首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: In an accompanying paper (Asmuth et al.) it was found necessary to include cell death explicitly to estimate parameters of cell proliferation. The use of bivariate flow cytometry to estimate the phase durations and the doubling times of cells labeled with thymidine analogues is well established. However, these methods of analysis do not consider the possibility of cell death. This report demonstrates that estimating cell death in G(2)/M is possible. METHODS: Mathematical models for the experimental quantities, the fraction of labeled undivided cells, the fraction of labeled divided cells, and the relative movement were developed. These models include the possibility that, of the cells with G(2)/M DNA content, only a certain fraction will divide, with the remainder dying after some time T(R). Simulation studies were conducted to test the possibility of using simple methods to estimate phase durations and cell death rates. RESULTS: Cell death alters the estimates of phase transit times in a rather complex manner that depends on the lifetime of the doomed cells. However, it is still possible to obtain estimates of the phase durations of cells in S and G(2)/M and the death rates of cells in G(2)/M. CONCLUSIONS: The methods presented herein provide a new way to characterize cell populations that includes cell death rates and common measurements of cell proliferation.  相似文献   

2.
A temperature-sensitive mutant of murine p53 (p53Val-135) was transfected by electroporation into murine erythroleukemia cells (DP16-1) lacking endogenous expression of p53. While the transfected cells grew normally in the presence of mutant p53 (37.5 degrees C), wild-type p53 (32.5 degrees C) was associated with a rapid loss of cell viability. Genomic DNA extracted at 32.5 degrees C was seen to be fragmented into a characteristic ladder consistent with cell death due to apoptosis. Following synchronization by density arrest, transfected cells released into G1 at 32.5 degrees C were found to lose viability more rapidly than did randomly growing cultures. Following release into G1, cells became irreversibly committed to cell death after 4 h at 32.5 degrees C. Commitment to cell death correlated with the first appearance of fragmented DNA. Synchronized cells allowed to pass out of G1 prior to being placed at 32.5 degrees C continued to cycle until subsequently arrested in G1; loss of viability occurred following G1 arrest. In contrast to cells in G1, cells cultured at 32.5 degrees C for prolonged periods during S phase and G2/M, and then returned to 37.5 degrees C, did not become committed to cell death. G1 arrest at 37.5 degrees C, utilizing either mimosine or isoleucine deprivation, does not lead to rapid cell death. Upon transfer to 32.5 degrees C, these G1 synchronized cell populations quickly lost viability. Cells that were kept density arrested at 32.5 degrees C (G0) lost viability at a much slower rate than did cells released into G1. Taken together, these results indicate that wild-type p53 induces cell death in murine erythroleukemia cells and that this effect occurs predominantly in the G1 phase of actively cycling cells.  相似文献   

3.
Our previous studies demonstrated that intracellular polyamine depletion blocked HL-60 cell apoptosis triggered by exposure to 2-deoxy-d-ribose (dRib). Here, we have characterized the intracellular events underlying the apoptotic effects of dRib and the involvement of polyamines in these effects. Treatment of HL-60 cells with dRib induces loss of mitochondrial transmembrane potential, radical oxygen species production, intracellular glutathione depletion and translocation of Bax from cytosol to membranes. These effects are followed by cell death. However, the mode of cell death caused by dRib depends on intracellular levels of polyamines. d-Rib-treated cells with normal polyamine levels, progressing through the G(1) into the S and G(2)/M phases, undergo apoptosis, while in polyamine-depleted cells, being blocked at the G(1) phase, cell death mechanisms are switched to necrosis. The present study points to a relationship between the cell cycle distribution and the mode of cell death, and suggests that the level of intracellular spermidine, essential to cell cycle progression, may determine whether a cell dies by apoptosis or necrosis in response to a death stimulus.  相似文献   

