首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Copper/zinc-cofactored superoxide dismutase ([Cu,Zn]-SOD) has been found in the periplasm of many bacterial species but its biological function is unknown. Here we report the cloning and characterization of sodC , encoding [Cu,Zn]-SOD, from Salmonella typhimurium . The predicted protein sequence shows only 58% identity to Escherichia coli SodC, and from this its chromosomal location and its immediate proximity to a phage gene, sodC , in Salmonella is speculated to have been acquired by bacteriophage-mediated horizontal transfer from an unknown donor. A sodC mutant of S . typhimurium was unimpaired on aerobic growth in rich medium but showed enhanced sensitivity in vitro to the microbicidal action of superoxide. S . typhimurium , S . choleraesuis and S . dublin sodC mutants showed reduced lethality in a mouse model of oral infection and persisted in significantly lower numbers in livers and spleens after intraperitoneal infection, suggesting that [Cu,Zn]-SOD plays a role in pathogenicity, protecting Salmonella against oxygen radical-mediated host defences. There was, however, no observable difference compared with wild type in the interaction of sodC mutants with porcine pleural, mouse peritoneal or J774 macrophages in vitro , perhaps reflecting the hierarchical capacity of different macrophage lines to kill Salmonella , the most efficient overwhelming the proposed protective effect of periplasmic SOD.  相似文献   

2.
The intra-generic inhibition of bacterial growth observed previously in vivo and in vitro with strains of Salmonella, Citrobacter and E. coli was studied in vitro using S. typhimurium strain F98. There was complete inhibition of multiplication of S. typhimurium when it was added to stationary-phase broth cultures of different Salmonella serotypes, but only partial inhibition when added to broth cultures of E. coli. The degree of inhibition between different mutants of F98 was affected by the numbers of bacteria of the inhibiting strain, but this was not the only factor, since exponential-phase bacterial cells were less inhibitory than stationary-phase cells. The inhibitory effect was produced at temperatures between 20 degrees C and 40 degrees C. The complete inhibition of growth observed between F98 mutants was abolished by ampicillin, rifampicin and streptomycin, but not by nalidixic acid. Inhibition was also prevented by separating the two cultures by a dialysis membrane. A TnphoA insertion mutant of F98 was produced which did not show inhibition in vitro but was still inhibitory in vivo. It is suggested that this complete inhibition of bacterial multiplication between organisms of the same genus, which is greater than that produced between organisms from different genera, is mediated by a cell surface protein.  相似文献   

3.
The outcome of Salmonella infection in the mammalian host favors whoever succeeds best in disturbing the equilibrium between coordinate expression of bacterial (virulence) genes and host defense mechanisms. Intracellular persistence in host cells is critical for pathogenesis and disease, because Salmonella typhimurium strains defective in this property are avirulent. We examined whether similar host defense mechanisms are required for growth control of two S. typhimurium mutant strains. Salmonella pathogenicity island 2 (SPI2) and virulence plasmid-cured Salmonella mutants display similar virulence phenotypes in immunocompetent mice, yet their gene loci participate in independent virulence strategies. We determined the role of TNF-alpha and IFN-gamma as well as different T cell populations in infection with these Salmonella strains. After systemic infection, IFN-gamma was essential for growth restriction of plasmid-cured S. typhimurium, while SPI2 mutant infections were controlled in the absence of IFN-gamma. TNFRp55-deficiency restored systemic virulence to both Salmonella mutants. After oral inoculation, control of plasmid-cured bacteria substantially relied on both IFN-gamma and TNF-alpha signaling while control of SPI2 mutants did not. However, for both mutants, ultimate clearance of bacteria from infected mice depended on alphabeta T cells.  相似文献   

