首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of ethylene gas, 2-chloroethylphosphonic acid, and the auxin, benzothiazole-2-oxyacetic acid, on the ripening of grapes (Vitis vinifera L.) was investigated. Ethylene hastened the start of ripening of Doradillo grapes when it was aplied for 10 days starting midway through the slow growth phase. 2-Chloroethylphosphonic acid applied to Shiraz grapes showed the same effect, but when it was applied earlier, during the second half of the first rapid growth phase or at the start of the slow growth phase of berry development, it delayed ripening. 2-Chloroethylphosphonic acid and benzothiazole-2-oxyacetic acid delayed the ripening of Doradillo grapes, and ethylene partially reversed the effect of benzothiazole-2-oxyacetic acid. The results demonstrate the importance of the slow growth stage in grape berry development and suggest that an auxin-ethylene relationship may be involved in the regulation of grape ripening.  相似文献   

2.
The effects of ethylene-evolving preparations—2-chloroethylphosphonic acid (2-CEPA), the new generation binary preparation ethacide, and the specific inhibitor of ethylene biosynthesis aminooxyacetic acid (AOA)—on the ethylene evolution by banana (Musa sp.) fruits at various ripening stages and the content of protein inhibitor of polygalacturonase (PIPG), associated with prevention of fruit tissue softening, were studied. It was demonstrated that the ripening stage was of significant importance for the results of treatment with the mentioned preparations. Their effects were most pronounced in the fruits of medium ripeness. 2-CEPA and ethacide increased the ethylene evolution in banana fruits on the average by 25–30%. AOA treatment decreased the ethylene evolution in these fruits by 30%. The PIPG content in fruit pulp was insignificant; 2-CEPA almost did not change its content in banana skin, while ethacide and AOA somewhat decreased it. Consequently, the regulators of ethylene biosynthesis have a potential for optimizing the state of banana fruits during storage and sale.  相似文献   

3.
Davies C  Boss PK  Robinson SP 《Plant physiology》1997,115(3):1155-1161
Treatment of grape (Vitis vinifera L.) berries with the synthetic auxin-like compound benzothiazole-2-oxyacetic acid (BTOA) caused a delay in the onset of ripening of approximately 2 weeks. This was manifested as a retardation of the increases in berry weight, color, deformability, and hexose concentration. BTOA treatment also delayed by 2 weeks the increase in abscisic acid level that normally accompanies ripening and altered the expression of a number of developmentally regulated genes. A putative vacuolar invertase, which is normally expressed from berry set until ripening and turned off after ripening commences, remained expressed throughout development in BTOA-treated grape berries. This elevated expression resulted in increased levels of invertase activity. In contrast, the up-regulation of four other genes normally switched on at the time of ripening was delayed in BTOA-treated fruit. These included chalcone synthase and UDP-glucose-flavonoid 3-O-glucosyl transferase, both of which are involved in anthocyanin synthesis, a chitinase, and a ripening-related gene of an unknown function. These observations support the view that auxins (perhaps in conjunction with abscisic acid) may have a role in the control of grape berry ripening by affecting the expression of genes involved in the ripening process.  相似文献   

4.
Rapid ripening of mango fruit limits its distribution to distant markets. To better understand and perhaps manipulate this process, we investigated the role of plant hormones in modulating climacteric ripening of ??Kensington Pride?? mango fruits. Changes in endogenous levels of brassinosteroids (BRs), abscisic acid (ABA), indole-3-acetic acid (IAA), and ethylene and the respiration rate, pulp firmness, and skin color were determined at 2-day intervals during an 8-day ripening period at ambient temperature (21?±?1°C). We also investigated the effects of exogenously applied epibrassinolide (Epi-BL), (+)-cis, trans-abscisic acid (ABA), and an inhibitor of ABA biosynthesis, nordihydroguaiaretic acid (NDGA), on fruit-ripening parameters such as respiration, ethylene production, fruit softening, and color. Climacteric ethylene production and the respiration peak occurred on the fourth day of ripening. Castasterone and brassinolide were present in only trace amounts in fruit pulp throughout the ripening period. However, the exogenous application of Epi-BL (45 and 60?ng?g?1 FW) advanced the onset of the climacteric peaks of ethylene production and respiration rate by 2 and 1?day, respectively, and accelerated fruit color development and softening during the fruit-ripening period. The endogenous level of ABA rose during the climacteric rise stage on the second day of ripening and peaked on the fourth day of ripening. Exogenous ABA promoted fruit color development and softening during ripening compared with the control and the trend was reversed in NDGA-treated fruit. The endogenous IAA level in the fruit pulp was higher during the preclimacteric minimum stage and declined during the climacteric and postclimacteric stages. We speculate that higher levels of endogenous IAA in fruit pulp during the preclimacteric stage and the accumulation of ABA prior to the climacteric stage might switch on ethylene production that triggers fruit ripening. Whilst exogenous Epi-BL promoted fruit ripening, endogenous measurements suggest that changes in BRs levels are unlikely to modulate mango fruit ripening.  相似文献   

