首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to assess effects of feed intake and NDF content of highly digestible grass-clover silage on chewing behavior, fecal particle size distribution and apparent digestibility in restrictively fed heifers. Four grass-clover silages (Lolium perenne, Trifolium pratense and Trifolium repens) were harvested in 2009 at different regrowth stages, resulting in silages with NDF contents of 312, 360, 371 and 446 g/kg dry matter (DM), respectively. Four rumen-fistulated Jersey heifers (343±32 kg BW) were fed silage at 90% of ad libitum levels in a 4×4 Latin square design, replicated with further restricted feeding levels (50%, 60%, 70% or 80% of ad libitum) in a balanced 4×4×4 Greco-Latin square design. Eating activity was estimated from test meal observations, while rumination activity was estimated from jaw movements logged by a jaw recorder system. Total tract digestibility was estimated from chromic oxide marker and fecal spot sampling, and fecal particle size distribution in washed and freeze-dried particulate DM was determined by dry sieving (2.36, 1.0, 0.5, 0.212 and 0.106 mm, and bottom bowl). Higher NDF content of silage stimulated longer eating time per kg DM intake (P<0.001), while reduced feeding level caused a reduction in eating time per kg DM intake (P<0.001) and NDF (P<0.001). Rumination time per kg DM intake (P<0.01) increased with reduced feeding level, with less effect of feeding level at lower NDF contents (P<0.01) and more rumination with greater NDF content (P<0.01). Relative to NDF intake, rumination time increased with greater NDF content (P<0.01), at a higher rate with reduced feeding level (P<0.05). Digestibility of potentially digestible NDF (DNDF) decreased with greater NDF content (P<0.001) and increased with reduced feeding level (P<0.05). Increasing NDF content resulted in more particulate DM in feces (g/kg DM; P<0.05) and larger mean particle size (P<0.001). In conclusion, feeding heifers with grass-clover silages of decreasing NDF content increased chewing time relative to NDF intake, reduced mean fecal particle size, and increased DNDF digestibility. Restricting feeding level made heifers eat for a shorter time period while rumination and total chewing was increased, causing the ratio between eating and rumination time to decrease with lower intake of forage fiber. Particle size reduction and digestibility depended mostly on changes in NDF content, especially the indigestible NDF content.  相似文献   

2.
A feeding experiment was conducted with 10 dairy cows of the Fleckvieh breed and the cross Red Holstein Friesian × Fleckvieh, to study whether feeding with grass silage at the morning meal and maize silage at the evening meal (treatment B: alternating forage allocation) affects forage intake and milk production, in comparison with combined feeding with these two silages at each meal (treatment A). In order to prevent a selective forage consumption in treatment A, the two silages were given as a homogeneous mixture of nearly equal portions (51.6% maize silage, 48.4% grass silage) of dry matter (DM). The experiment was of switch-back design, with the treatment sequences ABA and BAB, and three experimental periods of 6 weeks.The daily forage consumption averaged 12.3 kg DM when the silages were given as a mixture and was significantly higher than the total forage consumption of 11.8 kg DM (P < 0.05) during the alternating allocation of the silages. In treatment B, daily intake of maize silage (7.10 kg DM) was greater than that of grass silage (4.70 kg DM/day). Furthermore, variation between cows in forage intake was significantly higher in this treatment than in treatment A. Average daily milk yield for treatment A was 18.75 kg with 3.84% fat and 3.70% protein, and 18.10 kg with 3.76% fat and 3.68% protein for treatment B. Production was significantly higher (P < 0.05), by 0.65 kg milk or 0.90 kg FCM, for treatment A.  相似文献   

