities recognized in NaeI, endonuclease and topoisomerase. In this study, we report evidence for mutations that break interdomain functional communication in a NaeI-DNA complex. Deletion of the initial 124 amino acids of the N-terminal domain of NaeI converted NaeI to a monomer, consistent with self-association being mediated by the Endo domain. Deletions within a small region of the C-terminal DNA binding domain of NaeI (amino acids 182-192) altered the recognition by NaeI of sequences flanking the NaeI recognition sequence. Substituting Ala for Arg182 within this region had no apparent effect on DNA binding but greatly reduced the extent of DNA cleavage even though it is not part of the catalytic Endo domain. Substituting Ala for Ile185 reduced the extent of DNA binding about 1000-fold. Substituting Ala for Lys189 altered flanking sequence recognition. Residues 182-192 are away from the Endo domain responsible for cleavage and also face away from the modeled DNA binding faces of the apoprotein crystal structure. We propose that residues 182-192 are part of a web that mediates the flow of information between the NaeI Endo and Topo domains.  相似文献   

6.
We had found that yeasts had intracellular endodeoxyribonucleases that cut phage DNA into a set of double-stranded fragments with discrete chain lengths. We purified one of them to apparent homogeneity from Saccharomyces cerevisiae and designated it Endo.Sce I. Sequence analysis around 5 cleavage sites in plasmid DNA and phage DNA revealed that Endo.Sce I cuts a defined phosphodiester bond in each strand of double helix at the cleavage sites and produces free cohesive ends consisting of 4 nucleotides protruding at 3'-termini. However, unlike in the case of prokaryotic type II-restriction endonucleases, (i) Endo.Sce I seems to consist of two nonidentical subunits, (ii) no common palindrome or consensus sequence including more than 5 base pairs is detected at or near these cleavage sites, and (iii) Endo.Sce I can cut the DNA isolated from the cells that produced Endo.Sce I. All of the 5 cleavage sites are included in inverted repeats, but these inverted repeats are variable in size, nucleotide sequence, and distance between repeating units. An inverted repeat itself is not a structure recognized by Endo.Sce I. This study shows that Endo.Sce I is the first example of eukaryotic site-specific endonuclease and has properties, as described above, which distinguish it from prokaryotic restriction endonucleases.  相似文献   

7.
A genomic DNA clone for protein disulfide isomerase (PDI) of Saccharomyces cerevisiae was isolated by hybridization with synthesized oligonucleotide probes based on a partial amino acid sequence of yeast PDI. The introduction of a multiple copy plasmid carrying this fragment into yeast caused a tenfold increase in PDI specific activity and in the amount of PDI antigen in the extract. The gene on this fragment was named PDI1. The nucleotide sequence of the gene predicts a polypeptide of 522 amino acids with about 30% identity to mammalian PDIs. The predicted amino acid sequence contains an N-terminal signal peptide-like sequence, the C-terminal putative endoplasmic reticulum retention signal of yeast (HDEL), and two putative active site sequences of PDI (WCGHCK). The predicted polypeptide is acidic and contains five putative glycosylation sites, consistent with the molecular properties of the purified yeast PDI [T. Mizunaga et al. (1990) J. Biochem. 108, 846-851]. The PDI1 gene was mapped on chromosome III. A gene disruption experiment revealed that the PDI1 gene is essential for cell growth.  相似文献   