5.
Zeroni M  Galil J 《Plant physiology》1976,57(4):647-650
Differences in the mechanism of ethylene emanation of Ficus sycomorus L. during various stages of the fruit development were investigated by enclosing the figs in jars. Two distinct patterns of ethylene emanation were found. Pattern a. in stages not capable of ripening, neither spontaneously nor as a result of physiological treatment (nonripening stages A and C), ethylene concentration in the jar increased linearly for a short time and then remained constant. Pattern b. in stages capable of ripening (ripening stages B, D, and E), the linear increase in ethylene concentration continued for the entire period of measurement. In nonripening stages, ethylene emanation stopped when ethylene concentration in the jar reached a constant value (0.6 μl/l at stage C). Aeration of the figs and the jar renewed ethylene emanation. CO2 concentration in the jar never exceeded 0.5%. Treatment of stage C figs with 0.6 to 10 μl/l exogenous ethylene caused immediate and complete cessation of ethylene emanation whereas the same treatment did not cause any change in rate of ethylene emanation from figs at the ripening stages B and D. Gashing (wounding) of stage C figs temporarily changed the pattern of ethylene emanation from pattern a to pattern b.  相似文献   

6.
7.
Changes in levels of growth regulating substances during fruit development and maturation and the effects of abscisic acid application on ripening of apricot fruits were investigated. The results showed that the levels of growth promoting substances were high, but started to decrease rapidly just before the end of stage Ⅱ and continued throughout stage Ⅲ. The promoting substances almost disappeared in fully ripe fruits. The ABA-like inhibiting substances first appeared during the end of stage Ⅱ, increased significantly in stage Ⅲ, and reached a maximum level in fully ripe fruits. Exogenous ABA application enhanced fruit respiration rate and accelerated the ripening process when applied to preclimacteric fruits but inhibited these processes when applied to post-climacteric fruits. The above results suggested that the ABA may play an important role in apricot fruit ripening. The interrelationship of ABA, ethylene, and fruit ripening was discussed.  相似文献   

8.
Coffee quality is strongly influenced by a great number of factors, among which the fruit ripening stage at harvest time has a major influence on this feature. Studies comprising ethylene production and the regulation of ethylene biosynthesis genes during the ripening process indicate that ethylene plays an important role on coffee fruit ripening. Coffee early cultivars usually show a more uniform ripening process although little is known about the genetic factors that promote the earliness of ripening. Thus, in order to better understand the physiological and genetic factors involved in the regulation of ripening time, and consequently ripening uniformity, this study aimed to analyze ethylene and respiration patterns during coffee ripening, as well as to analyze ACC oxidase, an ethylene biosynthesis enzyme, gene expression, in fruits of early (Catucaí 785-15) and late (Acauã) coffee cultivars. Coffee fruits were harvested monthly from 124 days after flowering (end of February), until complete maturation (end of June). Dry matter, moisture content, color, respiratory rate and ethylene production analysis were performed. In silico analysis identified a coffee ACC oxidase gene (CaACO-like) and its expression was analyzed by real-time PCR. Dry matter and relative water content constantly increased and gradually decreased, respectively, during fruit ripening, and the color analysis enabled the observation of the earliness in the ripening process displayed by Catucaí 785-15 and its higher fruit ripening uniformity. The results obtained from the CaACO-like expression analysis and respiration and ethylene analysis suggest that the differences in ripening behavior between the two coffee cultivars analyzed in this study may be related to the differences in their capacity to produce ethylene, with fruits of Catucaí 785-15 and Acauã showing a typical and an attenuated climacteric phase, respectively, which may have lead to differences in their ripening time and uniformity.  相似文献   

9.
We have examined the inward-rolling and outward-opening of petals from 90° stage carnation flowers (Dianthus charyophyllus L. cv. Pink Donor). Ethylene released from 2-chloroethylphosphonic acid (CEPA) induced in-rolling in the lower portions of the petals while that action was suppressed by an inhibitor of auxin transport. Another plant hormone, indole-3-acetic acid (IAA), intensified this ethylene-induced in-rolling. In contrast, when ethylene was not applied, the same IAA concentration promoted the opening of petal segments. Our data suggest that a low level of ethylene acts on IAA-induced opening. Likewise, we can speculate that endogenous concentrations of ethylene could be an important determinant of petal responses that involve interactions between ethylene and IAA.  相似文献   