4.
The discovery of superoxide dismutase (CuZnSOD) within the periplasms of several Gram-negative pathogens suggested that this enzyme evolved to protect cells from exogenous sources of superoxide, such as the oxidative burst of phagocytes. However, its presence in some non-pathogenic bacteria implies that there may be a role for this SOD during normal growth conditions. We found that sodC, the gene that encodes the periplasmic SOD of Escherichia coli, is repressed anaerobically by Fnr and is among the many antioxidant genes that are induced in stationary phase by RpoS. Surprisingly, the entry of wild-type E. coli into stationary phase is accompanied by a several-hour-long period of acute sensitivity to hydrogen peroxide. Induction of the RpoS regulon helps to diminish that sensitivity. While mutants of E. coli and Salmonella typhimurium that lacked CuZnSOD were not detectably sensitive to exogenous superoxide, both were killed more rapidly than their parent strains by exogenous hydrogen peroxide in early stationary phase. This sensitivity required prior growth in air. Evidently, periplasmic superoxide is generated during stationary phase by endogenous metabolism and, if it is not scavenged by CuZnSOD, it causes an unknown lesion that augments or accelerates the damage done by peroxide. The molecular details await elucidation.  相似文献   

5.
Kim CH 《Molecules and cells》2003,15(2):226-232
Invasion of host cells is essential for the pathogenicity of Salmonella. The author's group has recently reported the cloning of the rfaE gene of Salmonella typhimurium, previously implicated in biosynthesis of the lipopolysaccharide (LPS)-inner core [Jin et al. (2001); Kim (2002)]. The product of the rfaE gene is involved in ADP-L-glycero-D-manno-heptose biosynthesis. rfaE mutants synthesize heptose-deficient LPS (Re-LPS) consisting only of lipid A and 3-deoxy-D-manno-octulosonic acid (KDO). Mutants that make incomplete LPS are rough mutants and "deep-rough" mutants affected in the heptose region of the inner core have reduced growth rate and increased sensitivity to high temperature. Complementation of S. typhimurium rfaE mutant strain SL1102 (rfaE543) with rfaE demonstrated conclusively that this gene restored the smooth phenotype, and the LPS produced by the complemented strain was indistinguishable from that of wild type smooth strains. In vitro infection experiments showed that complementation with rfaE permitted invasion of human Chang epithelial cells, larynx epidermal carcinoma HEp-2 cells and intestinal epithelial Henle-407 cells. These data imply that the structure of the LPS that is synthesized is critical for Salmonella invasiveness.  相似文献   

6.
Aerobic microorganisms have evolved a variety of siderochromes, special ligands which can dissolve insoluble ferric iron and facilitate its transport into the cell. We have found that enb mutants of Salmonella typhimurium blocked in the biosynthesis of enterobactin (its natural iron carrier) are able to utilize siderochromes of different types made by other microorganisms as iron carriers. The antibiotic albomycin delta(2) was used to select mutants defective in ferrichrome-mediated iron uptake. Twelve classes of albomycin-resistant mutants, named sid, were defined on the basis of their growth responses to other siderochromes. Most of these classes have genetic lesions in loci that are cotransduced with panC (represented at 9 min on the genetic map). The locus designated sidJ is cotransduced with enb, whereas sidK and sidL are linked with neither panC nor enb. Genetic and physiological data indicate that S. typhimurium has several transport systems of high specificity for a variety of siderochromes produced by other microorganisms.  相似文献   

7.
D J Hassett  M S Cohen 《FASEB journal》1989,3(14):2574-2582
During phagocytosis, phagocytic cells generate superoxide and other reactive oxygen species, which are involved in antibacterial activity. However, many bacteria possess antioxidant defenses that may explain their survival in inflammatory foci. These defenses include antioxidant enzymes such as superoxide dismutase and catalase, DNA repair systems, scavenging substrates, and competition with phagocytes for molecular oxygen. These defenses are probably coordinated, and different responses occur with different reactive oxygen species. Escherichia coli and Salmonella typhimurium mutants have allowed the demonstration of a variety of critical genes for enzymatic defense and DNA repair, as well as an oxyR regulon system. In more complex systems, the conditions found in inflammatory foci, such as decreasing glucose and the production of lactate, enhance bacterial catalase production and resistance to hydrogen peroxide. Resistance and adaptation to phagocyte-derived oxidant stress are critical aspects of bacterial pathogenesis.  相似文献   

