首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Remediation of heavy metal polluted sediment through bioleaching using elemental sulfur (S0) as the leaching agent can be regarded as a two‐step process: firstly, the microbial oxidation of the added S0 to sulfuric acid and, secondly, the reaction of the produced acid with the sediment. Here, both subprocesses were studied in detail independently: oxidized river sediment was either suspended in sulfuric acid of various strengths, or mixed with various amounts of finely ground S0 powder (diameter of the S0 particles between 1 and 175 μm with a Rosin‐Rammler‐Sperling‐Bennet (RRSB) distribution and an average diameter of 35 μm) and suspended in water. The leaching process was observed by repeated analysis of the suspension concerning pH, soluble sulfate and metals, and remaining S0. In the case of abiotic leaching with H2SO4, the reaction between the acid and the sediment resulted in a gradual increase in pH and a solubilization of sediment‐borne heavy metals which required some time; 80 % of the finally solubilized heavy metals was dissolved after 1 h, 90 % after 10 h, and 100 % after 100 h. In the case of bioleaching, the rate of S0 oxidation was maximal at the beginning, gradually diminished with time, and was proportional to the initial amount of S0. Due to its very low solubility in water, S0 is oxidized in a surface reaction catalyzed by attached bacteria. The oxidation let the particles shrink, their surface became smaller and, thus, the S0 oxidation rate gradually decreased. The shrinking rate was time‐invariant and, at 30 °C, amounted to 0.5 μm/day (or 100 μg/cm2/day). Within 21 days, 90 % of the applied S0 was oxidized. Three models with a different degree of complexity have been developed that describe this S0 oxidation, assuming S0 particles of uniform size (I), using a measured particle size distribution (II), or applying an adapted RRSB distribution (III). Model I deviated slightly from the measured data but was easy to handle, Model II fitted the measured data best but its simulation was complicated, and Model III was intermediate. The amount of soluble sulfate was smaller than the amount of H2SO4 added or microbially generated as the H2SO4 reacted with the sediment to form in part poorly soluble sulfates. A model has been developed that describes the pH and the soluble sulfate and metals at equilibrium, depending on the amount of H2SO4 applied or microbially generated, and that is based on the condition of electrical neutrality, a global metal/proton exchange reaction, and a sulfate‐fixation reaction. In suspension, bioleaching with S0 required considerably more time than abiotic leaching with H2SO4, but the final pH and metal solubilization were identical when equimolar amounts of leaching agents were applied.  相似文献   

2.
SoxAX enzymes couple disulfide bond formation to the reduction of cytochrome c in the first step of the phylogenetically widespread Sox microbial sulfur oxidation pathway. Rhodovulum sulfidophilum SoxAX contains three hemes. An electrochemical cell compatible with magnetic circular dichroism at near infrared wavelengths has been developed to resolve redox and chemical properties of the SoxAX hemes. In combination with potentiometric titrations monitored by electronic absorbance and EPR, this method defines midpoint potentials (Em) at pH 7.0 of approximately +210, −340, and −400 mV for the His/Met, His/Cys, and active site His/CysS-ligated heme, respectively. Exposing SoxAX to S2O42−, a substrate analog with Em ∼−450 mV, but not Eu(II) complexed with diethylene triamine pentaacetic acid (Em ∼−1140 mV), allows cyanide to displace the cysteine persulfide (CysS) ligand to the active site heme. This provides the first evidence for the dissociation of CysS that has been proposed as a key event in SoxAX catalysis.  相似文献   

