首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recent studies of haemoglobin binding to the cytoplasmic side of the erythrocyte membrane have shown that the predominant high-affinity interaction occurs with the major integral membrane protein known as band-3 protein and that this interaction may occur within the intact erythrocyte in a manner regulated by cell pH. We report here that haemoglobin and glyceraldehyde 3-phosphate dehydrogenase binding to band-3 protein in isolated membranes can inhibit endocytosis during vesiculation in vitro. The specificity of this effect was demonstrated by showing that myoglobin, which has an affinity for the membrane fully one to two orders of magnitude lower than that for haemoglobin, does not inhibit endocytosis.  相似文献   

3.
The carbohydrate moiety of the human erythrocyte glucose transporter was isolated using two independent methods: hydrazinolysis andN-glycanase treatment. The major structure observed was constituted of complex-type carbohydrate chains carrying repetitive units ofN-acetyllactosamine. This structure exhibited microheterogeneity: a broad variability in the number of repetitive units, presence of branched structures and substitution by fucosyl residues. Moreover, significant amounts of bi-antennary and hybrid structures were present.  相似文献   

4.
Summary It is shown by discontinuous sodium dodecylsulfate (SDS) polyacrylamide gel electrophoresis of human red cell membranes, followed by periodic acid Schiff (PAS) staining and densitometry, that the band PAS-3 (monomeric Ss glycoprotein) exhibits a polymorphism with respect to its staining intensity. In membranes of the genotype SS the staining intensity of this band is about 1.5 times higher than in ss membranes. The experimental error of the method does not permit one to decide, whether membranes of blood type Ss exhibit an intermediate staining intensity or not. The SDS electrophoretic molecular weight of PAS-3 is the same for SS, Ss, or ss membranes. The ratio of PAS to coomassie blue staining intensities, which are a measure of sialic acid and protein content, respectively, are equal for PAS-3 in glycoprotein preparations from SS and ss erythrocytes. These data indicate that the above phenomenon reflects a difference in the glycoprotein content between SS and ss membranes.  相似文献   

5.
Infection-induced RBC dysfunction has been shown to play a role in the modulation of host response to injury and infection. The underlying biochemical mechanisms are not known. This study investigated alterations in RBC band-3 phosphorylation status and its relationship to anion exchange activity in vitro as well as under in vivo septic conditions induced by cecal ligation and puncture (CLP) in mice. Pervanadate treatment in vitro increased band-3 tyrosine phosphorylation that was accompanied by decreased RBC deformability and anion exchange activity. Following sepsis, band-3 tyrosine phosphorylation in whole RBC ghosts as well as in cytoskeleton-bound or soluble RBC protein fractions were elevated as compared to controls. Although anion exchange activity was similar in RBCs from septic and control animals, band-3 interaction with eosin-5-maleimide (EMA), which binds to band-3 lysine moieties, was increased in cells from septic animals as compared to controls, indicating that sepsis altered band 3 organization within the RBC membrane. Since glucose-6-phosphate dehydrogenase is a major antioxidant enzyme in RBC, in order to assess the potential role of oxidative stress in band-3 tyrosine phosphorylation, sepsis-induced RBC responses were also compared between WT and (G6PD) mutant animals (20% of normal G6PD activity). Band-3 membrane content and EMA staining were elevated in G6PD mutant mice compared to WT under control non-septic conditions. Following sepsis, G6PD mutant animals showed lessened responses in band-3 tyrosine phosphorylation and EMA staining compared to WT. RBC anion exchange activity was similar between mutant and WT animals under all tested conditions. In summary, these studies indicate that sepsis results in elevated band-3 tyrosine phosphorylation and alters band-3 membrane organization without grossly affecting RBC anion exchange activity. The observations also suggest that factors other than oxidative stress are responsible for the sepsis-induced increase in RBC band-3 tyrosine phosphorylation.  相似文献   

6.
The chemical structure of Band 3 glycopeptide prepared from erythrocytes of normal adult (blood group OI), umbilical cord vessels (Oi), and an i adult variant who fails to develop I antigen (Oi), has been compared. Band 3 glycopeptide of cord erythrocytes gave, on permethylation analysis, predominantly 2,4,6-tri-O-methylgalactose and 3,6-di-O-methyl-2-N-methylacetamido-2-deoxyglucose, whereas the same glycopeptide of normal adult erythrocytes gave much higher amounts of 2,3,4,6-tetra-O-methylgalactose and 2,4-di-O-methylgalactose as compared with that of cord erythrocytes. Band 3 glycopeptide from i adult showed the same methylation pattern as cord-Band 3 glycopeptide. In accordance with these results, Band 3 glycopeptide of cord and i adult erythrocytes were hydrolyzed to mostly small oligosaccharides by endo-beta-galactosidase from Escherichia freundii, whereas that of normal adult produced a number of oligosaccharides with various sizes which was caused by branched structures. Based on these results and structures of released oligosaccharides, the major developmental change of carbohydrate structure in the erythrocyte membrane is the conversion of linear repeating Galbeta1 leads to 4GlcNAcbeta1 leads to 3Gal to a branched Galbeta 1 leads to 4GlcNAcbeta 1 leads to 3 (R leads to 6) Gal structure. i individual may result from the lack of the branching enzyme.  相似文献   