8.
[背景]细菌在环境中以复杂的微生物群落形式存在,细菌间的竞争是细菌生存的一种重要方式.鼠伤寒沙门氏菌是一种可引起胃肠道疾病的重要人畜共患病病原体,其在水源、食物或是宿主肠道等环境中均需与其他细菌进行相互作用以获得生存优势.[目的]通过转座子技术构建鼠伤寒沙门氏菌转座子插入突变体库,从中筛选鼠伤寒沙门氏菌与细菌竞争能力相...  相似文献   

9.
Nearly all of 62 strains of Salmonella paratyphi B were sensitive to colicin M and phage T5 but resistant to phages T1 and ES18 and to colicin B. All tested S. typhimurium strains were resistant to colicin M and phage T5, and many were sensitive to phage ES18. A rough S. typhimurium LT2 strain given the tonA region of Escherichia coli or S. paratyphi B became sensitive to colicin M and phage T5. We infer that the tonA allele of S. paratyphi B, like that of E. coli, determines an outer membrane protein that adsorbs T5 and colicin M but not phage ES18, whereas the S. typhimurium allele determines a protein able to adsorb only ES18. The partial T1 sensitivity of a rough LT2 strain with a tonA allele from E. coli or S. paratyphi B and also the tonB(+) phentotype of an E. coli B trp-tonB Delta mutant carrying an F' trp of LT2 origin showed that S. typhimurium LT2 has a tonB allele like that of E. coli with respect to determination of sensitivity to colicins and phage T1. Rough S. paratyphi B, although T5 sensitive, remained resistant to T1 even when given F' tonB(+) of E. coli origin. Classes of Salmonella mutants selected as resistant to colicin M included: T5-resistant mutants, probably tonA(-); mutants unchanged except for M resistance, perhaps tolerant; and Exb(+) mutants, producing a colicin inhibitor (presumably enterochelin). Some Exb(+) mutants were resistant to a bacteriocin inactive on E. coli but active on all tested S. paratyphi B and S. typhimurium strains (and on nearly all other tested Salmonella). A survey showed sensitivity to colicin M in several other species of Salmonella.  相似文献   

10.
11.
Abstract Salmonella serotype typhimurium transpositional mutants altered in resistance to biliary salts and detergents were isolated previously. We have characterized further the LX1054 mutant strain, the most sensitive of them. The chromosomal DNA segment flanking transposon insertion was cloned and sequenced. The highest level of identity was found for the acrB (formerly acrE ) gene of Escherichia coli , a gene encoding a drug efflux pump of the Acr family. LX1054 exhibited a reduced capacity to colonize the intestinal tract. After passages in mice, the mutant strain lost the sensitive phenotype. In vitro, a resumption of growth appeared after 17 h of culture in medium with cholate or other tested biological or chemical detergents. Then, the acquired resistant phenotype seemed stable. The data suggested a role of S. typhimurium acrB -like gene in resistance to biliary salts and detergents and in mice intestinal colonization. However, the local and transient sensitivity observed in vivo, and the in vitro adaptations suggest that several detergent-resistance mechanisms operate in S. typhimurium .  相似文献   