3.
4.
5.
Achromatium oxaliferum is a large, morphologically conspicuous, sediment-dwelling bacterium. The organism has yet to be cultured in the laboratory, and very little is known about its physiology. The presence of intracellular inclusions of calcite and sulfur have given rise to speculation that the bacterium is involved in the carbon and sulfur cycles in the sediments where it is found. Depth profiles of oxygen concentration and A. oxaliferum cell numbers in a freshwater sediment revealed that the A. oxaliferum population spanned the oxic-anoxic boundary in the top 3 to 4 cm of sediments. Some of the A. oxaliferum cells resided at depths where no oxygen was detectable, suggesting that these cells may be capable of anaerobic metabolism. The distributions of solid-phase and dissolved inorganic sulfur species in the sediment revealed that A. oxaliferum was most abundant where sulfur cycling was most intense. The sediment was characterized by low concentrations of free sulfide. However, a comparison of sulfate reduction rates in sediment cores incubated with either oxic or anoxic overlying water indicated that the oxidative and reductive components of the sulfur cycle were tightly coupled in the A. oxaliferum-bearing sediment. A positive correlation between pore water sulfate concentration and A. oxaliferum numbers was observed in field data collected over an 18-month period, suggesting a possible link between A. oxaliferum numbers and the oxidation of reduced sulfur species to sulfate. The field data were supported by laboratory incubation experiments in which sodium molybdate-treated sediment cores were augmented with highly purified suspensions of A. oxaliferum cells. Under oxic conditions, rates of sulfate production in the presence of sodium molybdate were found to correlate strongly with the number of cells added to sediment cores, providing further evidence for a role for A. oxaliferum in the oxidation of reduced sulfur.  相似文献   

6.
Nutrient stimulation is considered effective for improving biogenic coalbed methane production potential. However, our knowledge of the microbial assembly process for profuse and rare microbial communities in coals under nutrient stimulation is still limited. This study collected 16S rRNA gene data from 59 microbial communities in coals for a meta-analysis. Among these communities, 116 genera were identified as profuse taxa, and the remaining 1,637 genera were identified as rare taxa. Nutrient stimulation increased the Chao1 richness of profuse and rare genera and changed the compositions of profuse and rare genera based on nonmetric multidimensional scaling with Bray-Curtis dissimilarities. In addition, many profuse and rare genera belonging to Proteobacteria and Acidobacteria were reduced, whereas those belonging to Euryarchaeota and Firmicutes were increased under nutrient stimulation. Concomitantly, the microbial co-occurrence relationship network was also altered by nutrient addition, and many rare genera mainly belonging to Firmicutes, Bacteroides, and Euryarchaeota also comprised the key microorganisms. In addition, the compositions of most of the profuse and rare genera in communities were driven by stochastic processes, and nutrient stimulation increased the relative contribution of dispersal limitation for both profuse and rare microbial community assemblages and that of variable selection for rare microbial community assemblages. In summary, this study strengthened our knowledge regarding the mechanistic responses of coal microbial diversity and community composition to nutrient stimulation, which are of great importance for understanding the microbial ecology of coals and the sustainability of methane production stimulated by nutrients.  相似文献   

7.
The spent caustic wastewater from the oxidation of sulfide present in offshore natural gas production mainly comprises thiosulfate and sulfate. A biocatalytic process, employing phototrophic green sulfur bacteria in symbiosis with sulfate-reducing bacteria, is described in this paper for the production of sulfur from the spent caustic wastewater, with synthetic wastewater as the model system. The process entails the conversion of thiosulfate to sulfur and sulfate by photosynthetic green sulfur bacteria Chlorobium vibrioforme f. thiosulfatophilum. Sulfate formed in turn is removed by Desulfovibrio desulfuricans to sulfide, which is further converted to sulfur by Chlorobium limicola through photooxidation. Sulfide is also oxidized to sulfur and sulfate via thiosulfate as an intermediate by Chlorobium vibrioforme f. thiosulfatophilum.  相似文献   