3.
This study examined the effects on intake, diurnal rumen pH changes, rumination and digestibility of feeding ruminally cannulated non-lactating cows in a Latin square design (four cows×four periods) with four total mixed rations (TMRs) typical for lactating cows. TMRs were based on: long wheat hay or short wheat hay, wheat silage or wheat silage+1.5% NaHCO3 buffer, as the sole roughage source (30% of TMR dry matter (DM)). The level of physically effective NDF remaining above the 8 mm screen (peNDF) was similar in the long hay and silage-based TMRs (9.45% to 9.64% of DM) and lower in the short hay TMR (7.47% of DM). The four TMRs were offered individually at 95% of ad libitum intake to avoid orts within 24 h. Cows fed long hay consumed less DM than the short hay and silage groups (9.6 v. 10.5 and 10.8 kg/day, respectively) and sorted against large hay particles at 12 h post-feeding. Under the limitations of this study (non-lactating cows fed at restricted intake) short hay TMR prevented sorting within 12 h post-feeding, encouraged rumination per kg peNDF ingested, and had higher average rumen pH (6.24), whereas preventing sub acute ruminal acidosis (SARA, defined as pH<5.8 for at least 5 h/day). In contrast, the long hay and silage-based groups were under SARA. In vitro methane production of rumen fluid was higher in the hay-fed cows than in their silage-fed counterparts, and in all treatments lower at 1 h pre-feeding than at 6 h post-feeding. In vivo DM and NDF digestibility were similar for the short hay and silage TMRs, and higher than those of the long hay TMR. Under the conditions of this study, addition of 1.5% buffer to the wheat silage TMR had no effect on intake, rumen pH, creation of SARA and digestibility.  相似文献   

4.
The physical structure value of conserved grass/clover forages of spring harvest was evaluated by assessing effects of harvest time, conservation method, iNDF/NDF ratio and NDF intake (NDFI) per kg BW on chewing activity and fecal particle size in dairy heifers. A mixed sward consisting of ryegrass (Lolium perenne), red clover (Trifolium pratense) and white clover (Trifolium repens) was harvested in 2009 on May 9 (early) and 25 (late), and both cuts were conserved as silage and hay. The early silage, early hay, late silage and late hay contained dry matter (DM) of 454, 842, 250 and 828 g/kg, and NDF of 315, 436, 414 and 503 g/kg DM, respectively. Forages were fed as sole feed to four Jersey heifers of 435±30 kg BW in a 4×4 Latin square experiment. Feeding level was 90% of individual ad libitum intake, divided equally across two daily meals offered at 0800 and 1530 h. Chewing activity was estimated from recorded jaw movements (JM) oscillations continuously logged for 96 h and summarized per 24 h as mean effective rumination time and eating time. Eating behavior was further observed during four 20-min test meals. Weight proportion of large feces particles (>1.0 mm) and geometric mean fecal particle size (GPS) were calculated. Potentially indigestible NDF (iNDF) was estimated by incubation for 288 h in situ. The daily DM intake (DMI) decreased with progressing maturity at harvest (P<0.001) while daily NDFI was unaffected by harvest time (P>0.05). Earlier harvest led to less rumination per kg NDFI (P<0.01), similar eating time per kg NDFI (P>0.05) and similar proportion of large particles (P>0.01) compared with later harvest. Rumination time per kg NDFI decreased with higher NDFI per kg BW (P<0.001) and with lower iNDF/NDF ratio (P<0.01). Content and potential digestibility of NDF was greater in hay than in silage from the same harvest probably due to field loss and therefore confounded effects of conservation method. This study of high digestibility grass/clover silage and hay showed that NDF content and NDFI per kg BW affect fecal particle size and rumination time per kg NDF, and suggests implementation of NDFI per kg BW in systems evaluating physical structure in diets.  相似文献   

5.
Twenty-eight Simmental-cross steers weighing 200 (± 20.5) kg were used to evaluate grass and whole plant lupin silages in terms of growth rate, dry matter (DM) intake and carcass characteristics. The chemical composition of the silages was determined and Dacron bag procedures were used to estimate DM and protein degradability. The silages were supplemented with either rolled barley or crushed potato. The lupin silage had a lactic acid fermentation with lower DM, neutral detergent fiber (NDF) and protein nitrogen than the grass silage but higher crude protein. There were no statistically significant differences in gain, carcass weight, dressing percentage or backfat levels between steers fed lupin or grass silage. DM intake of the silages was not significantly different but there was a tendency for lower DM intake of lupin silage when supplemented with potatoes. There was no difference in DM degradability between lupin and grass silages. Lupin nitrogen degraded at a significantly faster rate (24.5% h−1) compared with the grass (10.4% h−1). The effective degradation of nitrogen at a ruminal fractional outflow rate of 0.05 h−1 was 63.8% and 79.1% for grass and lupin silage, respectively. Ensiling whole plant lupin can produce a high quality silage for use in beef rations.  相似文献   