10.
Chi GL  Pua EC  Goh CJ 《Plant physiology》1991,96(1):178-183
The promotive effect of AgNO3 and aminoethoxyvinylglycine (AVG) on in vitro shoot regeneration from cotyledons of Brassica campestris ssp. pekinensis in relation to endogenous 1-amino-cyclopropane-1-carboxylic acid (ACC) synthase, ACC, and ethylene production was investigated. AgNO3 enhanced ACC synthase activity and ACC accumulation, which reached a maximum after 3 to 7 days of culture. ACC accumulation was concomitant with increased emanation of ethylene which peaked after 14 days. In contrast, AVG was inhibitory to endogenous ACC synthase activity and reduced ACC and ethylene production. The promotive effect of AVG on shoot regeneration was reversed by 2-chloroethylphosphonic acid at 50 micromolar or higher concentrations, whereas explants grown on AgNO3 medium were less affected by 2-chloroethylphosphonic acid. The distinctive effect of AgNO3 and AVG on endogenous ACC synthase, ACC, and ethylene production and its possible mechanisms are discussed.  相似文献   

11.
Preclimacteric avocado (Persea americana Mill.) fruits produced very little ethylene and had only a trace amount of l-aminocyclopropane-1-carboxylic acid (ACC) and a very low activity of ACC synthase. In contrast, a significant amount of l-(malonylamino)cyclopropane-1-carboxylic acid (MACC) was detected during the preclimacteric stage. In harvested fruits, both ACC synthase activity and the level of ACC increased markedly during the climacteric rise reaching a peak shortly before the climacteric peak. The level of MACC also increased at the climacteric stage. Cycloheximide and cordycepin inhibited the synthesis of ACC synthase in discs excised from preclimacteric fruits. A low but measurable ethylene forming enzyme (EFE) activity was detected during the preclimacteric stage. During ripening, EFE activity increased only at the beginning of the climacteric rise. ACC synthase and EFE activities and the ACC level declined rapidly after the climacteric peak. Application of ACC to attached or detached fruits resulted in increased ethylene production and ripening of the fruits. Exogenous ethylene stimulated EFE activity in intact fruits prior to the increase in ethylene production. The data suggest that conversion of S-adenosylmethionine to ACC is the major factor limiting ethylene production during the preclimacteric stage. ACC synthase is first synthesized during ripening and this leads to the production of ethylene which in turn induces an additional increase in ACC synthase activity. Only when ethylene reaches a certain level does it induce increased EFE activity.  相似文献   

12.
The effect of methyl jasmonate (JA-Me) applied in concentration 1.0 % in lanolin paste to detached tomato fruits at the mature green, advanced mature green and light red stages on the ethylene production and l-aminocyclopropane-l-carboxylic acid (ACC) content was investigated at different times after treatment. JA-Me stimulated ethylene production in all stages of ripening, but the level of ACC increased or decreased in comparison with control depending on the stage of ripening. Higher level of ACC in JA-Me treated tissue was found in mature green stage and fully ripened tomatoes-treated at advanced green stage; lower one in light red stage — treated at advanced green stage and fully ripened stage - treated at light red stage.  相似文献   

13.
In order to understand more details about the role of abscisic acid (ABA) in fruit ripening and senescence, six 740 bp cDNAs (LeNCED1, LeNCED2, PpNCED1, VVNCED1, DKNCED1 and CMNCED1) which encode 9-cis-epoxycarotenoid dioxygenase (NCED) as a key enzyme in ABA biosynthesis, were cloned from fruits of tomato, peach, grape, persimmon and melon using an RT-PCR approach. A Blast homology search revealed a similarity of amino acid 85.76% between the NCEDs. A relationship between ABA and ethylene during ripening was also investigated. At the mature green stage, exogenous ABA treatment increased ABA content in flesh, and promoting ethylene synthesis and fruit ripening, while treatment with nordihydroguaiaretic acid (NDGA), inhibited them, delayed fruit ripening and softening. However, ABA inhibited the ethylene synthesis obviously while NDGA promoted them when treated the immature fruit with these chemicals. At the breaker, NDGA treatment cannot block ABA accumulation and ethylene synthesis. Based on the results obtained in this study, it was concluded that ABA plays different role in ethylene synthesis system in different stages of tomato fruit ripening.Key words: tomato, NCED gene, ABA, ethylene, fruit ripening, peach, grape, persimmon, melon  相似文献   

