首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A physical mapping strategy has been developed to verify and accelerate the assembly and gap closure phase of a microbial genome shotgun-sequencing project. The protocol was worked out during the ongoing Pseudomonas putida KT2440 genome project. A macro-restriction map was constructed by linking probe hybridisation of SwaI- or I-CeuI-restricted chromosomes to serve as a backbone for the quick quality control of sequence and contig assemblies. The library of PCR-generated SwaI linking probes was derived from the sequence assembly after 3- and 6-fold genome coverage. In order to support gap closure in regions with ambiguous assemblies such as the repetitive sequence of the seven ribosomal operons, high-resolution Smith/Birnstiel maps were generated by Southern hybridisation of pulsed-field gel electrophoresis-separated rare-cutter complete/frequent-cutter partial digestions with rare-cutter fragment end probes. Overall 1.5 Mb of the 6.1 Mb P.putida KT2440 genome has been subjected to high-resolution physical mapping in order to align assemblies generated from shotgun sequencing.  相似文献   

2.
The eXtensible Genome Data Broker (xGDB) provides a software infrastructure consisting of integrated tools for the storage, display, and analysis of genome features in their genomic context. Common features include gene structure annotations, spliced alignments, mapping of repetitive sequence, and microarray probes, but the software supports inclusion of any property that can be associated with a genomic location. The xGDB distribution and user support utilities are available online at the xGDB project website, http://xgdb.sourceforge.net/.  相似文献   

3.
Wood barley, Hordelymus europaeus, was compared with other Triticeae species by Southern and fluorescence in situ hybridisation using total genomic DNA and repetitive sequences as probes. On Southern blots, the total genomic probe from H. europaeus hybridised strongly to DNA of its own species and to Leymus and Psathyrostachys, indicating the presence of Ns genome in H. europaeus. Furthermore, the total genomic probe from P. fragilis hybridised to DNA of H. europaeus as much as to all of the Psathyrostachys and Leymus species examined. Ns genome-specific DNA sequences isolated from L. mollis (pLmIs1, pLmIs44 and pLmIs53) hybridised essentially to H. europaeus and all of the species of Leymus and Psathyrostachys. Chromosomal localization of these clones on H. europaeus confirmed the presence of Ns genome-specific DNA on all chromosomes, indiscriminately. Under moderate hybridisation stringency the Ns genome-specific probes, together with repetitive sequences pTa71 and pAesKB7, produced species-specific RFLP banding profiles on Southern blots. A phenetic tree based on these profiles revealed a distinct Ns species cluster within the Triticeae, represented by Leymus and Psathyrostachys species. Hordelymus europaeus belonged to this Ns cluster. Chromosomal mapping of the 18S-25S and the 5S ribosomal genes, together with the repetitive sequence pLrTaiI, corroborated that H. europaeus was most probably related to Leymus, especially the European/Eurasian members of sect. Leymus. In an attempt to identify the genome of H. europaeus, different approaches were employed; the results clearly showed that wood barley had the Ns basic genome and nothing else.  相似文献   

4.
A cosmid library was made of the 2.7 Mb genome of the Gram-negative plant pathogenic bacterium Xylella fastidiosa and analysed by hybridisation mapping. Clones taken from the library as well as genomic restriction fragments of rarely cutting enzymes were used as probes. The latter served as a backbone for ordering the initial map contigs and thus facilitated gap closure. Also, the co-linearity of the cosmid map, and thus the eventual sequence, could be confirmed by this process. A subset of the eventual clone coverage was distributed to the Brazilian X.fastidiosa sequencing network. Data from this effort confirmed more quantitatively initial results from the hybridisation mapping that the redundancy of clone coverage ranged between 0 and 45-fold across the genome, while the average was 15-fold by experimental design. Reasons for this not unexpected fluctuation and the actual gaps are being discussed, as is the use of this effect for functional studies.  相似文献   

5.
The purpose of this study was to generate repetitive DNA sequence probes for the analysis of interphase nuclei by fluorescent in situ hybridisation (FISH). Such probes are useful for the diagnosis of chromosomal abnormalities in bovine preimplanted embryos. Of the seven probes (E1A, E4A, Ba, H1A, W18, W22, W5) that were generated and partially sequenced, five corresponded to previously described Bos taurus repetitive DNA (E1A, E4A, Ba, W18, W5), one probe (W22) shared no homology with other DNA sequences and one (H1A) displayed a significant homology with Rattus norvegicus mRNA for secretin receptor transmembrane domain 3. Fluorescent in situ hybridisation was performed on metaphase bovine fibroblast cells and showed that five of the seven probes hybridised most centromeres (E1A, E4A, Ba, W18, W22), one labelled the arms of all chromosomes (W5) and the H1A probe was specific to three chromosomes (ch14, ch20, and ch25). Moreover, FISH with H1A resulted in interpretable signals on interphase nuclei in 88% of the cases, while the other probes yielded only dispersed overlapping signals.  相似文献   