7.
It is known that ABO blood group substances in human erythrocyte membranes are sphingoglycolipids, but recently several authors have reported that the glycoproteins of the erythrocyte membranes also have ABO blood group activities in addition to MN blood group activities and virus hemagglutination inhibitor activity. We solubilized blood group A erythrocyte membranes with lithium diiodosalicylate and separated the glycoprotein fraction by phenol extraction and ethanol precipitation. This fraction was apparently not contaminated with glycolipid, but it showed weak blood group A activity. The activity of the glycoprotein of the erythrocyte membranes was one-sixth of that of the lgycolipid fraction from the same amount of membranes. The glycoprotein components were purified by Sephadex G-200 gel filtration in SDS. The main component isolated, PAS 1, still showed blood A activity.  相似文献   

8.
Human glycophorin, the major sialoglycoprotein of erythrocyte membranes, was isolated from erythrocytes of healthy individuals and four patients with CDG syndrome. Sugar analysis revealed lower carbohydrate content in three out of four CDG-glycophorin samples. In order to characterize closer the glycosylation differences between glycophorin samples in health and disease, reaction with four biotinylated lectins was performed, using ELISA procedure on polystyrene microplates. Results obtained so far strongly suggest that both N- and O-glycans of glycophorin are affected in CDG syndrome.  相似文献   

9.
At least two kinds of enzymes are active in the proteolytic self-digestion of erythrocyte membranes. The specific activities of these enzymes do not decrease with repeated washings of purified stroma. The effects of a variety of inhibitors on the membrane preparation's capacity to digest 125-I-labelled casein, covalently linked to latex beads, have been examined. Pepstatin-inhibitable enzyme, active at low pH, digests the membrane extensively to small polypeptide fragments. Spectrin, located at the internal part of the membrane, is readily degraded. Diisopropylfluorophosphate-inhibitable enzyme, active at pH 8-9, has only limited digestive capacity. Some of the membrane components, such as the small molecular weight glycoproteins, are resistant to digestion. The restricted capacity of digestion is due to the membrane molecular arrangement; increased disaggregation removes the restriction and increases the activity. Spectrin is not digested unless the membrane topography is disrupted by NP-40 neutral detergent. These observations suggest that the enzymes active at basic pH are located external to the cell. Intact cells do possess a limited capacity to degrade 125-I-labelled casein when their surfaces are brought into contact with substrate-coated beads.  相似文献   

10.
At least two kinds of enzymes are active in the proteolytic self-digestion of erythrocyte membranes. The specific activities of these enzymes do not decrease with repeated washings of purified stroma. The effects of a variety of inhibitors on the membrane preparation's capacity to digest 125I-labelled casein, covalently linked to latex beads, have been examined.Pepstatin-inhibitable enzyme, active at low pH, digests the membrane extensively to small polypeptide fragments. Spectrin, located at the internal part of the membrane, is readily degraded. Diisopropylfluorophosphate-inhibitable enzyme, active at pH 8–9, has only limited digestive capacity. Some of the membrane components, such as the small molecular weight glycoproteins, are resistant to digestion. The restricted capacity of digestion is due to the membrane molecular arrangement; increased disaggregation removes the restriction and increases the activity. Spectrin is not digested unless the membrane topography is disrupted by NP-40 neutral detergent. These observations suggest that the enzymes active at basic pH are located external to the cell. Intact cells do possess a limited capacity to degrade 125I-labelled casein when their surfaces are brought into contact with substrate-coated beads.  相似文献   

11.
Rainbow trout (Salmo gairdneri) band-3 protein was isolated from trout erythrocyte plasma membranes by a combination of preparative SDS/PAGE and electroelution. High purity and recovery of the plasma membranes were achieved by a new method. This was demonstrated using 4,4'diiso-thiocyano[3H2]dihydro-stilbene 2,2'disulfonic acid (3H2DIDS) which specifically labels band-3 protein. On SDS/PAGE, band-3 protein yields a similarly diffuse pattern, as does mammalian band-3 protein, with an apparent Mr of 116,000. In situ chymotryptic cleavage/cross-linking experiments with 3H2DIDS reveal that the fragments cross-link as in human and mouse band-3 proteins but that there are minor differences. Treatment of trout erythrocytes with trypsin results in cleavage of the band-3 protein. Purified polyclonal antibodies raised against trout band-3 protein react with trout band-3 protein and do not crossreact with mouse or human band-3 protein. They react specifically with only one chymotryptic fragment of trout band-3 protein.  相似文献   

