首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The seasonal savannas (cerrados) of Central Brazil are characterized by a large diversity of evergreen and deciduous trees, which do not show a clear differentiation in terms of active rooting depth. Irrespective of the depth of the root system, expansion of new foliage in deciduous species occurs at the end of the dry season. In this study, we examined a suite of leaf traits related to C assimilation, water and nutrients (N, P) in five deciduous and six evergreen trees that were among the dominant families of cerrado vegetation. Maximum CO2 assimilation on a mass basis (Amass) was significantly correlated with leaf N and P, and specific leaf area (SLA; leaf area per unit of leaf mass). The highest leaf concentrations of both nutrients were measured in the newly mature leaves of deciduous species at the end of the dry period. The differences in terms of leaf N and P between evergreen and deciduous species decreased during the wet season. Deciduous species also invested less in the production of non-photosynthetic leaf tissues and produced leaves with higher SLA and maintained higher water use efficiency. Thus, deciduous species compensated for their shorter leaf payback period by maintaining higher potential payback capacity (higher values of Amass) and lower leaf construction costs (higher SLA). Their short leafless period and the capacity to flush by the end of the dry season may also contribute to offset the longer payback period of evergreen species, although it may involve the higher cost of maintaining a deep-root system or a tight control of plant water balance in the shallow-rooted ones.  相似文献   

2.
Summary Leaf water relationships were studied in four widespread forest tree species (Ilex opaca Ait., Cornus florida L., Acer rubrum L., and Liriodendron tulipifera L.). The individuals studied all occurred on the same site and were selected to represent a range of growth forms and water relationships in some of the principal tree species of the region. The water relations of the species were analyzed using the concept of the water potential-water content relationship. The pressure-volume method was used to measure this relationship using leaf material sampled from naturally occurring plants in the field. Water potential components (turgor, osmotic, and matric) were obtained by analysis of the pressure-volume curves.Initial osmotic potentials (the value of the osmotic component at full turgidity) were highest (least negative) at the start of the growing season. They decreased (becoming progressively more negative) as the season progressed through a drought period. Following a period of precipitation at the end of the drought period, initial osmotic potentials increased toward the values measured earlier in the season.Seasonal osmotic adjustments were sufficient in all species to allow maintenance of leaf turgor through the season, with one exception: Acer appeared to undergo some midday turgor loss during the height of the July drought period.In addition to environmental influences, tissue stage of development played a role; young Ilex leaves had higher early season initial osmotic potentials than overwintering leaves from the same tree.The seasonal pattern of initial osmotic potential in Liriodendron and the observed pattern of leaf mortality suggested a possible role of osmotic potentials in the resistance of those leaves to drought conditions. The fraction of total leaf water which is available to affect osmotic potentials, called the osmotic water fraction in this study, was greatest in young tissue early in the season and declined as the season progressed.The results of this study showed that the water potential-water content relationship represents a dynamic mechanism by which plant internal water relations may vary in response to a changing external water-availability regime. The measured water relationships confirmed the relative positions of the species along a water-availability gradient, with Cornus at the wettest end and Ilex at the driest end of the gradient. Acer and Liriodendron were intermediate in their water relations. The spread of these species along a water-availability gradient on the same site suggested that coexistence is partially based on differential water use patterns.  相似文献   

3.
L. Schreiber  M. Riederer 《Oecologia》1996,107(4):426-432
Water permeabilities of astomatous, isolated cuticular membranes (CM) of 24 different plants species were measured. Permeances varied from 1.7×10–11 m·s–1 (Vanilla planifolia leaf) up to 2.1×10–9 m·s–1 (Malus cf. domestica fruit) among different plant species, thus covering a range of over 2 orders of magnitude. Ranking of species according to permeances resulted in four distinct groups. The first group, of species with the lowest cuticular transpiration rates, included evergreen species growing in warm dry tropical climates (e.g. Vanilla planifolia and Monstera deliciosa leaves). The second class, with slightly higher water permeabilities, included evergreen species with typical scleromorphic leaf properties, adapted to a typical mediterranean type of climate with a dry period during the year (e.g. Citrus limon and Olea europaea leaves). The third group of species, where the highest leaf cuticular transpiration rates were observed, included deciduous species normally growing in a tempeate climate (e.g. Juglans regia and Forsythia suspensa leaves). Fruit cuticular membranes (CM) made up the fourth group (e.g. Capsicum annuum and Malus cf. domestica fruits), with even higher permeances than leaves of species from group 3. Thus, it appears that the plant species investigated show ecophysiological adaptations to the climatic demands of their natural habitats in cuticular water permeability.  相似文献   