6.
Twelve corn silages, 22 grass silages and 14 grass hays, obtained from various farms located in the lower Fraser Valley region of British Columbia, and 16 alfalfa hays, grown primarily in the Columbia basin of central Washington State, were evaluated using both the rumen and the mobile nylon bag in situ techniques. Nylon bags containing each forage were incubated in duplicate for 0, 2, 4, 8, 12, 24, 48, 72, or 96 h in two of six non-lactating Holstein cows fitted with rumen and duodenal cannulae. All forage types were evaluated in terms of the following dry matter (DM) and crude protein (CP) digestion characteristics: soluble fraction A, degradable fraction B, degradation rate, lag phase, and effective degradability. The mobile nylon bag technique was used to determine intestinal disappearance of DM and CP from the forages following pre-incubation in the rumen for 12 h. Significant (P < 0.05) differences in degradation characteristics occurred within all forages with regard to the soluble and potentially degradable DM and CP fractions. Soluble CP content in the rumen varied from 44.08 to 75.37% and from 18.74 to 65.38% in the corn and grass silages, respectively, and from 48.27 to 75.43% and from 30.13 to 65.95% in the alfalfa and grass hays, respectively. Significant differences within each forage type were also observed for the degradable CP in fraction B: 10.89 to 45.28% for corn silage, 20.72 to 82.77% for grass silage, 16.67 to 44.88% for grass hay and 25.44 to 62.93% for alfalfa hays. Significant differences (P > 0.05) were observed in fractional rates of ruminal DM degradation of the grass hays and corn silages. Significant differences did exist in the fractional rates of ruminal CP degradation within all forage types with the exception of alfalfa hays. Effective degradabilities of DM and CP were also significantly different between samples of a particular forage type. The mobile nylon bag data indicated that approximately 20% of the original CP in the grass silage, grass hay and alfalfa hay samples disappeared in the intestine and that there was significant variation between individual samples. On average, in the corn silage samples more than 10% of the original nitrogenous material disappeared in the intestine. The results presented in this study clearly demonstrate that the use of tabulated values for describing individual batches of forages in terms of their degradability characteristics is inaccurate since they may not reflect the particular forage being used in the ration and thus may lead to errors in diet formulation.  相似文献   

7.
This study examined the effects of physical form and stage of maturity at harvest of whole-crop barley silage (WCBS) on feed intake, eating and rumination activity, diet selection and faecal particle size in dairy steers. Whole-crop barley was harvested and ensiled in round bales. Eight dairy steers (live weight (LW): 350 ± 10 kg) in a duplicated 4 × 4 Latin square design were fed WCBS harvested at heading or dough stage of maturity in long form or chopped in a 2 × 2 factorial treatment arrangement. The WCBS was supplemented with soybean meal. Daily dry matter (DM) intake increased by 7% (P < 0.05) due to chopping of dough-stage silage but was unaffected by chopping of heading-stage silage. The steers fed chopped, but not those fed long dough-stage silage, selected for starch in the WCBS (P < 0.001). The neutral detergent fibre (NDF) intake was 5% higher (P < 0.01) for heading than for dough-stage silage and was associated with lower concentration of indigestible NDF (96 v. 170 g/kg DM). Rate of intake of DM and NDF was 37% higher (P < 0.001), daily eating time was 24% shorter (P < 0.001) and daily chewing time was 8% shorter (P < 0.05) for chopped silage compared with long silage but there was no effect of maturity. Daily rumination time was not affected by treatments, whereas rumination and chewing times per kg NDF intake were 15% and 13% higher (P < 0.05), respectively, for dough-stage than for heading-stage silage. The proportion of faecal particles retained on a 1 mm screen was 30% higher (P < 0.001) due to chopping and 45% higher (P < 0.001) due to delayed harvest. Chopping the dough-stage silage reduced the proportion of grain in faeces from 97 to 43 g/kg DM (P < 0.05) indicating higher starch digestibility. In conclusion, chopping increased DM intake of WCBS when harvested at dough stage but not at heading stage of maturity.  相似文献   