4.
The question is addressed as to whether cells which are subject to high-energy dissipation rates in agitated bioreactors show an apoptotic response. Murine hybridoma cells in batch culture were agitated in bench-scale (1-L) bioreactors without gas sparging. At an energy dissipation rate of 1.5 W m(-3) there was no apparent damage. At 320 W m(-3) cell viability declined, and increasing proportions of the dead cells displayed the morphological features of apoptosis, but necrosis also remained as a significant mechanism of death. When cells were subjected to the intensive energy dissipation rate of 1870 W m(-3) in a bioreactor without gas headspace, the cell number dropped by 50% within 2 h and a subpopulation of smaller-sized cells emerged. This excluded trypan blue but showed some apoptotic characteristics such as reduced and condensed DNA content and low F-actin content. The incidence of apoptotic activity was further demonstrated by the appearance of numerous apoptotic bodies. Analysis of the cell cycles of both small and normal size populations indicated that greater proportions of S and G2 cells had become apoptotic and there was evidence of preferential survival of G1 cells. It is suggested that two mechanisms of cell death are apparent in hydrodynamically stressful situations, but their relative expression depends on the energy dissipation rate.  相似文献   

5.
Extracellular ATP (ATPo) is capable of inducing different events on cells through receptor activation. The effect produced by ATPo was studied in the cell line K562 and its multidrug resistant (MDR) counterpart, Lucena 1. Lower ATPo concentrations (1 mM and 2.5 mM) led to high 3H-thymidine incorporation but no increase in cell number. Similarly, the cell cycle profile indicated an increase of cells in S phase and a decrease in G1 and G2, suggesting that the cells did not duplicate their DNA content. Higher doses of ATP (5 mM and 10 mM), as well as UTP (5 mM) and the P2X7 agonist BzATP, were cytotoxic. However, no expression of P2X7 receptors could be detected by Western Blot nor were the cells permeabilised by ATP, suggesting that pore formation was not involved in cell death. Both ecto-ATPase and ecto-5′-nucleotidase activity could be demonstrated at the surfaces of K562 and Lucena 1 cells, the latter presenting a higher ecto-5′-nucleotidase activity. Adenosine induced cell death at lower concentrations (2.5 mM) on both cell lines. Furthermore, an increased number of dead cells could be observed when 5 mM Adenosine was used compared to the same concentrations of ATPo. It still remains to be elucidated the nature of the receptors involved in the induction of cell death in these cells.Both authors have contributed equally for this article.  相似文献   

6.
The character of programmed cell death (PCD) in plants differs in connection with the context, triggering factors and differentiation state of the target cells. To study the interconnections between cell cycle progression and cell death induction, we treated synchronized tobacco BY-2 cells with cadmium ions that represent a general abiotic stressor influencing both dividing and differentiated cells in planta. Cadmium induced massive cell death after application in all stages of the cell cycle; however, both the progression and the forms of the cell death differed pronouncedly. Apoptosis-like PCD induced by cadmium application in the S and G2 was characterized by pronounced internucleosomal DNA fragmentation. In contrast, application of cadmium in M and G1 phases was not accompanied by DNA cleavage, indicating suppression of autolysis and non-programmed character of the death. We interpret these results in the context of the situation in planta, where the induction of apoptosis-like PCD in the S and G2 phase might be connected with a need to preserve genetic integrity of dividing meristematic cells, whereas suppression of PCD response in differentiated cells (situated in G1/G0 phase) might help to avoid death of the whole plant, and thus enable initiation of the recovery and adaptation processes.  相似文献   