4.
Aquatic ecosystems are particularly sensitive to the introduction of species due to human activities. Increasing salinity in freshwaters due to sea intrusion or to human activities (road salt, industry, etc.) is known to have a negative impact on aquatic organisms and could play a role in the dynamics of invaders. This study compares salt tolerance levels of two introduced aquatic plants Myriophyllum aquaticum (Velloso) Verdcourt and Ludwigia grandiflora (Michaux) Greuter and Burdet. Plants were collected in spring, summer and autumn 2010, and were exposed to a range of salt concentrations (1, 3 and 6 g/L). Plant growth was determined by measuring seven morphological traits and their photosynthetic activity. Increased salt levels induced a decline in growth and photosynthetic activity in L. grandiflora, while photosynthetic activity in M. aquaticum remained constant at all salt concentrations. The response of both species to salt varied according to the season. M. aquaticum allocated its energy to growth in autumn, whereas the growth of L. grandiflora remained constant whatever the season. Our results suggested that M. aquaticum stimulated root and leaf production at the end of summer, which conferred resistance to salt stress and allowed this species to become invasive by overcompensating for this stress. Conversely, L. grandiflora induced premature senescence and lost its leaves. In the context of worldwide salinisation of freshwaters, M. aquaticum could colonize brackish water and other water bodies, whereas L. grandiflora invasion could be limited.  相似文献   

5.
Haase  Peter  Pugnaire  Francisco I.  Clark  S.C.  Incoll  L.D. 《Plant Ecology》1999,145(2):327-339
Seasonal changes in leaf demography and gas exchange physiology in the tall evergreen tussock grass Stipa tenacissima, one of the few dominant plant species in the driest vegetation of Europe, were monitored over a period of two years at a field site in semi-arid south-eastern Spain. Three age-classes of leaves – young, mature and senescent – were distinguished in the green canopy. Production of new leaves and extension growth of older leaves occurred exclusively from October–November to May–June. The rate of extension was significantly correlated with gravimetric soil water content. Leaf growth ceased after gravimetric soil water content fell below 0.015 g g–1 at the beginning of the dry season which corresponded to pre-dawn leaf water potentials of -3.0 MPa. Leaf senescence and desiccation reduced green leaf area by 43–49% during the dry season. Diurnal changes in the net photosynthetic rate of all three cohorts of leaves were bimodal with an early morning maximum, a pronounced midday depression and a small recovery late in the afternoon. Maximum photosynthetic rates of 10–16 mol CO2 m–2 s–1 were attained from November 1993 to early May 1994 in young and mature leaves. Photosynthetic rate declined strongly during the dry season and was at or below compensation in September 1994. Gas exchange variables of young and mature leaves were not significantly different, but photosynthetic rate and diffusive conductance to water vapour of senescing leaves were significantly lower than in the two younger cohorts. Leaf nitrogen content of mature leaves varied seasonally between 2.9 and 5.2 g m–2 (based on projected area of folded leaves), but was poorly correlated with maxima of the photosynthetic rate. There was a stronger linear relationship between the daily maxima of leaf conductance and pre-dawn leaf water potential than with atmospheric water vapour saturation deficit. Seasonal and between-year variation in daily carbon assimilation were caused mainly by differences in climatic conditions and canopy size whereas the effect of age structure of canopies was negligible. Since water is the most important limiting factor for growth and reproduction of S. tenacissima, any future rise in mean temperature, which might increase evapotranspiration, or decrease in rainfall, may considerably reduce the productivity of the grasslands, particularly at the drier end of their geographical distribution.  相似文献   