8.
Twenty-four low dry matter (DM) silages differing in fermentation quality were harvested at the same time from a crop that consisted mainly of timothy (Phleum pratense), and meadow fescue (Festuca pratensis). The silage samples were analysed by gas chromatography (GC) - mass spectrometry and gas chromatography - flame ionisation detection in order to determine and quantify volatiles present in silage. The voluntary intake of the 24 silages had been measured in a previous feeding trial with growing steers of Norwegian Red. Thirteen esters, five aldehydes, three alcohols, and one sulphide were identified and quantified. A total of 51 variables describing the chemical composition of the silages were included in a partial least-squares regression, and the relationship of silage fermentation quality to voluntary intake was elucidated. The importance of variables describing silage fermentation quality in relation to intake was judged from a best combination procedure, jack-knifing, and empirical correlations of the variables to intake. The GC-analysed compounds were mainly present in poorly fermented silages. However, compared with other explanatory chemical variables none of these compounds was of importance for the voluntary intake as evaluated by partial least-squares regression. A validated variance of 71% in silage DM intake was explained with the selected variables: total acids (TA), total volatile fatty acids (TVFA), lactic acid/total acid ratio and propionic acid. In this study extent (by the variable TA) and type of silage fermentation (by TVFA) influenced intake. Further, it is suggested that by restricting the fermentation in low DM grass silages the potential intake of silage DM is maximised.  相似文献   

9.
In many countries, daily herbage accumulation on pasture declines towards zero during the winter period; thus, many pregnant ewes are housed and offered conserved forages supplemented with concentrate prior to parturition. The effects of forage type and feed value (FV), offering soybean meal with maize silage during mid and late pregnancy, and concentrate feed level in late pregnancy on the performance of ewes and their progeny (to slaughter) were evaluated. Ewes (n = 151) were assigned to one of nine treatments from mid-pregnancy until lambing. Medium FV and high FV grass silages (metabolisable energy concentrations of 10.7 and 12.0 MJ/kg DM) were offered ad libitum supplemented with either 15 or 25 kg concentrate/ewe during late pregnancy. Low and high DM maize silages (starch concentrations of 80 and 315 g/kg DM) were offered ad libitum either alone or with soybean meal (200 g/d) and supplemented with 15 kg concentrate during late pregnancy. A final treatment consisted of high FV grass silage supplemented with 5 kg soybean/ewe over the final 4 weeks of pregnancy. Ewes and lambs were put to pasture in a rotational-grazing system within 3 days of lambing. There were no interactions (P > 0.05) between grass silage FV and concentrate feed level for ewe or lamb traits. Increasing grass silage FV increased food intake (P < 0.001) during late pregnancy, ewe BW and body condition score (BCS) at lambing (P < 0.001), lamb BW at birth (P < 0.001) and weaning (P < 0.05), and reduced age at slaughter (P = 0.06). Increasing concentrate feed level increased metabolisable energy (P < 0.05) intake during late pregnancy but had no effect (P > 0.05) on ewe or lamb performance. Increasing maize DM at harvest and offering soybean meal with maize silage increased food intake (P < 0.001) and ewe BW and BCS at lambing (P < 0.05 or P < 0.01). Offering soybean meal with maize silage increased lamb BW at birth (P < 0.01) and reduced age at slaughter (P < 0.05). Reducing supplementation of high FV grass silage to 5 kg of soybean meal had no effect (P > 0.05) on animal performance. Replacing grass silage with maize silage did not affect (P > 0.05) BW gain of lambs. It is concluded that increasing the FV of the grass silage offered during pregnancy had the greatest positive impact on ewe and lamb performance.  相似文献   