8.
Ivanov  M. V.  Rusanov  I. I.  Pimenov  N. V.  Bairamov  I. T.  Yusupov  S. K.  Savvichev  A. S.  Lein  A. Yu.  Sapozhnikov  V. V. 《Microbiology》2001,70(5):583-593
In the beginning of the summer of 1999, complex microbiological and biogeochemical investigations of meromictic Lake Mogil'noe (Kil'din Island, Barents Sea) were carried out. The analysis of the results shows a clearly pronounced vertical zonality of the microbial processes occurring in the water column of the lake. To a depth of 8 m, the total number and activity of microorganisms was limited by the relatively low content of organic matter (OM). In the upper part of the hydrogen-sulfide zone of the lake (beginning at a depth of 8.25 m), the content of particulate OM and the microbial number sharply increased. In this zone, the daily production of OM during anaerobic photosynthesis at the expense of massive development of colored sulfur bacteria reached 620 mg C/m2, which was twofold greater than the daily production of phytoplankton photosynthesis and led to a considerable change in the isotopic composition (13C) of the particulate OM. In the same intermediate layer, the highest rates of sulfate reduction were recorded, and fractionation of stable sulfur isotopes occurred. Below 10 m was the third hydrochemical zone, characterized by maximum concentrations of H2S and CH4and by a relatively high rate of autotrophic methanogenesis. The comparison of the results obtained with the results of investigations of previous years, performed in the end of summer, shows a decrease in the intensity of all microbial processes inspected. An exception was anoxygenic photosynthesis, which can utilize not only the de novo formed H2S but also the H2S accumulated in the lake during the winter period.  相似文献   

9.
Abstract

Recent work has led to the suggestion that biologically-mediated redox processes might be important in the regulation of dissolved trace element concentrations in rivers, especially with regard to manganese. Here, we focus on the removal of dissolved Mn from lower Mississippi River water. Experiments indicate that dissolved Mn can be rapidly removed from lower Mississippi River water on a timescale of days or less and that Mn oxides are formed. However, demonstrating a biological origin for this removal is problematic. Experiments reveal that commonly used microbial controls, including NaN3 mixtures, HgCl2, heat sterilization, and sonification all affect fluvial particulate Mn through dissolution, disaggregation, interference with adsorption, or particle ageing. Thus, these microbial controls may affect abiotic as well as biological processes. Evidence supporting microbial removal of dissolved Mn from lower Mississippi River water includes a temperature optimum for the process (~30°C), a lower activation energy than reported for heterogeneous inorganic Mn oxidation, and a faster rate than reported for autocatalytic inorganic Mn oxidation. This rapid Mn oxidation process occurs at essentially the same rate in the dark as well as the light. Observation of Mn removal at similar rates in a blackwater river in addition to the lower Mississippi, suggests that this is a common phenomenon in fluvial systems. If, as has been shown by other lab studies, the freshly biologically precipitated Mn oxides have a high specific surface area, then our observations provide a potential link between microbial activity, Mn cycling, and the cycling of other particle-reactive trace elements in rivers. Our results also indicate that unfiltered river water samples for dissolved Mn analysis should be filtered as soon as possible or at least stored cold if immediate filtration is not possible.  相似文献   

10.
11.
Microbial Life at 90 C: the Sulfur Bacteria of Boulder Spring   总被引:14,自引:5,他引:9       下载免费PDF全文
The physiology of the bacteria living in Boulder Spring (Yellowstone National Park) at 90 to 93 C was studied with radioactive isotope techniques under conditions approximating natural ones. Cover slips were immersed in the spring; after a fairly even, dense coating of bacteria had developed, these cover slips were incubated with radioactive isotopes under various conditions and then counted in a gas flow or liquid scintillation counter. Uptake of labeled compounds was virtually completely inhibited by formaldehyde, hydrochloric acid, and mercuric bichloride, and inhibition was also found with streptomycin and sodium azide. The water of Boulder Spring contains about 3 mug of sulfide per ml. Uptake of labeled compounds occurs only if sulfide or another reduced sulfur compound is present during incubation. The pH optimum for uptake of radioactive compounds by Boulder Spring bacteria is 9.2, a value near that of the natural spring water (8.9). Many experiments with a variety of compounds were performed to determine the temperature optimum for uptake of labeled compounds. The results with all the compounds were generally similar, with broad temperature optima between 80 and 90 C, and with significant uptake in boiling (93 C) but not in superheated water (97 C). The results show that the bacteria of Boulder Spring are able to function at the temperature of their environment, although they function better at temperatures somewhat lower. The fine structure of these bacteria has been studied by allowing bacteria in the spring to colonize glass slides or Mylar strips which were immediately fixed, and the bacteria were then embedded and sectioned. The cell envelope structure of these bacteria is quite different from that of other mesophilic or thermophilic bacteria. There is a very distinct plasma membrane, but no morphologically distinct peptidoglycan layer was seen outside of the plasma membrane. Instead, a rather thick diffuse layer was seen, within which a subunit structure was often distinctly visible, and connections frequently occurred between this outer layer and the plasma membrane. The thick outer layer usually consisted of two parts, the outer part of which was sometimes missing. Within the cells, structures resembling ribosomes were seen, and regions lacking electron density which probably contained deoxyribonucleic acid were also visible.  相似文献   