14.
The plant growth regulator 2-chloroethylphosphonic acid is converted to at least 13 compounds other than ethylene in leaf and stem tissue of Hevea brasiliensis. A minor component of the products is probably 2-hydroxyethylphosphonic acid.  相似文献   

15.
Ethylene has profound effect on fruit development and ripening, and the role of ethylene biosynthesis enzymes involving 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), ACC oxidase (ACO), and S-Adenosyl-l-methionine synthetase (SAMS) in peach fruit (cv. Xiahui-8) was characterized under 25 and 4 °C, respectively. All these enzymes in ethylene synthesis pathway were identified using 2-DE and real-time PCR. Both protein and gene expressions of ACO and SAMS were much higher at 25 °C than at 4 °C. Among five members of ACS family, PpaACS4 may belong to system II ethylene biosynthesis, while PpaACS3 involved in system I during development stage, and low temperature can induce PpaACS1 expression. The ethylene release and low expressions of proteins and genes of most enzymes indicated that low temperature can effectively postpone ripening stage by reducing ethylene evolution. High gene expression of PpaSAMS did not cause excessive expression of SAMS protein under low temperature, and over-expression of PpaACS1 at low temperature still did not induce increase of ethylene production. The mechanism underlying the phenomenon about how temperature affects ethylene release was also discussed.  相似文献   

16.
17.
Nine Gretchen Hagen (GH3) genes were identified in grapevine (Vitis vinifera L.) and six of these were predicted on the basis of protein sequence similarity to act as indole-3-acetic acid (IAA)-amido synthetases. The activity of these enzymes is thought to be important in controlling free IAA levels and one auxin-inducible grapevine GH3 protein, GH3-1, has previously been implicated in the berry ripening process. Ex planta assays showed that the expression of only one other GH3 gene, GH3-2, increased following the treatment of grape berries with auxinic compounds. One of these was the naturally occurring IAA and the other two were synthetic, α-naphthalene acetic acid (NAA) and benzothiazole-2-oxyacetic acid (BTOA). The determination of steady-state kinetic parameters for the recombinant GH3-1 and GH3-2 proteins revealed that both enzymes efficiently conjugated aspartic acid (Asp) to IAA and less well to NAA, while BTOA was a poor substrate. GH3-2 gene expression was induced by IAA treatment of pre-ripening berries with an associated increase in levels of IAA-Asp and a decrease in free IAA levels. This indicates that GH3-2 responded to excess auxin to maintain low levels of free IAA. Grape berry ripening was not affected by IAA application prior to veraison (ripening onset) but was considerably delayed by NAA and even more so by BTOA. The differential effects of the three auxinic compounds on berry ripening can therefore be explained by the induction and acyl substrate specificity of GH3-2. These results further indicate an important role for GH3 proteins in controlling auxin-related plant developmental processes.  相似文献   

18.
Evidence was obtained to support the hypothesis that ethylene is involved in xylem differentiation in primary pith explants of Lactuca sativa L. cv Romaine cultured in vitro. Xylem elements differentiated when explants were supplied indole-3-acetic acid (IAA) in combination with either the ethylene biosynthetic precursor 1-aminocyclopropane-1-carboxylic acid (ACC), the ethylene-releasing agent 2-chloroethylphosphonic acid (CEPA), or kinetin. In contrast, no xylem elements differentiated in the presence of IAA, kinetin, ACC, or CEPA alone, or when kinetin was supplied together with ACC or CEPA. These results show that ethylene will substitute qualitatively for cytokinin during auxin-induced xylogenesis, and suggest that both ethylene and auxin are required for xylem differentiation in Lactuca.  相似文献   

19.
The main metabolite formed on incubating 2-chloroethylphosphonic acid (2-CEPA) with excised bark from Hevea brasiliensis is a conjugate which has been identified as β-d-glucopyranose-1-(2-chloroethyl)phosphonate. The compound decomposes readily in acid to 2-CEPA and glucose, and is converted partially to ethylene in hot alkali. On incubation with Hevea leaf or bark, extensive conversion to ethylene occurs, probably via the enzymic formation of 2-CEPA. The enzymes emulsin and acid phosphatase also catalyse the decomposition of the conjugate to 2-CEPA and hence ethylene.  相似文献   

20.
Selga  T.  Selga  M. 《Photosynthetica》2000,38(3):433-441
Photosynthetica - Rye (Secale cereale L.) plants were treated with an ethylene releaser ethephon (2-chloroethylphosphonic acid) in concentration of 4×10−2 M. We studied electron...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号