6.
Biosensors and microarrays are powerful tools for species detection and monitoring of microorganisms. A reliable identification of microorganisms with probe-based methods requires highly specific and sensitive probes. The introduction of locked nucleic acid (LNA) promises an enhancement of specificity and sensitivity of molecular probes. In this study, we compared specificity and sensitivity of conventional probes and LNA modified probes in two different solid phase hybridisation methods: sandwich hybridisation on biosensors and on DNA microarrays. In combination with DNA-microarrays, the LNA probes displayed an enhancement of sensitivity, but also gave more false-positive signals. With the biosensor, the LNA probes showed neither signal enhancement nor discrimination of a single mismatch. In all cases, conventional DNA probes showed equal or better results than LNA probes. In conclusion, LNA technology may have great potential in methods that use probes in suspension and in gene expressions studies, but under certain solid surface-hybridisation applications, they do not improve signal intensity.  相似文献   

7.
The conventional methods for routine enterococci species identification are usually based on phenotypic characteristics. However, in recent years, some studies have defined specific probes based on both 16S and 23S rRNA genes for the identification of some Enterococcus spp. A set of probes based on the 16S rRNA gene has been developed in order to evaluate the usefulness of a six-step biochemical key for species level identification of enterococci. Probe specificity has been evaluated with type collection and environmental strains by dot blot hybridisation. A high correlation was obtained between biochemical key and hybridisation identifications. This set of probes provides a confirmative method for phenotypic species identification.  相似文献   

8.
Interspecific mouse hybrids that are viable and fertile provide a wealth of genetic variation that is useful for gene mapping. We are using this genetic variation to develop multilocus linkage maps of the mouse genome. As an outgrowth of this work, we have identified three repetitive probes that collectively identify 28 loci dispersed on 16 of the 19 mouse autosomes and the X chromosome. These loci establish a skeleton linkage map that can be used to detect linkage over much of the mouse genome. The molecular probes are derived from the mouse mammary tumor virus envelope gene, the ornithine decarboxylase gene, and the triose phosphate isomerase gene. The ability to scan the mouse genome quickly and efficiently in an interspecific cross using these three repetitive probes makes this system a powerful tool for identifying the chromosomal location of mutations that have yet to be cloned, mapping multigenic traits, and identifying recessive protooncogene loci associated with murine neoplastic disease. Ultimately, interspecific hybrids in conjunction with repetitive and single-copy probes will provide a rapid means to access virtually any gene of interest in the mouse genome at the molecular level.  相似文献   

9.
The application of mass spectrometry imaging (MS imaging) is rapidly growing with a constantly increasing number of different instrumental systems and software tools. The data format imzML was developed to allow the flexible and efficient exchange of MS imaging data between different instruments and data analysis software. imzML data is divided in two files which are linked by a universally unique identifier (UUID). Experimental details are stored in an XML file which is based on the HUPO-PSI format mzML. Information is provided in the form of a 'controlled vocabulary' (CV) in order to unequivocally describe the parameters and to avoid redundancy in nomenclature. Mass spectral data are stored in a binary file in order to allow efficient storage. imzML is supported by a growing number of software tools. Users will be no longer limited to proprietary software, but are able to use the processing software best suited for a specific question or application. MS imaging data from different instruments can be converted to imzML and displayed with identical parameters in one software package for easier comparison. All technical details necessary to implement imzML and additional background information is available at www.imzml.org.  相似文献   