12.
【背景】大肠杆菌病和沙门菌病是最常见的家禽细菌性疾病,给养禽业造成严重经济损失。另外,禽大肠杆菌和沙门菌也是重要的人畜共患病原菌,可通过禽类及其产品传播给人类,对人类健康造成严重威胁。加强禽大肠杆菌和沙门菌的快速鉴别检测,对养禽业和公共卫生都具有重要意义。【目的】建立禽大肠杆菌、肠炎沙门菌、鼠伤寒沙门菌、鸡白痢沙门菌和鸡伤寒沙门菌的多重PCR检测方法。【方法】通过比较分析确定禽致病性大肠杆菌、肠炎沙门菌、鼠伤寒沙门菌、鸡白痢沙门菌和鸡伤寒沙门菌的特异靶标基因,设计5对特异性引物,通过条件优化建立多重PCR方法,分析该多重PCR方法的特异性、敏感性及可靠性。【结果】该方法能特异性地鉴定禽致病性大肠杆菌、肠炎沙门菌、鼠伤寒沙门菌、鸡白痢沙门菌和鸡伤寒沙门菌,每个PCR反应的最低检出限分别为103 CFU细菌和100 pg基因组DNA。临床分离菌株检测显示,多重PCR与传统血清学方法结果一致。【结论】建立的多重PCR方法能够快速鉴别禽致病性大肠杆菌和不同血清型沙门菌,对禽大肠杆菌病和沙门菌病的流行病学调查及临床检测具有重要意义。  相似文献   

13.
The present study shows that the L-arabinose resistance test with Salmonella typhimurium detects that freshly infused tea is highly mutagenic in the absence of mammalian microsomal activation. Both the mutagenesis protocol (preincubation test) and the additional genetic characteristics of the bacterial tester strain (excision repair deficiency, normal lipopolysaccharide barrier and the presence of plasmid pKM101) were critical factors in the optimal induction by tea of forward mutations to L-arabinose resistance. The TA104 strain--a histidine auxotroph specific to oxidative mutagens--was the most sensitive tester strain of the Ames test to the direct-acting mutagenicity of tea. In comparison with strain TA104, the sensitivity of the Ara forward mutation test was 18 times higher, one cup of tea (200 ml) inducing 3 X 10(6) AraR mutants. More than 90% of the mutagenicity of 150 microliter of a fresh tea infusion, or that of the equivalent amount (1.32 mg) of the corresponding lyophilized residue, was suppressed by 10 units of catalase. In contrast to catalase, superoxide dismutase was rather ineffective. These results indicate that hydrogen peroxide is produced in tea solutions, playing an essential role in its mutagenicity. In comparison, the role of superoxide anion seems negligible. Like catalase, the chelating agent DETAPAC showed a protective effect with respect to the mutagenicity of tea, suggesting the additional implication of hydroxyl radicals.  相似文献   

14.
15.
The role of a stress-response protein in Salmonella typhimurium virulence   总被引:35,自引:0,他引:35  
We recently described the use of selective transposon mutagenesis to generate a series of avirulent mutants of a pathogenic strain of Salmonella typhimurium. Cloning and sequencing of the insertion sites from two of these mutants reveals that both have identical locations within an open reading frame that is highly homologous to a gene, htrA, encoding a heat-shock protein in Escherichia coli. DNA sequence analysis of S. typhimurium htrA reveals the presence of a gene capable of encoding a protein with a calculated Mr of 49316 that has 88.7% protein:protein homology with its E. coli counterpart. In E. coli, lesions in this gene, also known as degP, reduce proteolytic degradation of aberrant periplasmic proteins. Characteristics of the S. typhimurium htrA mutants, 046 and 014, in vivo and in vitro suggested that they are avirulent because of impaired ability to survive and/or replicate in host tissues. In vitro, the S. typhimurium htrA mutants 046 and 014 are not temperature-sensitive but were found to be more susceptible to oxidative stress than the parent, suggesting that they may be less able to withstand oxidative killing within macrophages.  相似文献   

