首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Many publications have documented loss of heterozygosity (LOH) on many different chromosomes in a wide variety of tumours, implicating the existence of multiple tumour suppressor genes (TSGs). Knudson's two-hit hypothesis predicts that these LOH events are the second step in the inactivation of both alleles of a TSG. However, to date the number of TSGs identified that are inactivated mainly at the somatic level in cancers and are not inherited has remained disappointingly small. Here we postulate that the accurate mapping of LOH events in a series of tumours to define a common LOH region is greatly confounded by deficient LOH detection, genetic instability and intertumour heterogeneity. Finding the TSGs in chromosomal regions of frequent LOH might require 'brute-force' genomic approaches.  相似文献   

4.
The inactivation of tumor suppressor genes (TSGs) plays a vital role in the progression of human cancers. Nevertheless, those ubiquitous TSGs have been shown with limited roles in various stages of diverse carcinogenesis. Investigation on identifying unique TSG, especially for early stage of carcinogenesis, is imperative. As such, the search for organ-specific TSGs has emerged as a major strategy in cancer research. Prostate cancer (PCa) has the highest incidence in solid tumors in US males. Cellular prostatic acid phosphatase (cPAcP) is a prostate-specific differentiation antigen. Despite intensive studies over the past several decades on PAcP as a PCa biomarker, the role of cPAcP as a PCa-specific tumor suppressor has only recently been emerged and validated. The mechanism underlying the pivotal role of cPAcP as a prostate-specific TSG is, in part, due to its function as a protein tyrosine phosphatase (PTP) as well as a phosphoinositide phosphatase (PIP), an apparent functional homologue to phosphatase and tensin homolog (PTEN) in PCa cells. This review is focused on discussing the function of this authentic prostate-specific tumor suppressor and the mechanism behind the loss of cPAcP expression leading to prostate carcinogenesis. We review other phosphatases' roles as TSGs which regulate oncogenic PI3K signaling in PCa and discuss the functional similarity between cPAcP and PTEN in prostate carcinogenesis.  相似文献   

5.
6.
A heritable mutation predisposes an individual to certain childhood malignancies, such as retinoblastoma and Wilms' tumor. The chromosomal locations of the genes responsible for the predisposition are known by linkage with chromosomal deletions and enzyme markers. A study of these tumors in comparison to the normal constitutional cells of the patients, using enzyme and DNA markers near the predisposing genes, has shown that these genes are recessive to normal wild-type alleles at the cellular level. Expression of the recessive phenotype (malignancy) involves the same genetic events that were observed in Chinese hamster cell hybrids carrying recessive drug resistance genes. In both the experimental and clinical situations, the wild-type allele is most commonly eliminated by chromosome loss with duplication of the mutant chromosome. Simple chromosome loss and mitotic recombination have been documented in both systems. In the remaining 30% of cases, inactivation or microdeletion of the wild-type allele are assumed to be responsible for expression of the recessive phenotype. Osteosarcoma is a common second tumor in patients who have had retinoblastoma. Studies with markers in osteosarcoma show that these tumors also result from unmasking of the recessive phenotype by loss of the normal allele at the retinoblastoma locus, whether or not the patient had retinoblastoma. Subsequent chromosomal rearrangements and amplification of oncogenes that occur in these homozygous tumors provide progressive growth advantage. In other malignancies, in which studies have so far focused on oncogene amplification and chromosomal rearrangements, unmasking of recessive mutations may also be the critical initiating events.  相似文献   

7.
Retinoblastoma is a highly malignant ocular tumor that has been known to be hereditary in some instances. New information from cytogenetic and molecular studies indicates that there is a retinoblastoma gene and that the mutant alleles are recessive. The wild-type gene appears to be a suppressor of this neoplasia, and, when both alleles are lost, malignancy develops.  相似文献   

8.
For most cancer cell types, the acquisition of metastatic ability leads to clinically incurable disease. Twelve metastasis suppressor genes (MSGs) have been identified that reduce the metastatic propensity of cancer cells. If these genes are inactivated in both alleles, metastatic ability is promoted. Here, we develop a mathematical model of the dynamics of MSG inactivation and calculate the expected number of metastases formed by a tumor. We analyse the effects of increased mutation rates and different fitness values of cells with one or two inactivated alleles on the ability of a tumor to form metastases. We find that mutations that are negatively selected in the main tumor are unlikely to be responsible for the majority of metastases produced by a tumor. Most metastases-causing mutations will be present in all (or most) cells in the main tumor.  相似文献   

9.
Phenotypic reversion of ethanolamine-requiring Saccharomyces cerevisiae cho1 mutants is predominantly due to recessive mutations at genes unlinked to the chromosome V cho1 locus. The recessive suppressors do not correct the primary cho1 defect in phosphatidylserine synthesis but circumvent it with a novel endogenous supply of ethanolamine. One suppressor (eam1) was previously mapped to chromosome X, and 135 suppressor isolates were identified as eam1 alleles by complementation analysis. Additional meiotic recombination studies have identified a second genetic locus, eam2, that falls in the eam1 complementation group but maps close to the centromere of chromosome IV. Although the normal EAM1 and EAM2 alleles are fully dominant over recessive mutant alleles, their dominance fails in diploids heterozygous for defects in both genes simultaneously. The unusual complementation pattern could be explained by interaction of the gene products in formation of the same enzyme.  相似文献   