12.
13.
Various bacteria, actinomycetes, and filamentous fungi decomposed methionine, but only certain aerobic bacteria isolated from soil decomposed it in the absence of other organic substrates. These bacteria could grow on methionine as the only organic substrate and source of nitrogen and sulfur. Methionine was first deaminated and then demethiolated with production of methanethiol, part of which was oxidized to dimethyl disulfide. The amount of methanethiol that was oxidized varied with different cultures. A bacterial culture initially unable to grow on methionine developed capacity to do this in a medium which contained methionine and other growth substrates. The two sulfur products, methanethiol and dimethyl disulfide, are volatile and escaped from the media, resulting in a decrease in the sulfur content proportional to the amount of methionine decomposed.  相似文献   

14.
The role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long −149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance of Proteobacteria, with Betaproteobacteria and members of the family Comamonadaceae being the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides.  相似文献   

15.
16.
The oxidation and reduction of elemental sulfur and reduced inorganic sulfur species are some of the most important energy-yielding reactions for microorganisms living in volcanic hot springs, solfataras, and submarine hydrothermal vents, including both heterotrophic, mixotrophic, and chemolithoautotrophic, carbon dioxide-fixing species. Elemental sulfur is the electron donor in aerobic archaea like Acidianus and Sulfolobus. It is oxidized via sulfite and thiosulfate in a pathway involving both soluble and membrane-bound enzymes. This pathway was recently found to be coupled to the aerobic respiratory chain, eliciting a link between sulfur oxidation and oxygen reduction at the level of the respiratory heme copper oxidase. In contrast, elemental sulfur is the electron acceptor in a short electron transport chain consisting of a membrane-bound hydrogenase and a sulfur reductase in (facultatively) anaerobic chemolithotrophic archaea Acidianus and Pyrodictium species. It is also the electron acceptor in organoheterotrophic anaerobic species like Pyrococcus and Thermococcus, however, an electron transport chain has not been described as yet. The current knowledge on the composition and properties of the aerobic and anaerobic pathways of dissimilatory elemental sulfur metabolism in thermophilic archaea is summarized in this contribution.  相似文献   

17.
In situ chemical oxidation with permanganate has become an accepted remedial treatment for groundwater contaminated with chlorinated solvents. This study focuses on the immediate and short-term effects of sodium permanganate (NaMnO4) on the indigenous subsurface microbial community composition in groundwater impacted by trichloroethylene (TCE). Planktonic and biofilm microbial communities were studied using groundwater grab samples and reticulated vitreous carbon passive samplers, respectively. Microbial community composition was analyzed by terminal restriction fragment length polymorphism and a high-density phylogenetic microarray (PhyloChip). Significant reductions in microbial diversity and biomass were shown during NaMnO4 exposure, followed by recovery within several weeks after the oxidant concentrations decreased to <1 mg/L. Bray–Curtis similarities and nonmetric multidimensional scaling showed that microbial community composition before and after NaMnO4 was similar, when taking into account the natural variation of the microbial communities. Also, 16S rRNA genes of two reductive dechlorinators (Desulfuromonas spp. and Sulfurospirillum spp.) and diverse taxa capable of cometabolic TCE oxidation were detected in similar quantities by PhyloChip across all monitoring wells, irrespective of NaMnO4 exposure and TCE concentrations. However, minimal biodegradation of TCE was observed in this study, based on oxidized conditions, concentration patterns of chlorinated and nonchlorinated hydrocarbons, geochemistry, and spatiotemporal distribution of TCE-degrading bacteria.  相似文献   