8.
Endo-beta-N-acetylglucosaminidase D (Endo D) produced by Streptococcus pneumoniae cleaves the di-N-acetylchitobiose structure in asparagine-linked oligosaccharides. The enzyme generally acts on complex type oligosaccharides after removal of external sugars by neuraminidase, beta-galactosidase, and beta-N-acetylglucosaminidase. We cloned the gene encoding the enzyme and expressed it as a periplasm enzyme in Escherichia coli. The first 37 amino acids in the predicted sequence are removed in the mature enzyme, yielding a protein with a molecular mass of 178 kDa. The substrate specificity of the recombinant enzyme is indistinguishable from the enzyme produced by S. pneumoniae. Endo-beta-N-acetylglucosaminidase A (Endo A) from Arthrobacter protophormiae, the molecular mass of which is 72 kDa, had 32% sequence identity to Endo D, starting from the N-terminal sides of both enzymes, although Endo A hydrolyzes high-mannose-type oligosaccharides and does not hydrolyze complex type ones. Endo D is not related to endo-beta-N-acetylglucosaminidases H, F(1), F(2), or F(3), which share common structural motifs. Therefore, there are two distinct groups of endo-beta-N-acetylglucosaminidases acting on asparagine-linked oligosaccharides. The C-terminal region of Endo D shows homology to beta-galactosidase and beta-N-acetylglucosaminidase from S. pneumoniae and has an LPXTG motif typical of surface-associated proteins of Gram-positive bacteria. It is possible that Endo D is located on the surface of the bacterium and, together with other glycosidases, is involved in virulence.  相似文献   

9.
We sequenced a gene encoding AP endonuclease DdAPN in Dictyostelium discoideum. The sequence predicts a protein of 542 amino acids, showing high homology to Escherichia coli Endonuclease IV (Endo IV). There is 45% identity to Endo IV using the C-terminal 282 amino acids of the Dictyostelium protein. The DdAPN conserves nine residues for the metal-binding identified in Endo IV. The truncated DdAPN protein containing these sites partially complemented E. coli RPC501 (xth(-), nfo(-)).  相似文献   

10.
11.
A cDNA containing the coding region for the complete amino acid sequence of wound-induced proteinase Inhibitor I from tomato leaves was constructed in the plasmid pUC9 and characterized. The open reading frame codes for a protein of 111 amino acids. This deduced amino acid sequence revealed the presence of a 42-amino acid N-terminal sequence that is not found in the native protein. This sequence appears to contain a 23-amino acid segment typical of a signal sequence followed by a 19-amino acid sequence containing 9 charged amino acids. The 42-amino acid sequence is apparently lost during maturation to the native Inhibitor I and represents 38% of the translated protein. The Inhibitor I amino acid sequence contains 71% identity with potato tuber Inhibitor I sequence and 35% identity with an inhibitor from the leech.  相似文献   

12.
A 1.8 kb HindIII DNA fragment containing the secY gene of alkalophilic Bacillus sp. C125 has been cloned into plasmid pUC119 using the B. subtilis secY gene as a probe. The complete nucleotide sequence of the cloned DNA indicated that it contained one complete ORF and parts of two other ORFs. The similarity of these ORFs to the sequences of the B. subtilis proteins indicated that they were the genes for ribosomal protein L15-SecY-adenylate kinase, in that order. The gene product of the alkalophilic Bacillus sp. C125 secY homologue was composed of 431 amino acids and its M(r) value has been calculated to be 47,100. The distribution of hydrophobic amino acids in the gene product suggested that the protein was a membrane integrated protein with ten transmembrane segments. The total amino acid sequence of alkalophilic Bacillus sp. C125 secY homologue showed 69.7% homology with that of B. subtilis secY. Regions of remarkably high homology (78% identity) were present in transmembrane regions, and cytoplasmic domains (73% identity) with less homologous regions present in extracellular domains (43% identity).  相似文献   

13.
14.
DNA sequence of the F traALE region that includes the gene for F pilin   总被引:8,自引:24,他引:8  
The complete sequence of a 1.4-kilobase PstI fragment containing the F transfer genes traA, -L, and -E is presented. The traA reading frame has been located both genetically and by comparing the primary structure of F pilin (the traA product) predicted by the DNA sequence to the amino acid composition and sequence of N- and C-terminal peptides isolated from purified F pilin. Taken together, these data show that there is a leader peptide of 51 amino acids and that F pilin contains 70 amino acids, giving molecular weights of 13,200 for F propilin and 7,200 for mature F pilin. Secondary structure predictions for F pilin revealed a reverse turn that precedes the sequence Ala-Met-Ala51, a classic signal peptidase cleavage site. The N-terminal alanine residue is blocked by an acetyl group as determined by 1H-nuclear magnetic resonance spectroscopy. The traL and traE genes encode proteins of molecular weights 10,350 and 21,200, respectively. According to DNA sequence predictions, these proteins do not contain signal peptide leader sequences. Secondary structure predictions for these proteins are in accord with traLp and traEp being membrane proteins in which hydrophobic regions capable of spanning the membrane are linked by sequences that form turns and carry positively charged residues capable of interacting with the membrane surface.  相似文献   