10.
The effects of maturity of maize at harvest, level of inclusion and potential interactions on the performance, carcass composition, meat quality and potential concentrate-sparing effect when offered to finishing beef cattle were studied. Two maize silages were ensiled that had dry matter (DM) concentrations of 217 and 304 g/kg and starch concentrations of 55 and 258 g/kg DM, respectively. Grass silage was offered as the sole forage supplemented with either 4 or 8 kg concentrate/steer daily or in addition with one of the two maize silages at a ratio 0.5 : 0.5, on a DM basis, maize silage : grass silage supplemented with 4 kg concentrate daily. The two maize silages were also offered as the sole forage supplemented with 4 kg concentrate/steer daily. The forages were offered ad libitum. The six diets were offered to 72 steers (initial live weight 522 s.d. 23.5 kg) for 146 days. There were significant interactions (P < 0.05) between maize maturity and inclusion level for food intake, fibre digestibility and daily gain. For the grass silage supplemented with 4 or 8 kg concentrate, and the maize silages with DM concentrations of 217 and 304 g/kg offered as 0.5 or 1.0 of the forage component of the diet, total DM intakes were 8.3, 9.8, 8.9, 8.2, 9.2 and 9.8 kg DM/day (s.e. 0.27); live-weight gains were 0.74, 1.17, 0.86, 0.71, 0.88 and 1.03 kg/day (s.e. 0.057); and carcass gains were 0.48, 0.73, 0.56, 0.46, 0.56 and 0.63 kg/day (s.e. 0.037), respectively. Increasing the level of concentrate (offered with grass silage), maize maturity and level of maize inclusion reduced (P < 0.05) fat b* (yellowness). The potential daily concentrate-sparing effect, as determined by carcass gain, for the maize silages with DM concentrations of 217 and 304 g/kg offered as 0.5 and 1.0 of the forage component of the diet were 1.3, −0.3, 1.3 and 2.4 kg fresh weight, respectively. It is concluded that the response, in animal performance, including maize silage is dependent on the stage of maturity and level of inclusion in the diet. Maize silage with a DM of 304 g/kg offered ad libitum increased carcass gain by 31%, because of a combination of increased metabolizable energy (ME) intake and improved efficiency of utilization of ME, and produced carcasses with whiter fat.  相似文献   

11.
Eight multiparous lactating Holstein-Friesian cows were used to evaluate the partitioning of dietary nitrogen (N) from diets based on mixtures of red clover and maize silages in comparison with diets based on ryegrass silage. All cows received 4 kg/day of a standard dairy concentrate with one of four forage treatments in an incomplete changeover design with three 4-week periods. Three treatments were based on mixtures of red clover and maize silage. N intake was altered both by varying the ratio of these silages (40/60 and 25/75 on a dry matter (DM) basis) and by an additional treatment for which the DM intake of the 40/60 mixture was restricted to the level achieved with grass silage. Rumen passage rates were estimated from faecal excretion curves following a pulse oral dose of Dysprosium-labeled silage and urinary excretion of purine derivatives (PD) was used as an index of rumen microbial protein synthesis. Red clover silage mixtures led to significantly increased feed intake (21.5, 20.7 and 15.2 kg DM/day for 40/60 and 25/75 red clover/maize silage mixtures and grass silage, respectively), milk production (25.8, 27.8 and 20.0 kg/day for the same treatments, respectively) and milk component yields, but were without effect on milk fat and protein concentrations. The large increase in the yield of milk (24.5 kg/day) and milk components for the restricted red clover/maize silage treatment, in comparison with the grass silage treatment, was proportionately greater than the increase in DM intake (16.6 kg DM/day). There were no significant treatment effects on diet digestibility, while the higher intakes of red clover silage mixtures were associated with higher rumen passage rates (5.82%, 6.24% and 4.55%/h, respectively). There were significant effects of both N intake and forage source on the partitioning of dietary N between milk and urine. When dietary protein was diluted by the inclusion of maize silage, red clover silage led to increased milk N and reduced urinary N in comparison with grass silage. Improvements in N utilisation may be related to increased dietary starch and/or rumen passage rates leading to increased microbial protein synthesis for these treatments. Urinary excretion of PD was significantly higher for all diets based on mixtures of red clover and maize silages, in comparison with grass silage. Urinary N output was close to literature predictions based on N intake for the diet based on ryegrass silage, but 40 to 80 g/day (25% to 30%) less than predicted for the diets based on the mixtures of red clover and maize silages.  相似文献   