7.
Reactive oxygen species produced during hyperoxia damage DNA, inhibit proliferation in G1- through p53-dependent activation of p21(Cip1/WAF1/Sdi1), and kill cells. Because checkpoint activation protects cells from genotoxic stress, we investigated cell proliferation and survival of the murine type II epithelial cell line MLE15 during hyperoxia. These cells were chosen for study because they express Simian large and small-T antigens, which transform cells in part by disrupting the p53-dependent G1 checkpoint. Cell counts, 5-bromo-2'-deoxyuridine labeling, and flow cytometry revealed that hyperoxia slowed cell cycle progression after one replication, resulting in a pronounced G2 arrest by 72 h. Addition of caffeine, which inactivates the G2 checkpoint, diminished the percentage of hyperoxic cells in G2 and increased the percentage in sub-G1 and G1. Abrogation of the G2 checkpoint was associated with enhanced oxygen-induced DNA strand breaks and cell death. Caffeine did not affect DNA integrity or viability of cells exposed to room air. Similarly, caffeine abrogated the G2 checkpoint in hyperoxic A549 epithelial cells and enhanced oxygen-induced toxicity. These data indicate that hyperoxia rapidly inhibits proliferation after one cell cycle and that the G2 checkpoint is critical for limiting DNA damage and cell death.  相似文献   

8.
Most of the chemotherapy treatments for bladder cancer aim to kill the cancer cells, but a high recurrence rate after medical treatments is still occurred. Bufalin from the skin and parotid venom glands of toad has been shown to induce apoptotic cell death in many types of cancer cell lines. However, there is no report addressing that bufalin induced cell death in human bladder cancer cells. The purpose of this study was investigated the mechanisms of bufalin-induced apoptosis in a human bladder cancer cell line (T24). We demonstrated the effects of bufalin on the cell growth and apoptosis in T24 cells by using DAPI/TUNEL double staining, a PI exclusion and flow cytometric analysis. The effects of bufalin on the production of reactive oxygen species (ROS), the level of mitochondrial membrane potential (ΔΨ(m)), and DNA content including sub-G1 (apoptosis) in T24 cells were also determined by flow cytometry. Western blot analysis was used to examine the expression of G(0)/G(1) phase-regulated and apoptosis-associated protein levels in bufalin-treated T24 cells. The results indicated that bufalin significantly decreased the percentage of viability, induced the G(0)/G(1) phase arrest and triggered apoptosis in T24 cells. The down-regulation of the protein levels for cyclin D, CDK4, cyclin E, CDK2, phospho-Rb, phospho-AKT and Bcl-2 with the simultaneous up-regulation of the cytochrome c, Apaf-1, AIF, caspase-3, -7 and -9 and Bax protein expressions and caspase activities were observed in T24 cells after bufalin treatment. Based on our results, bufalin induces apoptotic cell death in T24 cells through suppressing AKT activity and anti-apoptotic Bcl-2 protein as well as inducing pro-apoptotic Bax protein. The levels of caspase-3, -7 and -9 are also mediated apoptosis in bufalin-treated T24 cells. Therefore, bufalin might be used as a therapeutic agent for the treatment of human bladder cancer in the future.  相似文献   

9.
The effect of glutamine depletion on the death of attached Chinese hamster ovary (CHO) cells was investigated. Experiments were performed using an anchorage dependent CHO cell line expressing gamma-IFN and a second cell line obtained by transfection of that cell line with the human bcl-2 (hbcl-2). Either cell line could grow in media devoid of glutamine with minimal cell death due to endogenous glutamine synthetase activity that allowed cells to synthesize glutamine from glutamic acid in the medium. However, compared to control cultures in glutamine-containing media, the cell growth rate in glutamine-free media was slower with an increased fraction of cells distributed in the G0/G1 phase. The slower rate of cell cycling apparently protected the cells from entering apoptosis when they were stimulated to proliferate in an environment devoid of other protective factors, such as serum or over-expressed hbcl-2. The depletion of both glutamine and glutamic acid did cause cell death, which could be mitigated by hbcl-2 over-expression.  相似文献   

10.
Fluorescent dyes were used to stain actin, vimentin, tubulin and DNA in the same MRC-5 fibroblastic cells. Cytofluorometry and image analysis were then used to quantitatively evaluate the F actin, vimentin and tubulin content throughout the cell cycle. The results showed that different cells can have the same DNA content while their cytoskeletal protein content is variable. The data also showed that cytoskeletal protein content variations exist throughout the cell cycle of the fibroblastic cell line. The F actin content increased during the cell cycle from G1 to G2 phases and decreased in M phase. The amount of tubulin in the G2 was about twice as much as that in the G1 phase, before decreasing in the M phase; there was a threshold of tubulin content for G2 cells entering S phase.  相似文献   