15.
16.
Lactacin F is a heat-stable bacteriocin produced by Lactobacillus acidophilus 11088. A 63-mer oligonucleotide probe deduced from the N-terminal lactacin F amino acid sequence was used to clone the putative laf structural gene from plasmid DNA of a lactacin F-producing transconjugant, L. acidophilus T143. One clone, NCK360, harbored a recombinant plasmid, pTRK160, which contained a 2.2-kb EcoRI fragment of the size expected from hybridization experiments. An Escherichia coli-L. acidophilus shuttle vector was constructed, and a subclone (pTRK162) containing the 2.2-kb EcoRI fragment was introduced by electroporation into two lactacin F-negative strains, L. acidophilus 89 and 88-C. Lactobacillus transformants containing pTRK162 expressed lactacin F activity and immunity. Bacteriocin produced by the transformants exhibited an inhibitory spectrum and heat stability identical to those of the wild-type bacteriocin. An 873-bp region of the 2.2-kb fragment was sequenced by using a 20-mer degenerate lactacin F-specific primer to initiate sequencing from within the lactacin F structural gene. Analysis of the resulting sequence identified an open reading frame which could encode a protein of 75 amino acids. The 25 N-terminal amino acids for lactacin F were identified within the open reading frame along with an N-terminal extension, possibly a signal sequence. The lactacin F N-terminal sequence, through the remainder of the open reading frame (57 amino acids; 6.3 kDa), correlated extremely well with composition analyses of purified lactacin F which also predicted a size of 51 to 56 amino acid residues. Molecular characterization of lactacin F identified a small hydrophobic peptide that may be representative of a common bacteriocin class in lactic acid bacteria.  相似文献   

17.
Leucine aminopeptidases are exopeptidases which are presumably involved in the processing and regular turnover of intracellular proteins; however, their precise function in cellular metabolism remains to be established. Towards this goal, a full-length complementary DNA encoding a plant leucine aminopeptidase was isolated from a cDNA library of Arabidopsis thaliana and sequenced. The nucleotide sequence showed 49.5% identity to the Escherichia coli xerB-encoded leucine aminopeptidase. Sequence analysis revealed that the cDNA encodes a polypeptide of 520 amino acids with a calculated molecular mass of 54,506 Da. The C-terminal part (amino acids 200-520) of the deduced amino acid sequence showed 43.8% sequence identity to the xerB-encoded leucine aminopeptidase and 42.6% sequence identity to the amino acid sequence of bovine lens leucine aminopeptidase (EC 3.4.11.1). No sequence similarity (not even over short sequence elements) was observed with any other known peptidase or proteinase sequence. The cDNA was expressed as a fusion protein from the lacZ promoter in E. coli. Enzymatic analysis proved that the cloned cDNA encoded an active leucine aminopeptidase. The properties of this enzyme, including metal requirements, inhibitor sensitivity, pH optimum and the remarkable temperature stability, are very similar to those reported for leucine aminopeptidases from other tissues. Amino acids involved in metal and substrate binding in bovine lens aminopeptidase are completely conserved in the plant enzyme as well as in the XerB protein. Our results show that leucine aminopeptidases form a superfamily of highly conserved enzymes, spanning the evolutionary period from the bacteria to animals and higher plants. This is the first aminopeptidase cloned from a plant.  相似文献   