12.
A completely randomised design study involving 132 continental crossbred beef steers was undertaken to evaluate the effects of method of grain treatment and feed level, and grass silage feed value on animal performance, carcass characteristics and meat quality of beef cattle. Winter wheat was harvested and the grain was stored either ensiled crimped and treated with 4.5 l/t of a proprietary acid-based additive (crimped), ensiled whole and treated with 20 kg feed-grade urea per t (urea) or stored conventionally in an open bin treated with 3 l propionic acid per t. Two grass silages, of contrasting feed value (L and H) were ensiled. For the conventional, crimped and urea treatments, grain dry matter (DM) concentrations were 802, 658 and 640 g/kg, respectively. For the L- and H-feed value silages, DM concentrations were 192 and 240 g/kg and D values were 671 and 730 g/kg DM, respectively. The silages were offered as the sole forage supplemented with either conventional, crimped or urea-treated grain-based concentrate at either 3.5 or 6.0 kg DM per steer per day. The grain supplement consisted of 850 and 150 g/kg DM of grain and citrus pulp, respectively. For the conventional, urea and crimped treatments, DM intakes were 8.85, 9.43 and 9.04 kg/day (standard error (s.e.) = 0.129); estimated carcass gains were 0.60, 0.55 and 0.61 kg/day (s.e. = 0.020), respectively. For the low- and high- feed value grass silages, estimated carcass gains were 0.56 and 0.61 kg/day (s.e. = 0.014), respectively. For the low and high grain feed levels, estimated carcass gains were 0.56 and 0.61 kg/day, respectively. Grain treatment, grain feed level or silage feed value did not alter (P > 0.05) meat quality, lean colour or fat colour. There were significant silage feed value × grain feed level interactions (P < 0.05) for final live weight (LW) and daily live-weight gain (DLWG). Increasing grain feed level increased final LW and DLWG when offered with the low-feed value silage, however, grain feed level had no effect on final LW or DLWG when offered with the high-feed value silage. It is concluded that urea treatment of grain increased silage intake and feed conversion ratio (kg DM intake per kg carcass) and tended to decrease carcass gain. Crimping provides a biologically equally effective method to store grain as conventional methods. Improving grass silage feed value had a greater impact on animal performance than increasing grain feed level by 2.4 kg DM per day.  相似文献   

13.
The aim of this experiment was to, under typical Swedish production conditions, evaluate the effects of grass silages subjected to different N-fertilisation regimes fed to dairy cows on the fatty acid (FA) composition of their milk, and to compare the grass silages in this respect to red clover-dominated silage. Grass silages made from first year Phleum pratense L. leys subjected to three N-fertilisation regimes (30, 90 and 120 kg N/ha, designated G-30, G-90 and G-120, respectively) and a mixed red clover–grass silage (Trifolium pratense L. and P. pratense L.; 60/40 on dry matter (DM) basis, designated RC–G) were produced. The experiment was conducted as a change-over design, including 24 primiparous and multiparous dairy cows of the Swedish Red breed, each of which was allocated to three of the four diets. The cows were offered 11 kg DM of silage and 7 kg concentrates. The silages had similar DM and energy concentrations. The CP concentration increased with increase in N-fertilisation level. There was a linear increase in DM intake of the different silages with increased N fertilisation. There were also differences in concentrations of both individual and total FAs amongst silages. The daily milk production (kg/day) did not significantly differ between treatments, but G-30 silage resulted in higher concentrations of 18:2n-6 in the milk compared with the other two grass silages. The highest concentrations of 18:3n-3 and cis-9, trans-11 18:2 were found in milk from cows offered the RC–G silage. The G-30 diet resulted in higher concentration of 18:2n-6 and the same concentration of 18:3n-3 in the milk as the other grass silages, despite lower intake levels of these FAs. The apparent recoveries of 18:3n-3 from feed to milk were 5.74%, 4.27%, 4.10% and 5.31% for G-30, G-90, G-120 and RC–G, respectively. A higher recovery when red clover is included in the diet confirms previous reports. The higher apparent recovery of 18:3n-3 on the G-30 treatment may be related to the lower silage DM intake, which led to a higher relative proportion of ingested FAs originating from concentrates compared with the G-90 and G-120 diets. With the rates and types of concentrates used in this study, the achieved differences in FA composition among the silages were not enough to influence the concentrations of unsaturated FAs in milk.  相似文献   

14.
This study used individual weekly results for 160 non-lactating Holstein-Friesian dairy cows in the last 5 weeks of gestation to develop regression equations based on forage NDF content and individual body condition score (BCS) for predicting dry matter (DM) intake. Results were used from treatments in which cows received the same forage and no concentrates throughout the dry period. Ten different conserved forages, either grass silages or mixtures of grass silage and barley straw, were fed in six different experiments and forage NDF ranged from 452 to 689 g/kg DM. On average cows gained 390 g live weight per day, which is less than conceptus growth at this stage - suggesting some mobilisation of maternal tissues to support conceptus growth. BCS remained unchanged at 2.5 over the dry period. DM intake declined from 10.79 kg/day 5 weeks before calving to 9.32 kg/day in the week before calving, with half of this decline occurring in the final week before calving. Intake as a percentage of live weight was moderately predicted (R2 = 0.61 for the entire period) from measures of diet composition (NDF) and cow state (BCS). There were highly significant negative effects of forage NDF and increased BCS on DM intake. The effect of BCS on DM intake was greatly reduced in the week before calving, possibly as a result of a change in metabolic priorities from gaining to losing body reserves.  相似文献   