10.
11.
12.
Tumor suppressor genes are generally viewed as being recessive at the cellular level, so that mutation or loss of both tumor suppressor alleles is a prerequisite for tumor formation. The tumor suppressor gene, p53, is mutated in approximately 50% of human sporadic cancers and in an inherited cancer predisposition (Li-Fraumeni syndrome). We have analyzed the status of the wild-type p53 allele in tumors taken from p53-deficient heterozygous (p53+/-) mice. These mice inherit a single null p53 allele and develop tumors much earlier than those mice with two functional copies of wild-type p53. We present evidence that a high proportion of the tumors from the p53+/- mice retain an intact, functional, wild-type p53 allele. Unlike p53+/- tumors which lose their wild-type allele, the tumors which retain an intact p53 allele express p53 protein that induces apoptosis following gamma-irradiation, activates p21(WAF1/CIP1) and Mdm2 expression, represses PCNA expression (a negatively regulated target of wild-type p53), shows high levels of binding to oligonucleotides containing a wild-type p53 response element and prevents chromosomal instability as measured by comparative genomic hybridization. These results indicate that loss of both p53 alleles is not a prerequisite for tumor formation and that mere reduction in p53 levels may be sufficient to promote tumorigenesis.  相似文献   

13.
Our current definitions of the tumor suppressor gene (TSG) have been guided by the identification of the prototypical gene, RB1, a TSG that is implicated in the development of both the inherited and sporadic forms of retinoblastoma. The hallmark feature of this TSG is loss of function in tumoral cells, which can be restored by reintroduction of a normally functioning protein with concomitant reversion of tumorigenicity. Key to this discovery was that loss of function is often achieved by deletion of a normal copy of the TSG and retention of a mutated allele, which was either inherited or acquired. Suppression of tumorigenicity and the loss-of-function concept of TSGs was also demonstrated in early studies where normal cellular growth was achieved when tumorigenic cells were fused with normal cells. Thus loss of genetic content and restoration of gene function has guided studies aimed at the discovery of novel TSGs. Here we review the successes of TSG discovery using three approaches that are based on the genetic analysis of inherited predisposition to cancer, tumors that display chromosome loss, and tumorigenic cells that display a suppression of tumorigenicity as a result of transfer of normal chromosomes. Based on a review of the literature we conclude that the discovery of TSGs has been highly successful in the genetic analysis of inherited predisposition to cancer with a dominant mode of inheritance. In contrast, the latter two approaches have yielded a paucity of TSGs that exhibit features similar to the prototypical RB1 in that they are rarely inactivated by somatic mutations in tumors displaying LOH, although decreased gene expression is observed. Nevertheless, some of these genes have been shown to suppress tumorigenicity when normal function is restored in tumorigenic cells consistent with the loss-of-function concept. These observations continue to challenge our current definition of TSG.  相似文献   

14.
15.
Identification and analysis of tumor suppressor genes has relied chiefly upon studies of human sporadic tumors and of tumors harvested from familial cancer syndrome patients. One methodology that is proving to be extremely useful both in analyzing the function of these genes and in identifying new tumor suppressor genes involves the creation of transgenic mice that contain targeted mutations that functionally inactivate tumor suppressor genes. Studies using such mice have provided insight into the role of tumor suppressor genes in cell growth and in embryonic development. The creation of mice that harbor mutations in one or both alleles of a targeted gene has permitted anin vivoanalysis of the tumor suppressing properties of the gene and facilitated investigation of cell cycle control and differentiation of multiple cell lineages within the organism. Sophistication of gene targeting techniques will likely result in the creation of more lines of mice bearing genetic modifications in tumor suppressor genes, permitting an even finer detailed analysis of tumor suppressor gene functions.  相似文献   

16.
Mutations in the SNF2 gene of Saccharomyces cerevisiae prevent derepression of the SUC2 (invertase) gene, and other glucose-repressible genes, in response to glucose deprivation. We have isolated 25 partial phenotypic revertants of a snf2 mutant that are able to derepress secreted invertase. These revertants all carried suppressor mutations at a single locus, designated SSN20 (suppressor of snf2). Alleles with dominant, partially dominant and recessive suppressor phenotypes were recovered, but all were only partial suppressors of snf2, reversing the defect in invertase synthesis but not other defects. All alleles also caused recessive, temperature-sensitive lethality and a recessive defect in galactose utilization, regardless of the SNF2 genotype. No significant effect on SUC2 expression was detected in a wild-type (SNF2) genetic background. The ssn20 mutations also suppressed the defects in invertase derepression caused by snf5 and snf6 mutations, and selection for invertase-producing revertants of snf5 mutants yielded only additional ssn20 alleles. These findings suggest that the roles of the SNF2, SNF5 and SNF6 genes in regulation of SUC2 are functionally related and that SSN20 plays a role in expression of a variety of yeast genes.  相似文献   

