首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although RNA-mediated interference (RNAi) is a widely conserved process among eukaryotes, including many fungi, it is absent from the budding yeast Saccharomyces cerevisiae. Three human proteins, Ago2, Dicer and TRBP, are sufficient for reconstituting the RISC complex in vitro. To examine whether the introduction of human RNAi genes can reconstitute RNAi in S. cerevisiae, genes encoding these three human proteins were introduced into S. cerevisiae. We observed both siRNA and siRNA- and RISC-dependent silencing of the target gene GFP. Thus, human Ago2, Dicer and TRBP can functionally reconstitute human RNAi in S. cerevisiae, in vivo, enabling the study and use of the human RNAi pathway in a facile genetic model organism.  相似文献   

2.
Nucleation of microtubules is central to assembly of the mitotic spindle, which is required for each cell division. gamma-Tubulin is a universal component essential for microtubule nucleation from centrosomes. To elucidate the mechanism of microtubule nucleation in budding yeast we reconstituted and characterized the yeast gamma-tubulin complex (Tub4p complex) produced in insect cells. The recombinant complex has the same sedimentation coefficient (11.6 S) as the native complex in yeast cell extracts and contains one molecule of Spc97p, one molecule of Spc98p, and two molecules of Tub4p. The reconstituted Tub4p complex binds preformed microtubules and has a low nucleating activity, allowing us to begin a detailed analysis of conditions that enhance this nucleating activity. We tested whether binding of the recombinant Tub4p complex to the spindle pole body docking protein Spc110p affects its nucleating activity. The solubility of recombinant Spc110p in insect cells is improved by coexpression with yeast calmodulin (Cmd1p). The Spc110p/Cmd1p complex has a small sedimentation coefficient (4.2 S) and a large Stokes radius (14.3 nm), indicative of an elongated structure. The Tub4p complex binds Spc110p/Cmd1p via Spc98p and the K(d) for binding is 150 nM. The low nucleation activity of the Tub4p complex is not enhanced when it is bound to Spc110p/Cmd1p, suggesting that it requires additional components or modifications to achieve robust activity. Finally, we report the identification of a large 22 S Tub4p complex in yeast extract that contains multimers of Spc97p similar to gamma-tubulin ring complexes found in higher eukaryotic cells.  相似文献   

3.
The structure of nucleosomes that contain the cenH3 histone variant has been controversial. In budding yeast, a single right-handed cenH3/H4/H2A/H2B tetramer wraps the ∼80-bp Centromere DNA Element II (CDE II) sequence of each centromere into a ‘hemisome’. However, attempts to reconstitute cenH3 particles in vitro have yielded exclusively ‘octasomes’, which are observed in vivo on chromosome arms only when Cse4 (yeast cenH3) is overproduced. Here, we show that Cse4 octamers remain intact under conditions of low salt and urea that dissociate H3 octamers. However, particles consisting of two DNA duplexes wrapped around a Cse4 octamer and separated by a gap efficiently split into hemisomes. Hemisome dimensions were confirmed using a calibrated gel-shift assay and atomic force microscopy, and their identity as tightly wrapped particles was demonstrated by gelFRET. Surprisingly, Cse4 hemisomes were stable in 4 M urea. Stable Cse4 hemisomes could be reconstituted using either full-length or tailless histones and with a 78-bp CDEII segment, which is predicted to be exceptionally stiff. We propose that CDEII DNA stiffness evolved to favor Cse4 hemisome over octasome formation. The precise correspondence between Cse4 hemisomes resident on CDEII in vivo and reconstituted on CDEII in vitro without any other factors implies that CDEII is sufficient for hemisome assembly.  相似文献   

4.
A yeast plasmid partitioning protein is a karyoskeletal component   总被引:17,自引:0,他引:17  
The Saccharomyces yeast plasmid, 2-micron circle, encodes a partitioning system that ensures equidistribution of plasmid molecules to both progeny following cell division. This system consists of two proteins encoded in plasmid genes REP1 and REP2 and a cis-active noncoding locus, designated REP3. We have raised antibodies against a REP1 beta-galactosidase fusion protein and used them to identify the authentic REP1 protein in plasmid-bearing yeast cells. We find that REP1 protein is located exclusively in the nucleus and co-purifies with a karyoskeletal protein subfraction operationally and morphologically equivalent to the nuclear matrix-pore complex-lamina fraction of higher cells. The carboxyl half of the REP1 protein exhibits strong sequence homology to myosin heavy chain, vimentin, and nuclear lamins A and C, indicating a fibrous structure for the protein. From these observations, we suggest that REP1 protein may promote plasmid partitioning by intercalating into the nuclear lamina of the host cell to provide dispersed anchorage sites for attachment of plasmid molecules.  相似文献   