18.
We isolated a homologue of cathepsin F from cDNA library of olive flounder liver. A 2,077 kb full-length cDNA encoding a predicted polypeptide of 474 amino acids was sequenced. The flounder cathepsin F exhibits a domain structure typical for papain-like cysteine proteases, a 17 amino acid N-terminal hydrophobic signal sequence followed by an extraordinarily long propeptide of 244 amino acids and the domain of the mature protease comprising 213 amino acids. The mature region contains all features characteristic of a papain-like cysteine protease, including the highly conserved cysteine, histidine and asparagine residues of the ‘catalytic triad’. The cathepsin F protein showed 49–99% amino acid sequence identity with other known cathepsin F sequences. An in vivo expression study showed that cathepsin F mRNA was expressed predominantly in brain, liver, eye and heart, and moderately in other tissues. The accumulation of cathepsin F mRNA in early stage of development increased with development. This expression pattern suggests that flounder cathepsin F has been implicated in the growth and reproduction regulation.  相似文献   

19.
We have cloned a transporter protein from rabbit small intestine, which, when coexpressed with the 4F2 heavy chain (4F2hc) in mammalian cells, induces a b(0,+)-like amino acid transport activity. This protein (4F2-lc6 for the sixth member of the 4F2 light chain family) consists of 487 amino acids and has 12 putative transmembrane domains. At the level of amino acid sequence, 4F2-lc6 shows significant homology (44% identity) to the other five known members of the 4F2 light chain family, namely LAT1 (4F2-lc1), y(+)LAT1 (4F2-lc2), y(+)LAT2 (4F2-lc3), xCT (4F2-lc4), and LAT2 (4F2-lc5). The 4F2hc/4F2-lc6 complex-mediated transport process is Na(+)-independent and exhibits high affinity for neutral and cationic amino acids and cystine. These characteristics are similar to those of the b(0,+)-like amino acid transport activity previously shown to be associated with rBAT (protein related to b(0,+) amino acid transport system). However, the newly cloned 4F2-lc6 does not interact with rBAT. This is the first report of the existence of a b(0,+)-like amino acid transport process that is independent of rBAT. 4F2-lc6 is expressed predominantly in the small intestine and kidney. Based on the characteristics of the transport process mediated by the 4F2hc/4F2-lc6 complex and the expression pattern of 4F2-lc6 in mammalian tissues, we suggest that 4F2-lc6 is a new candidate gene for cystinuria.  相似文献   

20.
P Teufel  F Gtz 《Journal of bacteriology》1993,175(13):4218-4224
The gene sepA from Staphylococcus epidermidis TU3298-P, encoding the extracellular neutral metalloprotease SepP1, was cloned into pT181mcs. DNA sequencing revealed an open reading frame of 1,521 nucleotides encoding a 507-amino-acid protein with an M(r) of 55,819. The sepA-containing DNA fragment did not hybridize with Staphylococcus hyicus or Staphylococcus carnosus DNA. Expression of sepA in the protease-negative S. carnosus (pT181mcsP1) resulted in overproduction of a 33-kDa protease found in the culture medium. The first 15 N-terminal amino acids of the partially purified protease completely matched the deduced DNA sequence starting at GCA (Ala-208). This finding indicated that SepP1 is synthesized as a preproenzyme with a 28-amino-acid signal peptide, a 179-amino-acid hydrophilic pro region, and a 300-amino-acid extracellular mature form with a calculated M(r) of 32,739. In activity staining, the mature protease prepared from S. carnosus (pT181mcsP1) corresponded to the extracellular S. epidermidis Tü3298-P protease. The partially purified protease had a pH optimum between 5 and 7, and its activity could be inhibited by zinc- and metal-specific inhibitors such as EDTA and 1,10-phenanthroline, indicating that it is a neutral metalloprotease. The protease had a low substrate specificity. Glucagon was cleaved preferentially between aromatic (Phe) and hydrophobic (Val) amino acids. The protease hydrolyzed casein and elastin. The amino acid sequence of the mature form of SepP1 revealed pronounced similarities with the thermolabile and thermostable neutral proteases of various bacilli (44 to 55% identity) and a central part of the mature form of the Pseudomonas aeruginosa elastase (31% identity). From homology comparison with the Bacillus thermoproteolyticus thermolysin, we predict that mature SepP1 binds one zinc ion at a conserved zinc-binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号