15.
Second cut big bale grass silage was prepared with grass ensiled alone or with added pelleted, molassed sugar beet feed (MSBF) at 32 or 64 g MSBF kg−1 fresh weight of grass. Addition of MSBF at ensilage increased silage dry matter (DM), water soluble carbohydrate and lactic acid concentrations and decreased ammonia concentration. When fed to wether lambs, MSBF addition, whether at ensilage or given separately, variably improved DM intake, live-weight gain and feed conversion efficiency. Ruminal concentrations of ammonia were reduced and acetate molar proportion increased in diets supplemented with MSBF separately compared with the silage only control diet. Animal performance was generally improved by MSBF supplementation with responses to silages made with added MSBF comparable to those from silage supplemented with MSBF at feeding. There was little difference in animal performance between silages made with 32 or 64 g kg−1 MSBF added at ensiling.  相似文献   

16.
A randomised design involving 66 continental cross beef steers (initial live weight 523 kg) was undertaken to evaluate the effects of the inclusion of maize or whole-crop wheat silages in grass silage-based diets on animal performance, carcass composition, and meat quality of beef cattle. Grass silage was offered either as the sole forage or in addition to either maize or whole-crop wheat silages at a ratio of 40:60, on a dry matter (DM) basis, alternative forage: grass silage. For the grass, maize, and whole-crop wheat silages, DM concentrations were 192, 276, and 319 g/kg, ammonia-nitrogen concentrations were 110, 90, and 150 g/kg nitrogen, starch concentrations were not determined, 225, and 209 g/kg DM and in vivo DM digestibilities were 0.69, 0.69, and 0.58; respectively. The forages were offered ad libitum following mixing in a paddle type complete diet mixer wagon once per day, supplemented with either 3 or 5 kg concentrates per steer per day, in two equal feeds, for 92 days. For the grass, grass plus maize and grass plus whole-crop wheat silage-based diets food intakes were 8.38, 9.08, and 9.14 kg DM per day, estimated carcass gains were 514, 602, and 496 g/day and carcass weights were 326, 334, and 325 kg; respectively. Altering the silage component of the diet did not influence carcass composition or meat eating quality. Increasing concentrate feed level tended ( P = 0.09) to increase estimated carcass fat concentration and increased sarcomere length ( P < 0.05), and lean a* ( P < 0.01), b* ( P < 0.05), and chroma ( P < 0.01). There were no significant silage type by concentrate feed level interactions for food intake, steer performance, carcass characteristics or meat eating quality. It is concluded that replacing grass silage with maize silage increased carcass gain, and weight due to higher intakes, and improved utilisation of metabolisable energy. Whilst replacing grass silage with whole-crop wheat silage increased live-weight gain, the reduced dressing proportion resulted in no beneficial effect on carcass gain, probably due to increased food intakes of lower digestible forage increasing gut fill. Meat quality or carcass composition were not altered by the inclusion of maize or whole-crop silages in grass silage based diets.  相似文献   