6.
Water use patterns of two species of strangler fig, Ficus pertusa and F. trigonata, growing in a Venezuelan palm savanna were contrasted in terms of growth phase (epiphyte and tree) and season (dry and wet). The study was motivated by the question of how C3 hemiepiphytes accommodate the marked change in rooting environment associated with a life history of epiphytic establishment followed by substantial root development in the soil. During the dry season, stomatal opening in epiphytic plants occurred only during the early morning, maximum stomatal conductances were 5 to 10-fold lower, and midday leaf water potentials were 0.5–0.8 MPa higher (less negative) than in conspecific trees. Watering epiphytes of F. pertusa during the dry season led to stomatal conductances comparable to those exhibited by conspecific trees, but midday leaf water potentials were unchanged. During the rainy season, epiphytes had lower stomatal conductances than conspecific trees, but leaf water potentials were similar between the two growth phases. There were no differences in 13C between the two growth phases for leaves produced in either season. Substrate water availability differed between growth phases; tree roots extended down to the permanent water table, while roots of epiphytic plants were restricted to material accumulated behind the persistent leaf bases of their host palm tree, Copernicia tectorum. Epiphytic substrate moisture contents were variable during both seasons, indicating both the availability of some moisture during the dry season and the possibility of intermittent depletion during the rainy season. Epiphytic strangler figs appear to rely on a combination of strong stomatal control, maintenance of high leaf water potentials, and perhaps some degree of stem water storage to cope with the fluctuating water regime of the epiphytic environment.  相似文献   

7.
周博  范泽鑫  杞金华 《生态学报》2020,40(5):1699-1708
研究采用树木生长环在哀牢山中山湿性常绿阔叶林持续9年(2009—2017年)监测了2个常绿树种(厚皮香,Ternstroemia gymnanthera;南亚枇杷,Eriobotrya bengalensis)和2个落叶树种(西桦,Betula alnoides;珍珠花,Lyonia ovalifolia)的树干月生长量,采用逻辑斯蒂生长模型(Logistic model)模拟树木径向生长量和物候参数,并分析了年、季尺度上径向生长与主要气候因子的关系。结果表明:1)4个树种年平均生长量为6.3 mm,落叶树种年平均生长量(10.6 mm/a)显著高于常绿树种(3.0 mm/a);2)雨季(5—10月)是哀牢山中山湿性常绿阔叶林树木生长的主要时期,4个树种雨季平均生长量为5.9 mm,占全年总生长量的93%,其中落叶树种雨季生长量占全年的96%,而常绿树种雨季生长量占全年的86%;3)常绿树种生长季长度为169天,长于落叶树种(137天),而落叶树种最大生长速率(0.14 mm/d)显著高于常绿树种(0.03 mm/d),最大径向生长速率能很好地预测树种年生长量;4)低温、雾日和光合有效辐射是影响哀牢山亚热带常绿阔叶林4个研究树种径向生长的重要环境因子,其中温度对常绿树种径向生长具有显著影响,而雨日、雾日与空气湿度等水分因子对落叶树种径向生长更为重要。常绿树种年生长量对旱季气候因子的响应相比落叶树种更为敏感,树木旱季生长量除了受低温限制外,也受到水分供给的影响。气候变化可能改变不同物候类型树种在哀牢山中山湿性常绿阔叶林中的生长状态与分布格局。  相似文献   

8.
Two succulents with similar growth forms but different types of photosynthesis, Cotyledon orbiculata (crassulacean acid metabolism, CAM) and Othonna opima (C3 pathway), were investigated with respect to the modulation of water use efficiency (WUE) during the transition from the rainy season to subsequent drought. Environmental conditions were simulated in a controlled-environment experiment on the basis of data collected in the habitat of the two species in the southern Namib desert. Experiments included one or more periods of hot bergwind, which frequently occurs in this region. When water was readily available, daily net CO2 fixation was similar in the two species. This result confirms that the daily CO2 fixation of CAM plants is as high as that of morphologically similar C3 plants adapted to the same habitat. As expected, both species reduced CO2 fixation and water loss through transpiration during simulated hot bergwind periods and their WUE values increased. However, after the second hot bergwind period, nearly identical WUEs were recorded: 41.0 and 40.0 mmol mol?1 for C. orbiculata and O. opima, respectively. Therefore the statement that a CAM plant is a better ‘water saver’ than a C3 plant does not necessarily hold for CAM and C3 plants with similar growth forms growing under the same environmental conditions.  相似文献   