10.
Bacteriophage lambda clones containing Theileria parva genomic DNA derived from two different telomeres were isolated and the nucleotide sequences of the telomeric repeats and adjacent telomere-associated (TAS) DNA were determined. The T.parva telomeric repeat sequences, a tandem array of TTTTAGGG or TTTAGGG interspersed with a few variant copies, showed a high degree of sequence identity to those of the photosynthetic algae Chlamydomonas reinhardtii (97% identity) and Chlorella vulgaris (87.7% identity) and the angiosperm Arabidopsis thaliana (84.4% identity). Unlike most organisms which have been studied, no significant repetitive sequences were found in the nucleotide sequences of TAS DNA located centromere-proximal to the telomeric repeats. Restriction mapping and hybridisation analysis of lambda EMBL3 clones containing 16 kilobases of TAS DNA derived from one telomere suggested that they did not contain long regions of repetitive DNA. The cloned TAS DNAs were mapped to T.parva Muguga genomic SfiI fragments 8 and 20, which are located at opposite ends of the largest T.parva chromosome. A 126 bp sequence located directly centromere-proximal to the telomeric repeats was 94% identical between the two cloned telomeres. The conserved 126 bp sequence was present on all T.parva Muguga telomeric SfiI fragments.  相似文献   

11.
Very similar genome sizes, similar karyotypes and heterochromatin organisation, and identical number/position of ribosomal loci characterise the common oak (Q. robur) and the cork oak (Q. suber), two distantly related oak species. Representational Difference Analysis (RDA) was used to subtract the genome of Q. suber from the genome of Q. robur in order to search for genome differentiation. A library of 400 clones (bearing RDA fragments) representing genome differences between the two species was obtained. Seven Q. robur-specific DNA sequences were analysed with respect to their molecular and chromosome organisation. All belong to the dispersed repetitive component of the genome, as revealed by Southern hybridisation and in situ hybridisation. They are present in the Q. robur genome in between 100 and 700 copies, and are distributed along the length of almost all chromosomes. A search for homologies between RDA fragments and sequences in Genbank revealed similarities of all RDA fragments with known retrotransposons. The RDA fragments were also tested for their presence/absence in the genomes of six additional oak species belonging to different phylogenetic groups, in order to examine the evolutionary dynamics of these DNA sequences.  相似文献   

12.
The steady rise of observations of harmful or toxic algal blooms throughout the world in the past decades constitute a menace for coastal ecosystems and human interests. As a consequence, a number of programs have been launched to monitor the occurrence of harmful and toxic algae. However, the identification is currently done by microscopic examination, which requires a broad taxonomic knowledge, expensive equipment and is very time consuming. In order to facilitate the identification of toxic algae, an inexpensive and easy-to-handle DNA-biosensor has been adapted for the electrochemical detection of the toxic dinoflagellate Alexandrium ostenfeldii. The detection of the toxic algae is based on a sandwich hybridisation, which is carried out on a disposable sensor chip. A set of two probes for the species-specific identification of A. ostenfeldii was developed. The specificity of the probes could be shown in dot-blot hybridisations and with the DNA-biosensor. The sensitivity of the DNA-biosensor was optimised with respect to hybridisation temperature and NaCl-concentration and a significant increase of the sensitivity of the DNA-biosensor could be obtained by a fragmentation of the rRNA prior to the hybridisation and by adding a helper oligonucleotide, which binds in close proximity to the probes to the hybridisation.  相似文献   

13.
Meiotic pachytene chromosome-based fluorescence in situ hybridization (FISH) mapping is one of the most important tools in plant molecular cytogenetic research. Here we report a simple technique that allows stretching of pachytene chromosomes of maize to up to at least 20 times their original size. A modified Carnoy's II fixative (6:1:3 ethanol:chloroform:acetic acid) was used in the procedure, and proved to be key for super-stretching of pachytene chromosomes. We demonstrate that super-stretched pachytene chromosomes provide unprecedented resolution for chromosome-based FISH mapping. DNA probes separated by as little as 50 kb can be resolved on super-stretched chromosomes. A combination of FISH with immunofluorescent detection of 5-methyl cytosine on super-stretched pachytene chromosomes provides a powerful tool to reveal DNA methylation of specific chromosomal domains, especially those associated with highly repetitive DNA sequences.  相似文献   