12.
Blood-group-Ii-active gangliosides of human erythrocyte membranes.   总被引:7,自引:2,他引:5       下载免费PDF全文
More than ten new types of gangliosides, in addition to haematoside and sialosylparagloboside, were isolated from human erythrocyte membranes. These were separated by successive chromatographies on DEAE-Sephadex, on porous silica-gel columns and on thin-layer silica gel as acetylated compounds. Highly potent blood-group-Ii and moderate blood-group-H activities were demonstrated in some of the ganglioside fractions. The gangliosides incorporated into cholesterol/phosphatidylcholine liposomes stoicheiometrically inhibited binding of anti-(blood-group I and i) antibodies to a radioiodinated blood-group-Ii-active glycoprotein. The fraction with the highest blood-group-I-activity, I(g) fraction, behaved like sialosyl-deca- to -dodeca-glycosylceramides on t.l.c. Certain blood-group-I and most of the -i determinants were in partially or completely cryptic form and could be unmasked by sialidase treatment. Thus the I and i antigens, which are known to occur on internal structures of blood-group-ABH-active glycoproteins in secretions, also occur in the interior of the carbohydrate chains of erythrocyte gangliosides.  相似文献   

13.
14.
The carbohydrate analysis of alpha 1-AGPc purified from cirrhotic ascitic fluid was performed by immunoaffinity chromatography. It showed a large increase in the fucosyl molar ratio and sugar content (47%). The molar ratio of the oligosaccharides which were released by hydrazinolysis and fractionated by high-performance liquid chromatography confirms the marked increase in fucosyl residues in each fraction. A shift towards fractions with a high degree of branching was also observed. Moreover, the studies of sugar molar ratios and methylation of the tetrasialylated fraction indicated the simultaneous presence of sialyl and fucosyl residues on one of the outer branches.  相似文献   

15.
16.
A limit dextrinase, free from contaminating carbohydrases, has been purified from malted sorghum flour. The enzyme readily hydrolysed α-limit dextrins having maltosyl or maltotriosyl side-chains, pullulan, and amylopectin β-limit dextrin. Glycogen β-limit dextrin and amylopectin were more slowly hydrolysed, the detection of the hydrolysis of amylopectin being dependent on enzyme concentration. No significant debranching of glycogen could be detected.  相似文献   

17.
The kinetics of [3H]bilirubin binding to human erythrocyte ghost membranes was investigated. The binding occurred rapidly and was saturable with respect to [3H]bilirubin and membrane concentration. The apparent dissociation constant (Kd) and maximum binding (Bmax.) for bilirubin of the membranes were 2.3 microM and 0.93 nmol/mg of protein respectively. Low-affinity binding, non-saturable at 400 microM, was observed. Thermal dependency of the saturable binding showed a U-shaped curve with the lowest value around 37 degrees C. Affinity labelling of the membrane proteins using [3H]bilirubin-Woodward's reagent K complex did not define individual proteins. The Kd (12 microM) and Bmax. (4.4 nmol/mg of protein) for bilirubin of the tryptic membranes increased 5.0 and 5.2 times the respective control values (2.4 microM and 0.85 nmol/mg of protein). Heat-treatment of the membranes for 3 min at 100 degrees C increased the saturable binding as much as by 222%. These results indicate that there exist saturable bilirubin-binding sites on the erythrocyte membranes and also suggest that they are not composed of proteins.  相似文献   

18.
Calcium ions promote the rapid transfer of the terminal phosphate of ATP to a protein of human erythrocyte membranes. The concentration of Ca2+ for half-maximal effect is 7 muM. At nonlimiting ATP concentrations the level of 32P incorporated by the membranes is independent of the presence or absence of Mg2+. The number of phosphorylating sites in a single erythrocyte membrane is about 700. The influence of pH on the rate of hydrolysis of the bound phosphate and its rapid release on exposure to hydroxylamine are both consistent with an acylphosphate bond. The phosphate in the protein undergoes rapid turnover. Enzymatic splitting of the phosphate is stimulated by Mg2+ but not by Ca2+. It is proposed that Mg2+ accelerates the splitting of the phosphate by favoring the conversion of the phosphoprotein from a state of low reactivity to a state of high reactivity towards water. The reactions described probably are intermediate steps in the hydrolysis of ATP catalyzed by the Ca2+-dependent ATPase of human erythrocyte membranes.  相似文献   

19.
20.
Images of surfaces of human erythrocyte ghosts, lecithin liposomes, spectrin, erythrocyte membrane skeleton, concanavalin A and concanavalin A--decorated erythrocyte ghosts were obtained by scanning tunneling microscopy. The dimensions and surface topography of some membrane structures are described and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号