9.
Colonization dynamics of woody species into grasslands in Neotropical savannas are determined by two main factors: plant-available moisture and fire. Considering seasonality of precipitation and high fire frequency in these ecosystems, vegetative reproduction has been suggested as the main regeneration strategy in woody species. This study examined seasonal variations in water relations and photosynthesis in juveniles of two tree species with contrasting regeneration strategies: Palicourea rigida (sexual reproduction) and Casearia sylvestris (asexual reproduction). The studied species showed similar transpiration rates to deep-rooted adult evergreen tree species during the rainy period, suggesting little water availability limitations on surface soil layers. P. rigida juveniles significantly decreased their leaf water potentials from wet to dry seasons. In C. sylvestris resprouts, there were no seasonal differences in their predawn water potentials and gas exchange parameters, indicating a water deficit avoidance characteristic derived from their connections to deep-rooted adult counterparts allowing access to moist soil at depth even during the drought period. P. rigida rely on strict control of water losses and turgor maintenance through elastic cell walls during the dry season. The iso-hydric behavior of gas exchange and most water relations parameters in C. sylvestris enable turgor maintenance during the dry season which also gives the possibility to achieve foliar expansion under water-stressed conditions for shallow-rooted plants. Nevertheless, in absence of water deficits, P. rigida had the advantage to be physiologically independent individuals, showing an equal or even superior photosynthetic performance that eventually could be translated into a more favorable whole-plant carbon balance and higher growth rates in wet habitats.  相似文献   

10.
Trees that maintain some leaves throughout dry seasons become important ruminant browse depending on nutritive and antinutritive values. Leaves from seven tree species that maintained some leaves during the dry season were collected during dry and wet seasons and analysed for nutritive and antinutritive values. Neutral detergent fibre of leaves was either not different or less (≤ 0.05) during the dry season as compared to the wet season depending on species. Acid detergent fibre was either not different or greater (≤ 0.05) during the dry season as compared to the wet season. Crude protein and condensed tannins (CT) were either not different or less (≤ 0.05) during the dry season than during the wet season for the seven species. The biological activity (protein‐binding ability; PB) of the CT was highly species specific and was either not different between seasons, more bioactive during the wet season, or more bioactive during the dry season depending on the species. Based on combinations of low fibre, high protein and potentially beneficial levels of bioactive CT, Senegalia caffra, Vachellia karoo and Searsia lancea may be the most promising dry‐season browse of the species studied.  相似文献   

11.
The phytoplankton in Thale Sap Songkhla was investigated at 2–3 month intervals from August 1991 to October 1993. The abundance of phytoplankton ranged from 1.4×106 to 1.3×109 cells m–3. A total of 6 divisions with 103 genera were identified as Bacillariophyta: 49 genera, Chlorophyta: 21 genera, Pyrrhophyta: 15 genera, Cyanophyta: 12 genera, Chrysophyta: 3 genera and Euglenophyta: 3 genera. Although phytoplankton abundance was distinctly greater in the first year of study (August 1991–June 1992) than in the second year (August 1992–October 1993), their patterns are similar: 2 peaks yearly. The peaks of phytoplankton occurred in the heavy rainy season (northeast monsoon) and the light rainy season (southwest monsoon). The main bloom was found during December–January, with a predominance of blue-green algae (e.g. Aphanizomenon andPhormidium) and green algae (e.g. Eudorina). Their species composition also increased, an effect of the large amount of rainfall resulting in low salinity during the northeast monsoon. The minor bloom was produced by diatoms during June–July when water salinity was moderate to seawater. Both phytoplankton numbers and species composition were high. However, unpredictably heavy rainfall during the southwest monsoon period may reduce diatom production due to rapid immediate replacement by blue-green species. Besides salinity concentration, a low total nitrogen: total phosphorus (TN: TP) ratio tended to support the growth of blue-green algae. The diversity of phytoplankton was lowest in the heavy rainy period.  相似文献   

12.
内陆干旱区典型旱生植物蒸腾耗水量模拟研究   总被引:2,自引:0,他引:2  
张阳阳  陈喜  高满  刘秀强 《生态学报》2021,41(19):7751-7762
内陆干旱区植物耗水量是生态恢复和水资源管理的重要依据。参照甘肃省民勤县青土湖附近气象条件、干旱区典型植物生理特征以及土壤水力特征参数,采用Tardieu-Davies模型(气孔导度模型),计算在适宜和极限生态地下水埋深下7种典型植物生长季蒸腾耗水量,并与国内外研究成果对比,得出以下结论:适宜、极限生态地下水埋深下,7种植物生长季内平均蒸腾量分别为793、602 mm。不同植物蒸腾量差异大,适宜生态地下水位埋深下水生植物芦苇(Phragmites australis)、河岸带植被柽柳(Tamarix chinensis)蒸腾量最大,分别为1292、1147 mm;耐旱性强的荒漠植被梭梭(Haloxylon ammodendron)蒸腾量最小,为279 mm;其它植被盐节木(Halocnemum strobilaceum)(940 mm)、罗布麻(Poacynum hendersonii)(913 mm)、白刺(Nitraria tangutorum)(534 mm)、胡杨(Populus euphratica)(448 mm)蒸腾量依次减小。由适宜生态地下水埋深降低至极限生态地下水埋深时,植物蒸腾量平均减少24%。耐旱性强的梭梭、白刺减幅大,分别为53、35%;耐旱性弱的芦苇、柽柳减幅小,分别为19、13%。  相似文献   