14.
Induction of cytochrome P4501A (CYP1A) in fish is an important biomarker in marine monitoring programmes but a number of factors complicate interpretation of data based on catalytic activity. To provide additional analytical tools, we have cloned and sequenced entire (dab) and partial cDNAs (flounder, turbot, sand eel) from several fish species. A detailed analysis comparing the new sequences to those on the database (13 sequences) is presented and identifies an invariant, teleost-specific sequence (195-IVVSVANVICGMCFGRRYDH-214) which might be the basis for production of a species cross-reactive antibody. Northern and slot blots of fish RNA (sand eel, plaice, turbot, flounder and dab) showed extensive cross-species hybridisation with each of the cDNAs (sand eel, plaice, turbot, flounder and dab). The exception was turbot RNA, which only gave adequate hybridisation when the turbot probe was used. Attempts to normalise the hybridisation data to GAPDH mRNA were not satisfactory since there were significant species differences in expression of this gene and expression was suppressed (20–40%) by β-naphthoflavone treatment. The CYP1A probes indicated induction levels relative to untreated dab of: plaice (five-fold); turbot (12-fold); flounder (12-fold); and dab (10-fold). The study demonstrates the relative ease with which species-specific molecular probes can be generated and used.  相似文献   

15.
MOTIVATION: The methods for analyzing overlap data are distinct from those for analyzing probe data, making integration of the two forms awkward. Conversion of overlap data to probe-like data elements would facilitate comparison and uniform integration of overlap data and probe data using software developed for analysis of STS data. RESULTS: We show that overlap data can be effectively converted to probe-like data elements by extracting maximal sets of mutually overlapping clones. We call these sets virtual probes, since each set determines a site in the genome corresponding to the region which is common among the clones of the set. Finding the virtual probes is equivalent to finding the maximal cliques of a graph. We modify a known maximal-clique algorithm such that it finds all virtual probes in a large dataset within minutes. We illustrate the algorithm by converting fingerprint and Alu-PCR overlap data to virtual probes. The virtual probes are then analyzed using double-linkage intersection graphs and structure graphs to show that methods designed for STS data are also applicable to overlap data represented as virtual probes. Next we show that virtual probes can produce a uniform integration of different kinds of mapping data, in particular STS probe data and fingerprint and Alu-PCR overlap data. The integrated virtual probes produce longer double-linkage contigs than STS probes alone, and in conjunction with structure graphs they facilitate the identification and elimination of anomalies. Thus, the virtual-probe technique provides: (i) a new way to examine overlap data; (ii) a basis on which to compare overlap data and probe data using the same systems and standards; and (iii) a unique and useful way to uniformly integrate overlap data with probe data.  相似文献   

16.
17.
18.
DNA microarray technology, originally developed to measure the level of gene expression, has become one of the most widely used tools in genomic study. The crux of microarray design lies in how to select a unique probe that distinguishes a given genomic sequence from other sequences. Due to its significance, probe selection attracts a lot of attention. Various probe selection algorithms have been developed in recent years. Good probe selection algorithms should produce a small number of candidate probes. Efficiency is also crucial because the data involved are usually huge. Most existing algorithms are usually not sufficiently selective and quite a large number of probes are returned. We propose a new direction to tackle the problem and give an efficient algorithm based on randomization to select a small set of probes and demonstrate that such a small set of probes is sufficient to distinguish each sequence from all the other sequences. Based on the algorithm, we have developed probe selection software RandPS, which runs efficiently in practice. The software is available on our website (http://www.csc.liv.ac.uk/ approximately cindy/RandPS/RandPS.htm). We test our algorithm via experiments on different genomes (Escherichia coli, Saccharamyces cerevisiae, etc.) and our algorithm is able to output unique probes for most of the genes efficiently. The other genes can be identified by a combination of at most two probes.  相似文献   

19.
In this work we aimed to compare and critically evaluate results obtained by different types of probes used for hybridisation to detect variant telomeric sequences with respect to their reliability and information value. Using slot-blot hybridisation we investigated three types of probes (oligonucleotides, cloned fragments and concatenated probes) under various conditions of hybridisation and washing. The concatenated probes exhibited the highest specificity although all three types are suitable for hybridisation of telomeric sequences under appropriate experimental conditions. We demonstrate how understanding generated from these data enables interpretation of hybridisation patterns of oligonucleotide probes to genomic DNAs.  相似文献   

20.
We report a method to analyse multiple samples by fluorescence in situ hybridisation on a single glass microscope slide. Wells were formed in which independent hybridisation reactions could proceed by sealing a silicon rubber gasket to the slide. In the largest format tested, different probes were hybridised simultaneously by applying them directly from a 96-well microtitre dish which was inverted on a glass plate. This technique will increase the rate of analysis of multiple probes against a standard set of chromosomes and could also be used to analyse different karyotypes using a panel of probes such as single chromosome paints during a single operation. It should be useful for both chromosomal mapping projects and screening for chromosome abnormalities in clinical diagnostic laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号