11.
Developing thymocytes and some T-cell hybridomas undergo activation-dependent programmed cell death. Although recent studies have identified some critical regulators in programmed cell death, the role of cell cycle regulation in activation-induced cell death in T cells has not been addressed. We demonstrate that synchronized T-cell hybridomas, irrespective of the point in the cell cycle at which they are activated, stop cycling shortly after they reach G2/M. These cells exhibit the diagnostic characteristics of apoptotic cell death. Although p34cdc2 levels are not perturbed after activation of synchronously cycling T cells, cyclin B- and p34cdc2-associated histone H1 kinase activity is persistently elevated. This activation-dependent induction of H1 kinase activity in T cells is associated with a decrease in the phosphotyrosine content of p34cdc2. We also demonstrate that transient inappropriate coexpression of cyclin B with p34cdc2 induces DNA fragmentation in a heterologous cell type. Finally, in T cells, cyclin B-specific antisense oligonucleotides suppress activation-induced cell death but not cell death induced by exposure to dexamethasone. We therefore conclude that a persistent elevation of the level of cyclin B kinase is required for activation-induced programmed T-cell death.  相似文献   

12.
Paclitaxel (PTX), a microtubule-active drug, causes mitotic arrest leading to apoptosis in certain tumor cell lines. Here we investigated the effects of PTX on human arterial smooth muscle cell (SMC) cells. In SMC, PTX caused both (a) primary arrest in G1 and (b) post-mitotic arrest in G1. Post-mitotic cells were multinucleated (MN) with either 2C (near-diploid) or 4C (tetraploid) DNA content. At PTX concentrations above12 ng/ml, MN cells had 4C DNA content consistent with the lack of cytokinesis during abortive mitosis. Treatment with 6-12 ng/ml PTX yielded MN cells with 2C DNA content. Finally, 1-6 ng/ml of PTX, the lowest concentrations that affected cell proliferation, caused G1 arrest without multinucleation. It is important that PTX did not cause apoptosis in SMC. The absence of apoptosis could be explained by mitotic exit and G1 arrest as well as by low constitutive levels of caspase expression and by p53 and p21 induction. Thus, following transient mitotic arrest, SMC exit mitosis to form MN cells. These post-mitotic cells were subsequently arrested in G1 but maintained normal elongated morphology and were viable for at least 21 days. We conclude that in SMC PTX causes post-mitotic cell cycle arrest rather than cell death.  相似文献   

13.
Nuclear migration is regulated by the LIS1 protein, which is the regulatory subunit of platelet activating factor (PAF) acetyl-hydrolase, an enzyme complex that inactivates the lipid mediator PAF. Among other functions, PAF modulates cell proliferation, but its effects upon mechanisms of the cell cycle are unknown. Here we show that PAF inhibited interkinetic nuclear migration (IKNM) in retinal proliferating progenitors. The lipid did not, however, affect the velocity of nuclear migration in cells that escaped IKNM blockade. The effect depended on the PAF receptor, Erk and p38 pathways and Chk1. PAF induced no cell death, nor a reduction in nucleotide incorporation, which rules out an intra-S checkpoint. Notwithstanding, the expected increase in cyclin B1 content during G2-phase was prevented in the proliferating cells. We conclude that PAF blocks interkinetic nuclear migration in retinal progenitor cells through an unusual arrest of the cell cycle at the transition from S to G2 phases. These data suggest the operation, in the developing retina, of a checkpoint that monitors the transition from S to G2 phases of the cell cycle.  相似文献   