16.
This study was conducted to test if transposon footprinting could be used to identify transposon mutants of Salmonella typhimurium with growth defects in a media containing short-chain fatty acids (SCFA) as the test selective condition. High concentrations of SCFA are one of the characteristic conditions in the animal intestine that has been suggested to play a role in inhibiting colonization by nonindigenous bacterial pathogens. When the mutant pools containing 25 Tn5 mutants/pool were analyzed for transposon footprints before and after selection, a polymerase chain reaction (PCR) product could be identified that was present in an input pool, but not in a corresponding output pool. The results indicate that transposon footprinting can be used for negative screening of genes sensitive to SCFA in the S. typhimurium bacterial genome.  相似文献   

17.
Most Salmonella enterica strains have two peri-plasmic [Cu, Zn] superoxide dismutases, SodCI and SodCII, encoded by prophage and chromosomal genes respectively. Both enzymes are thought to play a role in Salmonella pathogenicity by intercepting reactive oxygen species produced by the host's innate immune response. To examine the apparent redundancy, we have compared the levels of epitope-tagged SodCI and SodCII proteins in bacteria growing in vitro, as well as inside tissue culture cells and in mouse tissues. Concomitantly, we have measured the abilities of mutants of either or both sodC genes to proliferate in infected mice in competition assays. Our results show a striking variation in the relative abundance of the two proteins in different environments. In vitro, both proteins accumulate when bacteria enter stationary phase; however, the increase is much sharper and conspicuous for SodCII than for SodCI. In contrast, SodCI vastly predominates in intracellular bacteria where SodCII levels are negligible. In agreement with these findings, most, if not all, of the contribution of [Cu, Zn] superoxide dismutase activity to murine salmonellosis can be ascribed to the SodCI protein. Overall the results of this work suggest that the duplicate sodC genes of Salmonella have evolved to respond to different sets of conditions encountered by bacteria inside the host and in the environment.  相似文献   

18.
Salmonella-derived epitopes are presented on MHC molecules by antigen-presenting cells, and both CD4+ and CD8+ T cells participate in protective immunity to Salmonella. Therefore, mechanisms that allow Salmonella to escape specific immune recognition are likely to have evolved in this bacterial pathogen. To identify Salmonella genes, which potentially interfere with the MHC class I (MHC-I) presentation pathway, Tn10d transposon mutagenesis was performed. More than 3000 mutants, statistically covering half of the Salmonella genome, were individually screened for altered peptide presentation by infected macrophages. Two mutants undergoing enhanced antigen presentation by macrophages were identified, carrying a Tn10d insertion in the yej operon. This phenotype was validated by specific inactivation and complementation experiments. In accordance with their enhanced MHC-I presentation phenotype, we showed that (i) specific CD8+ T cells were elicited at a higher level in mice, in response to immunization with yej mutants compared to their parental strain in two different experimental settings; and (ii) yej mutants were superior vaccine carriers for heterologous antigens compared to the parental strain in a tumour model.  相似文献   

19.
Mutants of Salmonella typhimurium lacking DNA adenine methylase were isolated; they include insertion and deletion alleles. The dam locus maps at 75 min between cysG and aroB, similar to the Escherichia coli dam gene. Dam(-) mutants of S. typhimurium resemble those of E. coli in the following phenotypes: (1) increased spontaneous mutations, (2) moderate SOS induction, (3) enhancement of duplication segregation, (4) inviability of dam recA and dam recB mutants, and (5) suppression of the inviability of the dam recA and dam recB combinations by mutations that eliminate mismatch repair. However, differences between S. typhimurium and E. coli dam mutants are also found: (1) S. typhimurium dam mutants do not show increased UV sensitivity, suggesting that methyl-directed mismatch repair does not participate in the repair of UV-induced DNA damage in Salmonella. (2) S. typhimurium dam recJ mutants are viable, suggesting that the Salmonella RecJ function does not participate in the repair of DNA strand breaks formed in the absence of Dam methylation. We also describe a genetic screen for detecting novel genes regulated by Dam methylation and a locus repressed by Dam methylation in the S. typhimurium virulence (or ``cryptic') plasmid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号