5.
Jayaram M  Mehta S  Uzri D  Velmurugan S 《Plasmid》2004,51(3):162-178
The high copy yeast plasmid 2 microm circle, like the well-studied low copy bacterial plasmids, utilizes two partitioning proteins and a cis-acting 'centromere'-like sequence for its stable propagation. Functionally, though, the protein and DNA constituents of the two partitioning systems are quite distinct. Key events in the yeast and bacterial segregation pathways are plasmid organization, localization, replication, 'counting' of replicated molecules and their distribution to daughter cells. We suggest that the two systems facilitate these common logistical steps by adapting to the physical, biochemical, and mechanical contexts in which the host chromosomes segregate.  相似文献   

6.
7.
Mitochondrial inheritance in budding yeast   总被引:5,自引:0,他引:5  
During the past decade significant advances were made toward understanding the mechanism of mitochondrial inheritance in the yeast Saccharomyces cerevisiae . A combination of genetics, cell-free assays and microscopy has led to the discovery of a great number of components. These fall into three major categories: cytoskeletal elements, mitochondrial membrane components and regulatory proteins. These proteins mediate activities, including movement of mitochondria from mother cells to buds, segregation of mitochondria and mitochondrial DNA, and equal distribution of the organelle between mother cells and buds during yeast cell division.  相似文献   

8.
The demand for phenomics, a high-dimensional and high-throughput phenotyping method, has been increasing in many fields of biology. The budding yeast Saccharomyces cerevisiae, a unicellular model organism, provides an invaluable system for dissecting complex cellular processes using high-resolution phenotyping. Moreover, the addition of spatial and temporal attributes to subcellular structures based on microscopic images has rendered this cell phenotyping system more reliable and amenable to analysis. A well-designed experiment followed by appropriate multivariate analysis can yield a wealth of biological knowledge. Here we review recent advances in cell imaging and illustrate their broad applicability to eukaryotic cells by showing how these techniques have advanced our understanding of budding yeast.  相似文献   

9.
10.
Clathrin-mediated endocytosis in the budding yeast Saccharomyces cerevisiae involves the ordered recruitment, activity and disassembly of nearly 60 proteins at distinct sites on the plasma membrane. Two-color live-cell fluorescence microscopy has proven to be invaluable for in vivo analysis of endocytic proteins: identifying new components, determining the order of protein arrival and dissociation, and revealing even very subtle mutant phenotypes. Yeast genetics and functional genomics facilitate identification of complex interaction networks between endocytic proteins and their regulators. Quantitative datasets produced by these various analyses have made theoretical modeling possible. Here, we discuss recent findings on budding yeast endocytosis that have advanced our knowledge of how -60 endocytic proteins are recruited, perform their functions, are regulated by lipid and protein modifications, and are disassembled, all with remarkable regularity.  相似文献   

11.
The present study aimed to establish a novel efficient nonviral strategy for suicide gene transfer in hepatocellular carcinoma (HCC) in vivo. We employed branched polyethylenimine (PEI) and combined it with Epstein-Barr virus (EBV)-based plasmid vectors. The HCC cells transfected with an EBV-based plasmid carrying the herpes simplex virus-1 thymidine kinase (HSV-1 Tk) gene (pSES.Tk) showed up to 30-fold higher susceptibilities to ganciclovir (GCV) than those transfected with a conventional plasmid vector carrying the HSV-1 Tk gene (pS.Tk). The therapeutic effect in vivo was tested by intratumoral injection of the plasmids into HuH-7 hepatomas transplanted into C.B-17 scid/scid mutant (SCID) mice and subsequent GCV administrations. Treatment with pSES.Tk, but not pS.Tk, markedly suppressed growth of hepatomas in vivo, resulting in a significantly prolonged survival period of the mice. These findings suggest that PEI-mediated gene transfer system can confer efficient expression of the suicide gene in HCC cells in vivo by using EBV-based plasmid vectors.  相似文献   

12.
Epstein-Barr virus (EBV)-based vectors are extrachromosomal vectors carrying a replicational origin, oriP (about 2200 bp) and a replication initiation factor (EBNA-1) which are sufficient for autonomous replication. Because one disadvantage of these vectors is their large sizes, we examined the effect of partial deletion of oriP on the effectiveness of the EBV-based vectors, using an enhanced green fluorescent protein (EGFP) as a reporter to monitor gene expression. Results indicated that 954 bp-deleted mini-oriP is useful in primate cells since the vector showed high efficiency of stable transfection, a high ratio of EGFP-positive cells, and high recovery of intact plasmid DNA from transfected cells.  相似文献   

13.
Reconstitution of clathrin-coated pit budding from plasma membranes   总被引:16,自引:12,他引:4       下载免费PDF全文
Receptor-mediated endocytosis begins with the binding of ligand to receptors in clathrin-coated pits followed by the budding of the pits away from the membrane. We have successfully reconstituted this sequence in vitro. Highly purified plasma membranes labeled with gold were obtained by incubating cells in the presence of anti-LDL receptor IgG-gold at 4 degrees C, attaching the labeled cells to a poly-L-lysine-coated substratum at 4 degrees C and then gently sonicating them to remove everything except the adherent membrane. Initially the gold label was clustered over flat, clathrin-coated pits. After these membranes were warmed to 37 degrees C for 5-10 min in the presence of buffer that contained cytosol extract, Ca2+, and ATP, the coated pits rounded up and budded from the membrane, leaving behind a membrane that was devoid of LDL gold. Simultaneous with the loss of the ligand, the clathrin triskelion and the AP-2 subunits of the coated pit were also lost. These results suggest that the budding of a coated pit to form a coated vesicle occurs in two steps: (a) the spontaneous rounding of the flat lattice into a highly invaginated coated pit at 37 degrees C; (b) the ATP, 150 microM Ca2+, and cytosolic factors(s) dependent fusion of the adjoining membrane segments at the neck of the invaginated pit.  相似文献   