13.
We report on community structural, ecophysiological, phenological, and morphological measurements made on woody plant species in the high elevation pre-altiplano zone on the western slopes of the Andean Cordillera of northern Chile. Notwithstanding extreme conditions of low rainfall, high atmospheric vapour demand and diurnal temperature fluctuation, a diversity of habitats (associated with drainage and slope aspect), appreciable local plant species richness (28 woody perennial plant species in a small area), and an array of adaptive morphological ecophysiological and phenological traits are present among woody species in these shrublands. Family diversity was low with four families accounted for 82% of the species. A range of gas exchange and watering use efficiency strategies was present ranging from highly efficient CAM species with a carbon isotope discrimination (Δ) of 3.7–7.5‰ through C3 species with varying stomatal and gas exchange characteristics with a Δ of 14.4 to 19.8‰. Drought-deciduous small-leaved amphistomatic species from arid slopes generally had high stomatal conductance and high carbon assimilation rates during the rainy season. These drought deciduous species were largely leafless and, with one exception had low water potentials, during the dry season. Wash and less xeric site species commonly had broader evergreen to semi-evergreen leaves, higher dry season water potentials, and relatively consistent and moderate rates of gas exchange throughout the year. For all species, intrinsic water use efficiency (as estimated from the inverse of c i :c a ratio) correlated positively with mean leaf width (broader leaves had a lower higher intrinsic WUE) and dry season water potential. The charismatic high altitude tree, Polylepis rugulosa (Roaceae), had a population structure that suggests highly episodic establishment of seedlings, likely in sequences of wet years. Little of the area of these significant shrublands is currently protected. It would be desirable to add areas of pre-altiplano shrublands to adjacent national parks to ensure the persistence of these important communities. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
How small-bodied (500–1,200 g) folivorous prosimian primates cope with large amounts of foliage in their diet seasonally has yet to be determined for many species such as Hapalemur griseus, which specializes on bamboo. To address this issue, we present results on seasonal variation in activity and diet from a wild group of H. griseus in southeastern Madagascar. Throughout the study (which was conducted from July–November 1994 and July 1995–February 1996), H. griseus primarily fed on new growth from three species of bamboo: two species of liana bamboo and Cephalostachyum perrieri. Bamboo species were used in different ways seasonally; liana bamboo was consumed more during the dry, cool season, and C. perrieri was eaten more often during the wet, warm season. H. griseus also spent more of their time feeding and traveling than nocturnal folivores of similar body size during the dry season. During the warm wet season, H. griseus decreased the amount of time spent feeding and traveling and rested more often. We hypothesize that seasonal changes in activity may be primarily related to the distribution and availability of food sources and/or reproductive cycles. Am. J. Primatol. 43:211–223, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
目前对于荒漠灌木光能利用效率(LUE)的季节变异及其调控因素,尤其是其生物调控因素的认识非常有限,导致了荒漠生态系统生产力模型的不确定性。拟验证假设:长期干旱环境下,典型荒漠灌木油蒿光能利用效率日均值(LUEday)的动态变化与叶片性状的季节性调整有关。试验采用Li-6400便携式光合仪定期测量了油蒿生长季叶片LUEday的季节动态及相关叶性状指标,探究叶性状对LUEday的影响。结果表明:LUEday的季节波动范围为0.003-0.017 mol/mol,整体变异系数(CV)为38.75%。完全展叶期LUEday均值相比生长季平均值降低17.37%,相比展叶期和落叶期时降低30%;8个叶性状的季节变异幅度差异较大,其中总叶绿素含量(Chl)、类胡萝卜素含量(Car)和叶氮含量(LNC)均表现出较大的季节变异性(CV ≥ 20%),叶碳含量(LCC)和叶片相对含水量(LRWC)的变异程度最低(CV<7%)。LRWC与所有叶片化学性状(Chl、Chl a/b、Car、LNC和LCC)均存在显著相关,表明其变化与叶片的养分吸收、光合色素合成以及碳同化的运输过程密切相关;油蒿LUEday的相对变化与LRWC、Chl a/b和LNC显著正相关,而LRWC和LNC的季节动态受空气温度(Ta)和土壤含水量(VWC)的共同调节,Chl a/b的季节波动主要由浅层土壤含水量(10 cm VWC)控制。以上研究结果强调,在未来预计极端的气候事件(如极端干旱和持续热浪事件)发生更频繁的旱地场景中,时间尺度植物叶性状对于土壤干旱和高温的适应性调整应当被充分考虑到旱地生态系统的通量建模方案中。该结果将为构建叶片尺度的光合生理模型与厘清LUE的生物调控机制提供理论依据。  相似文献   