17.
Promoter hypermethylation and heterochromatinization is a frequent event leading to gene inactivation and tumorigenesis. At the molecular level, inactivation of tumor suppressor genes in cancer has many similarities to the inactive X chromosome in female cells and is defined and maintained by DNA methylation and characteristic histone modifications. In addition, the inactive-X is marked by the histone macroH2A, a variant of H2A with a large non-histone region of unknown function. Studying tumor suppressor genes (TSGs) silenced in cancer cell lines, we find that when active, these promoters are associated with H2A.Z but become enriched for macroH2A1 once silenced. Knockdown of macroH2A1 was not sufficient for reactivation of silenced genes. However, when combined with DNA demethylation, macroH2A1 deficiency significantly enhanced reactivation of the tumor suppressor genes p16, MLH1 and Timp3 and inhibited cell proliferation. Our findings link macroH2A1 to heterochromatin of epigenetically silenced cancer genes and indicate synergism between macroH2A1 and DNA methylation in maintenance of the silenced state.  相似文献   

18.
A series of Chinese hamster ovary cell hybrids were constructed which were heterozygous at the emtB and chr loci. These loci encode two recessive drug-resistance genes (emetine resistance and chromate resistance, respectively) located on a structurally hemizygous region on the long arm of chromosome 2. These heterozygous hybrids therefore exhibit wild-type sensitivity to both emetine and chromate. Drug-resistant variants were then selected in medium containing either emetine or chromate, and the mechanism of reexpression of the recessive drug-resistant allele was determined by karyotypic analysis of the resultant colonies. In previous studies at these loci we have determined that segregation of the recessive phenotype occurs primarily by (1) the loss of the chromosome 2 carrying the wild-type, drug-sensitive, allele, (2) deletion of the long arm of chromosome 2, or (3) loss of one chromosome 2 followed by duplication of the remaining homologue. However, a small proportion of segregants have also been detected which may have arisen by the mechanisms of de novo gene inactivation or mutation. In this report, hybrids are described which were constructed to allow selection for the retention of the chromosome carrying the wild-type allele and which therefore optimize isolation of these rare segregants. We demonstrate by karyotypic analysis, mutation frequency analysis, and microcell-mediated chromosome transfer that these rare segregants occur primarily by gene inactivation. We also demonstrate a dramatic increase in the proportion of segregants occurring by gene inactivation in two of these hybrids as compared with those previously reported, indicating that this mechanism may be an important mode of phenotype segregation in diploid cells and, therefore, in the development of cancers--such as the childhood tumors retinoblastoma and Wilms tumor--resulting from recessive alleles  相似文献   

19.
Many ribosomal protein genes are cancer genes in zebrafish   总被引:10,自引:0,他引:10       下载免费PDF全文
We have generated several hundred lines of zebrafish (Danio rerio), each heterozygous for a recessive embryonic lethal mutation. Since many tumor suppressor genes are recessive lethals, we screened our colony for lines that display early mortality and/or gross evidence of tumors. We identified 12 lines with elevated cancer incidence. Fish from these lines develop malignant peripheral nerve sheath tumors, and in some cases also other tumor types, with moderate to very high frequencies. Surprisingly, 11 of the 12 lines were each heterozygous for a mutation in a different ribosomal protein (RP) gene, while one line was heterozygous for a mutation in a zebrafish paralog of the human and mouse tumor suppressor gene, neurofibromatosis type 2. Our findings suggest that many RP genes may act as haploinsufficient tumor suppressors in fish. Many RP genes might also be cancer genes in humans, where their role in tumorigenesis could easily have escaped detection up to now.  相似文献   

20.
A New Kind of Informational Suppression in the Nematode Caenorhabditis Elegans   总被引:16,自引:6,他引:10  
J. Hodgkin  A. Papp  R. Pulak  V. Ambros    P. Anderson 《Genetics》1989,123(2):301-313
Independent reversions of mutations affecting three different Caenorhabditis elegans genes have each yielded representatives of the same set of extragenic suppressors. Mutations at any one of six loci act as allele-specific recessive suppressors of certain allels of unc-54 (a myosin heavy chain gene), lin-29 (a heterochronic gene), and tra-2 (a sex determination gene). The same mutations also suppress certain alleles of another sex determination gene, tra-1, and of a morphogenetic gene, dpy-5. In addition to their suppression phenotype, the suppressor mutations cause abnormal morphogenesis of the male bursa and the hermaphrodite vulva. We name these genes smg-1 through smg-6 (suppressor with morphogenetic effect on genitalia), in order to distinguish them from mab (male abnormal) genes that can mutate to produce abnormal genitalia but which do not act as suppressors (smg-1 and smg-2 are new names for two previously described genes, mab-1 and mab-11). The patterns of suppression, and the interactions between the different smg genes, are described and discussed. In general, suppression is recessive and incomplete, and at least some of the suppressed mutations are hypomorphic in nature. A suppressible allele of unc-54 contains a deletion in the 3' noncoding region of the gene; the protein coding region of the gene is apparently unaffected. This suggests that the smg suppressors affect a process other than translation, for example mRNA processing, transport, or stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号