14.
15.
Social theory has provided a useful framework for research with microorganisms. Here I describe the advantages and possible risks of using a well-known model organism, the unicellular yeast Saccharomyces cerevisiae, for sociobiological research. I discuss the problems connected with clear classification of yeast behaviour based on the fitness-based Hamilton paradigm. Relevant traits include different types of communities, production of flocculins, invertase and toxins, and the presence of apoptosis.  相似文献   

16.
17.
Stable maintenance of genetic information during meiosis and mitosis is dependent on accurate chromosome transmission. The centromere is a key component of the segregational machinery that couples chromosomes with the spindle apparatus. Most of what is known about the structure and function of the centromeres has been derived from studies on yeast cells. In Saccharomyces cerevisiae, the centromere DNA requirements for mitotic centromere function have been defined and some of the proteins required for an active complex have been identified. Centromere DNA and the centromere proteins form a complex that has been studied extensively at the chromatin level. Finally, recent findings suggest that assembly and activation of the centromere are integrated in tethe cell cycle.  相似文献   

18.
Summary A simple and rapid method for obtaining synchronously budding cultures of Saccharomyces cerevisiae is described. Synchronous cultures were started with homogeneous cell fractions isolated from exponentially growing cultures by isopycnic centrifugation in osmotically inactive media. The technique of fractionation is based on changes of cell density throughout the budding cycle. These changes are correlated with vacuolar changes observed in the light and electron microscope. During bud initiation the large vacuoles in late budding cells shrink and fragment into small vacuoles. Simultaneously the density of the cells increases. Later stages of the budding cycle are characterized by the distribution of the small vacuoles between mother and daughter cell, followed by their fusion and expansion, and by a decreasing density of the cells. The relative changes in cell density and dry weight and in the content of different macromolecules during the budding cycle suggest a cyclic change between utilization of endogenous and exogenous substrates. This is discussed in terms of a cyclic consumption and accumulation of vacuolar pools.  相似文献   

19.
Predicting protein localization in budding yeast   总被引:4,自引:0,他引:4  
MOTIVATION: Most of the existing methods in predicting protein subcellular location were used to deal with the cases limited within the scope from two to five localizations, and only a few of them can be effectively extended to cover the cases of 12-14 localizations. This is because the more the locations involved are, the poorer the success rate would be. Besides, some proteins may occur in several different subcellular locations, i.e. bear the feature of 'multiplex locations'. So far there is no method that can be used to effectively treat the difficult multiplex location problem. The present study was initiated in an attempt to address (1) how to efficiently identify the localization of a query protein among many possible subcellular locations, and (2) how to deal with the case of multiplex locations. RESULTS: By hybridizing gene ontology, functional domain and pseudo amino acid composition approaches, a new method has been developed that can be used to predict subcellular localization of proteins with multiplex location feature. A global analysis of the proteins in budding yeast classified into 22 locations was performed by jack-knife cross-validation with the new method. The overall success identification rate thus obtained is 70%. In contrast to this, the corresponding rates obtained by some other existing methods were only 13-14%, indicating that the new method is very powerful and promising. Furthermore, predictions were made for the four proteins whose localizations could not be determined by experiments, as well as for the 236 proteins whose localizations in budding yeast were ambiguous according to experimental observations. However, according to our predicted results, many of these 'ambiguous proteins' were found to have the same score and ranking for several different subcellular locations, implying that they may simultaneously exist, or move around, in these locations. This finding is intriguing because it reflects the dynamic feature of these proteins in a cell that may be associated with some special biological functions.  相似文献   

20.
During protein synthesis, the orderly progression of folding, modification, and assembly is paramount to function and vis-à-vis cellular viability. Accordingly, sophisticated quality control mechanisms have evolved to monitor protein maturation throughout the cell. Proteins failing at any step are segregated and degraded as a preventative measure against potential toxicity. Although protein quality control is generally poorly understood, recent research advances in endoplasmic reticulum-associated degradation (ERAD) pathways have provided the most detailed view so far. The discovery of distinct substrate processing sites established a biochemical basis for genetic profiles of model misfolded proteins. Detailed mechanisms for substrate recognition were recently uncovered. For some proteins, sequential glycan trimming steps set a time window for folding. Proteins still unfolded at the final stage expose a specific degradation signal recognized by the ERAD machinery. Through this mechanism, the system does not in fact know that a molecule is “misfolded”. Instead, it goes by the premise that proteins past due have veered off their normal folding pathways and therefore aberrant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号