16.
We used experimental defoliations to examine the effect of leaf age on the timing of leaf shedding in two tropical dry forest trees. Trees of the deciduous Bombacopsis quinata (bombacaceae, a.k.a. Pachira quinata) and the brevi-deciduous Astronium graveolens (anacardiaceae) were manually defoliated for three times during the rainy season. All trees started to produce a new crown of leaves 2 weeks after defoliation, and continued expanding leaves throughout the rainy season. At the transition to the dry season, the experimental groups consisted of trees with known differences in maximum leaf age. Defoliations resulted in declines in stem growth but did not affect the mineral content or water relations of the leaves subsequently produced. There was no effect of leaf age on the timing of leaf abscission in B. quinata. In A. graveolens, the initiation of leaf shedding followed in rank order, the maximum leaf age of the four treatments, but there was substantial coherence among treatments in the major period of leaf abscission such that trees completed leaf shedding at the same time. In the two species, leaf water potential (ΨL) and stomatal conducantce (g S) declined with the onset of the dry season, reaching minimum values of –0.9 MPa in P. quinata and <–2.0 MPa in A. graveolens. Within each species, leaves of different age exhibited similar ΨL and g S at the onset of drought, and then decreased at a similar rate as the dry season progressed. Overall, our study suggests that the environmental factors were more important than leaf age in controlling the timing of leaf shedding.  相似文献   

17.
Comparative life history and physiology of two understory Neotropical herbs   总被引:3,自引:0,他引:3  
Summary Demography and physiology of two broad-leaved understory tropical herbs (Marantaceae) were studied in gaps and shaded understory in large-scale irrigated and control treatments during the dry season at Barro Colorado Island (BCI), Panama. Because photosynthetic acclimation potential may not predict light environments where tropical species are found, we studied a suite of physiological features to determine if they uniquely reflect the distribution of each species. Calathea inocephala and Pleiostachya pruinosa grow and reproduce in gaps, persist in shade, and have equivalent rates of leaf production. Calathea leaves survived 2 to 3 times as long as leaves of Pleiostachya and plants of Pleiostachya were 6 to 8 times more likely to die as plants of Calathea during 3.5 years of study. Pleiostachya had lowest survival in shade and when not irrigated during the dry season, while Calathea survived well in both habitats and both treatments. Pleiostachya had higher photosynthetic capacity and stomatal conductance than Calathea and acclimated to gaps by producing leaves with higher photosynthetic capacity. Calathea had lower mesophyll CO2 concentrations than Pleiostachya. Both species had similar dark respiration rates and light compensation points, and water-use and nitrogen-use efficiencies were inversely related between species. Species showed no differences in leaf osmotic potentials at full turgor. Calathea roots were deeper and had tuberous swellings.Leaf-level assimilation and potential water loss are consistent with where these species are found, but photosynthetic acclimation to high light does not reflect both species' abilities to grow and reproduce in gaps. Pleiostachya's gap-dependent, rapid growth and reproduction require high rates of carbon gain in short-lived leaves, which can amortize their cost quickly. High rates of water loss are associated with reduced longevity during drought. Calathea's roots may confer greater capacitance, while its leaves are durable, long-lived and have lower water loss, permitting persistence long after gap closure.  相似文献   