14.
Peroxisome proliferator-activated receptor γ (PPARγ) regulates multiple signaling pathways, and its agonists induce apoptosis in various cancer cells. However, their role in cell death is unclear. In this study, the relationship between ciglitazone (CGZ) and PPARγ in CGZ-induced cell death was examined. At concentrations of greater than 30 μM, CGZ, a synthetic PPARγ agonist, activated caspase-3 and induced apoptosis in T98G cells. Treatment of T98G cells with less than 30 μM CGZ effectively induced cell death after pretreatment with 30 μM of the PPARγ antagonist GW9662, although GW9662 alone did not induce cell death. This cell death was also observed when cells were co-treated with CGZ and GW9662, but was not observed when cells were treated with CGZ prior to GW9662. In cells in which PPARγ was down-regulated cells by siRNA, lower concentrations of CGZ (<30 μM) were sufficient to induce cell death, although higher concentrations of CGZ (≥30 μM) were required to induce cell death in control T98G cells, indicating that CGZ effectively induces cell death in T98G cells independently of PPARγ. Treatment with GW9662 followed by CGZ resulted in a down-regulation of Akt activity and the loss of mitochondrial membrane potential (MMP), which was accompanied by a decrease in Bcl-2 expression and an increase in Bid cleavage. These data suggest that CGZ is capable of inducing apoptotic cell death independently of PPARγ in glioma cells, by down-regulating Akt activity and inducing MMP collapse.  相似文献   

15.
Flow cytometry analysis of the DNA content of human decidual cells at the physiologically normal pregnancy and in the case of toxicosis was carried out. During the normal pregnancy DNA-histogram parameters were seen to vary: the number of S-phase cells decreased, the coefficient of variation of the G1/0 peak increased. These alterations correlated positively with the increase in the share of decidual cells with properties of terminally differentiated cells. The most pronounced quantitative alterations in variability of DNA content in G1/0 cells were observed in cases of toxicosis of pregnancy. Phenomena of variability of the nuclear DNA in the terminally differentiated decidual cells is considered to be a sign of cell death through apoptosis.  相似文献   

16.
To investigate signals that control B cell selection, we examined expression of G5PR, a regulatory subunit of the serine/threonine protein phosphatase 2A, which suppresses JNK phosphorylation. G5PR is upregulated in activated B cells, in Ki67-negative centrocytes at germinal centers (GCs), and in purified B220(+)Fas(+)GL7(+) mature GC B cells following Ag immunization. G5PR rescues transformed B cells from BCR-mediated activation-induced cell death by suppression of late-phase JNK activation. In G5PR-transgenic (G5PR(Tg)) mice, G5PR overexpression leads to an augmented generation of GC B cells via an increase in non-Ag-specific B cells and a consequent reduction in the proportion of Ag-specific B cells and high-affinity Ab production after immunization with nitrophenyl-conjugated chicken γ-globulin. G5PR overexpression impaired the affinity-maturation of Ag-specific B cells, presumably by diluting the numbers of high-affinity B cells. However, aged nonimmunized female G5PR(Tg) mice showed an increase in the numbers of peritoneal B-1a cells and the generation of autoantibodies. G5PR overexpression did not affect the proliferation of B-1a and B-2 cells but rescued B-1a cells from activation-induced cell death in vitro. G5PR might play a pivotal role in B cell selection not only for B-2 cells but also for B-1 cells in peripheral lymphoid organs.  相似文献   

17.
G6P translocase (G6PT) is thought to play a crucial role in transducing intracellular signaling events in brain tumor-derived cancer cells. In this report, we investigated the contribution of G6PT to the control of U-87 brain tumor-derived glioma cell survival using small interfering RNA (siRNA)-mediated suppression of G6PT. Three siRNA constructs were generated and found to suppress up to 91% G6PT gene expression. Flow cytometry analysis of propidium iodide/annexin-V-stained cells indicated that silencing the G6PT gene induced necrosis and late apoptosis. The anticancer agent curcumin, also inhibited G6PT gene expression by more than 90% and triggered U-87 glioma cells death. Overexpression of recombinant G6PT rescued the cells from curcumin-induced cell death. Targeting G6PT expression may provide a new mechanistic rationale for the action of chemopreventive drugs and lead to the development of new anti-cancer strategies.  相似文献   