18.
The distribution of Fe(III), its availability for microbial reduction, and factors controlling Fe(III) availability were investigated in sediments from a freshwater site in the Potomac River Estuary. Fe(III) reduction in sediments incubated under anaerobic conditions and depth profiles of oxalate-extractable Fe(III) indicated that Fe(III) reduction was limited to depths of 4 cm or less, with the most intense Fe(III) reduction in the top 1 cm. In incubations of the upper 4 cm of the sediments, Fe(III) reduction was as important as methane production as a pathway for anaerobic electron flow because of the high rates of Fe(III) reduction in the 0- to 0.5-cm interval. Most of the oxalate-extractable Fe(III) in the sediments was not reduced and persisted to a depth of at least 20 cm. The incomplete reduction was not the result of a lack of suitable electron donors. The oxalate-extractable Fe(III) that was preserved in the sediments was considered to be in a form other than amorphous Fe(III) oxyhydroxide, since synthetic amorphous Fe(III) oxyhydroxide, amorphous Fe(III) oxyhydroxide adsorbed onto clay, and amorphous Fe(III) oxyhydroxide saturated with adsorbed phosphate or fulvic acids were all readily reduced. Fe3O4 and the mixed Fe(III)-Fe(II) compound(s) that were produced during the reduction of amorphous Fe(III) oxyhydroxide in an enrichment culture were oxalate extractable but were not reduced, suggesting that mixed Fe(III)-Fe(II) compounds might account for the persistence of oxalate-extractable Fe(III) in the sediments. The availability of microbially reducible Fe(III) in surficial sediments demonstrates that microbial Fe(III) reduction can be important to organic matter decomposition and iron geochemistry. However, the overall extent of microbial Fe(III) reduction is governed by the inability of microorganisms to reduce most of the Fe(III) in the sediment.  相似文献   

19.
20.
Abstract Microbiological, geochemical, and isotopic analyses of sediment and water samples from the unconsolidated Yegua formation in east-central Texas were used to assess microbial processes in the terrestrial subsurface. Previous geochemical studies suggested that sulfide oxidation at shallow depths may provide sulfate for sulfate-reducing bacteria (SRB) in deeper aquifer formations. The present study further examines this possibility, and provides a more detailed evaluation of the relationship between microbial activity, lithology, and the geochemical environment on meter-to-millimeter scales. Sediment of varied lithology (sands, silts, clays, lignite) was collected from two boreholes, to depths of 30 m. Our findings suggest that pyrite oxidation strongly influences the geochemical environment in shallow sediments (∼5 m), and produces acidic waters (pH 3.8) that are rich in sulfate (28 mM) and ferrous iron (0.3 mM). Sulfur and iron-oxidizing bacteria are readily detected in shallow sediments; they likely play an indirect role in pyrite oxidation. In consistent fashion, there is a relative paucity of pyrite in shallow sediments and a low 34S/32S-sulfate ratio (0.2‰) (reflecting contributions from 34S-depleted sulfides) in shallow regions. Pyrite oxidation likely provides a sulfate source for both oxic and anoxic aquifers in the region. A variety of assays and direct-imaging techniques of 35S-sulfide production in sediment cores indicates that sulfate reduction occurs in both the oxidizing and reducing portions of the sediment profile, with a high degree of spatial variability. Narrow zones of activity were detected in sands that were juxtaposed to clay or lignite-rich sediments. The fermentation of organic matter in the lignite-rich laminae provides small molecular weight organic acids to support sulfate reduction in neighboring sands. Consequently, sulfur cycling in shallow sediments, and sulfate transport represent important mechanisms for commensal interaction among subsurface microorganisms by providing electron donors for chemoautotrophic bacteria and electron acceptors for SRB. The activity of SRB is linked to the availability of suitable electron donors from spatially distinct zones. Received: 10 November 1997; Accepted: 10 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号