18.
Herbaceous species can modify leaf structure during the growing season in response to drought stress and water loss. Evolution can select combinations of traits in plants for efficient water use in restricted environments. We investigated plant traits that mediate adaptation and acclimation to water stress in two herbaceous drought‐tolerant species. Anatomical, morphological and physiological traits related to stems and leaves were examined under optimal watering (OW) and a long period of restricted watering (RW) in 11 accessions from three Solanaceae species (Solanum chilense, S. peruvianum and S. lycopersicum). The relationships between these traits were tested using linear regression and PCA. There were significant differences in anatomical traits between the species under both OW and RW, where leaf area correlated with stem diameter. Proline and total carbohydrates accumulated highly in S. chilense and S. peruvianum, respectively, and these osmolytes were strongly correlated with increased osmotic potential. Stomatal density varied between species but not between acclimation treatments, while stomatal rate was significantly higher in wild tomatoes. There was a strong positive relationship between stem growth rate and a group of traits together expressed as total stomatal number. Total stomata is described by integration of leaf area, stomatal density, height and internode length. It is proposed that constitutive adaptations and modifications through acclimation that mediate RW play an important role in tolerance to drought stress in herbaceous plants. The capacity for growth under drought stress was not associated with any single combination of traits in wild tomatoes, since the two species differed in relative levels of expression of various phenotypic traits.  相似文献   

19.
冠层高度对毛竹叶片光合生理特性的影响   总被引:2,自引:0,他引:2  
借助LI-6400便携式光合作用系统,研究了冠层高度对不同林龄毛竹(Phyllostachys pubescens)叶片光合生理特性和水分利用效率(WUE)的季节性影响,为促进毛竹林碳汇能力和生产力提升的林分结构调整等可持续栽培技术提供理论依据。结果表明:(1)出笋期,不同竹龄毛竹叶片净光合速率(Pn)和蒸腾速率(Tr)的日均值呈现出冠层上部小于冠层下部的梯度变化趋势,且2a生毛竹不同冠层Pn日均值大于3a生毛竹;孕笋行鞭期,不同林龄毛竹各时间点Pn值和日均值、以及2年生毛竹各时间点的Tr值均为冠层上部大于冠层下部。各生长季节,不同林龄毛竹个体叶片的气孔导度(Gs)均与Tr的变化趋势一致。(2)2年生毛竹各季节仅冠层上部叶片会出现"光合午休",而3年生毛竹仅于出笋期时各冠层叶片出现"光合午休"现象。(3)出笋期毛竹叶片WUE日均值随着冠层高度增加而增加,这种变化趋势不受竹龄影响;而孕笋行鞭期,仅2年生毛竹叶片WUE日均值随着冠层高度增加而下降。不同冠层高度的孕笋行鞭期毛竹叶片WUE日均值都显著高于出笋期;冠层高度对毛竹叶片气体交换特性和WUE的影响受生长发育关键期的季节因素影响,且毛竹叶片WUE与Gs之间存在负相关关系,其不受毛竹个体年龄和叶片冠层高度影响。(4)不同生长季节各冠层叶绿素a/b值均随着冠层高度下降而降低,不同林龄毛竹叶片叶绿素含量基本随着冠层自上而下呈逐渐增加的趋势。各生长季节,不同林龄个体叶片氮素含量、比叶重随冠层高度垂直变化趋势与叶片Pn日均值的垂直变化趋势一致。研究认为,毛竹不同冠层部位叶片通过改变形态、氮素含量来适应不同生长季节生长环境的变化,以便充分利用光能提高光合能力。  相似文献   

20.
Summary Seasonal measurements of microclimatic conditions were compared to seasonal indices of leaf structural components and plant water relations in Prosopis glandulosa var. torryana. P. glandulosa had two short periods of leaf production which resulted in two distinct even aged cohorts of leaves. The two leaf cohorts (summer, winter) were concurrent in the summer and fall, contrasting to previous studies on other species in which one leaf form replaces a previous leaf type. The structural characteristics of these two cohorts differed significantly in two replicate year cycles. The leaves of the spring cohort were larger in weight and area but similar to the summer cohort in specific leaf weight and leaflet number. The second growth period leaves constituted only a small proportion of the total plant leaf area. The dimorphism between the two cohorts was best associated with plant water relations and not energy load. Second growth period leaves maintained turgor to greater water deficits but lost turgor at higher leaf water potentials. Seasonal osmotic adjustment occurred for first growth period leaves but not second growth period leaves. The small leaves produced during the hot climate were most likely the result of low turgor potential during development rather than an adaptation to tolerate stressful environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号