18.
Sensitivity to X-ray-induced G2 arrest was compared between ataxia telangiectasia (AT) lymphoblastoid cells and normal human cells. Flow cytometrical analysis of cells following X-ray irradiation revealed that the fraction of cells with 4n DNA content was greater in AT cells than in normal cells as previously reported by other investigators. However, the other parameters for cell-cycle progression kinetics including mitotic indices, cumulative mitotic indices and cumulative labelled mitotic indices indicated that X-ray-induced G2 arrest as a function of dose in AT cells was indistinguishable from that in normal cells. Moreover, no significant difference in cell viability was noted between AT and normal cells until 48 h following X-irradiation up to 2.6 Gy, although X-irradiated AT cells, compared to normal cells, showed a significantly decreased survival in terms of cell multiplication in growth medium and colony formation in soft agar. These data collectively suggest that the greater accumulation of AT cells with 4n DNA content in flow cytometry cannot be attributed to more stringent irreversible blockage of cell-cycle progression at the G2 phase and eventual cell death there. The possible reasons for this greater accumulation are discussed.  相似文献   

19.
Fragkos M  Beard P 《PloS one》2011,6(8):e22946
Cell death occurring during mitosis, or mitotic catastrophe, often takes place in conjunction with apoptosis, but the conditions in which mitotic catastrophe may exhibit features of programmed cell death are still unclear. In the work presented here, we studied mitotic cell death by making use of a UV-inactivated parvovirus (adeno-associated virus; AAV) that has been shown to induce a DNA damage response and subsequent death of p53-defective cells in mitosis, without affecting the integrity of the host genome. Osteosarcoma cells (U2OSp53DD) that are deficient in p53 and lack the G1 cell cycle checkpoint respond to AAV infection through a transient G2 arrest. We found that the infected U2OSp53DD cells died through mitotic catastrophe with no signs of chromosome condensation or DNA fragmentation. Moreover, cell death was independent of caspases, apoptosis-inducing factor (AIF), autophagy and necroptosis. These findings were confirmed by time-lapse microscopy of cellular morphology following AAV infection. The assays used readily revealed apoptosis in other cell types when it was indeed occurring. Taken together the results indicate that in the absence of the G1 checkpoint, mitotic catastrophe occurs in these p53-null cells predominantly as a result of mechanical disruption induced by centrosome overduplication, and not as a consequence of a suicide signal.  相似文献   

20.
Contribution of the main caspases in cytotoxic effects induced by the monoclonal antibody 14G2a specific to the tumor-associated ganglioside GD2 was studied in the EL-4 mouse lymphoma cells. The constitutive expression of the procaspase genes was found in the EL-4 cells. Incubation of the cells with the 14G2a antibodies did not result in increasing of the procaspase synthesis. We also demonstrated with the use of fluorescently labeled substrates of caspases that the procaspase enzymatic activity was not enhanced. At an equal level of cell death, activities of caspase-3 and caspase-9 in the cells which were incubated with the 14G2a antibodies were 7.5 and 3 times lower, respectively, than those in the staurosporine-treated cells. The pan-caspase inhibitor (Z-VAD-FMK) and the caspase-3 inhibitor decreased the cytotoxic effects induced by the 14G2a antibodies by 9–16 and 6–13%, respectively. The staurosporine-induced level of the apoptosis decreased by 55–65% under the same conditions. Inhibitors of the initiation caspase-8 and caspase-9 had no influence on the antibody-induced cell death. The inhibitory analysis also demonstrated that the caspases were not involved in the triggering of the initial stages of the antibody-induced cell death such as apoptotic volume decrease and permeabilization of the cell plasma membrane. Thus, caspases did not play a key role in the cell death induced by the anti-GD2 antibodies, and their slight enzymatic activity did not determine the main mechanism of cell death mediated through the tumor-associated ganglioside GD2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号