17.
The effects of (i) medium and high feed value (MFV and HFV) maize silages and (ii) MFV and HFV grass silages, each in combination with a range of concentrate feed levels, on the performance of finishing lambs were evaluated using 280 Suffolk-X lambs (initial live weight 36.1 kg). The MFV and HFV maize silages represented crops with dry matter (DM) concentrations of 185 and 250 g/kg, respectively, at harvest, and had starch and metabolisable energy (ME) concentrations of 33 and 277 g/kg DM and 9.6 and 11.0 MJ/kg, respectively. HFV and MFV grass silages had DM and ME concentrations of 216 and 294 g/kg and 11.0 and 11.5 MJ/kg DM, respectively. A total of 13 treatments were involved. The four silages were offered ad libitum with daily concentrate supplements of 0.2, 0.5 or 0.8 kg per lamb. A final treatment consisted of concentrate offered ad libitum with 0.5 kg of the HFV grass silage daily. Increasing the feed value of grass silage increased (P < 0.001) forage intake, daily carcass and live weight gains, final live weight and carcass weight. Increasing maize silage feed value tended to increase (P = 0.07) daily carcass gain. Increasing concentrate feed level increased total food and ME intakes, and live weight and carcass gains. There was a significant interaction between silage feed value and the response to concentrate feed level. Relative to the HFV grass silage, the positive linear response to increasing concentrate feed level was greater with lambs offered the MFV grass silage for daily live weight gain (P < 0.001), daily carcass gain (P < 0.01) and final carcass weight (P < 0.01). Relative to the HFV maize silage, there was a greater response to increasing concentrate feed level from lambs offered the MFV maize silage in terms of daily carcass gain (P < 0.05) and daily live weight gain (P = 0.06). Forage type had no significant effect on the response to increased concentrate feed level. Relative to the MFV grass silage supplemented with 0.2 kg concentrate, the potential concentrate-sparing effect of the HFV grass silage, and the MFV and HFV maize silages was 0.41, 0.09 and 0.25 kg daily per lamb, respectively. It is concluded that increasing forage feed value increased forage intake and animal performance, and maize silage can replace MFV grass silage in the diet of finishing lambs as performance was equal to or better (depending on maturity of maize at harvest) than that for MFV grass silage.  相似文献   

18.
Wether lambs were fed on precision-chopped first-cut ryegrass silage ad libitum in an intake trial, and a maintenance and 1.5 times maintenance in balance trials.The untreated and treated silages had pH values of 4.72 and 4.40, mean dry matter (DM) contents of 176 and 184 g kg?1 and mean gross energy (GE) contents of 18.8 and 19.0 MJ/kg DM, respectively.Mean digestibility coefficients of DM (0.787 and 0.783), organic matter (OM) (0.827 and 0.820) and GE (0.794 and 0.793), for the treated and untreated silages respectively, were high. The metabolisable energy (ME) contents of the untreated and treated silages were 12.52 and 12.76 MJ/kg DM at maintenance and 11.94 and 12.56 MJ/kg DM at 1.5 times maintenance, respectively. The mean efficiency of utilisation of ME of the untreated and treated silages was 0.65 and 0.66 for maintenance (km) and 0.34 ± 0.134 and 0.40 ± 0.069 for growth (kg), respectively; the kg values were lower than expected.Dry matter intakes of these silages when given ad libitum were 27.9 and 28.8 g/kg W per day and produced live weight gains of 129 and 140 g day?1 for the untreated and treated silages, respectively. These gains were similar to predicted values for live weight gain only when the experimentally determined kg and km values were substituted in the equation of the Agricultural Research Council (1980) used for calculating the daily metabolisable energy requirements for live weight gain.  相似文献   

19.
The study involved 120 crossbred ewes (sixty 1.5 years old animals and sixty 2.5 years old animals; initial liveweight 67.6 kg, condition score 3.7), that were mated in October. They were assigned to six treatments (two shearing treatments (shorn and unshorn) × two silage feed values (low and medium) and two extended grazed herbage allowances (1.0 and 1.8 kg dry matter (DM)/day)) designed to evaluate the effects of shearing at housing, grass silage feed value and extended-grazed herbage allowance on their performance and the performance of their progeny. Swards, which had silage harvested on 6 September, received fertiliser N (34 kg/ha) for extended (deferred) grazing between 19 December and lambing in mid-March. The herbage was allocated at DM allowances of 1.0 or 1.8 kg/ewe daily until 1 February. For the final 6 weeks of pregnancy, daily herbage DM allowances were 1.5, 1.6, 2.0, 2.0 and 2.0 kg for weeks 6, 5, 4, 3 and 2 to parturition, respectively. Two grass silages (low and medium feed value) were offered from housing on 19 December to lambing in mid-March. At housing, half the ewes were shorn whilst the remainder remained unshorn. Each ewe received 23.4 kg concentrate prior to lambing. For the extended-grazed herbage and the low and medium feed-value silages, DM concentrations were 132, 225 and 265 g/kg, and metabolisable energy (ME) concentrations were 10.0, 10.0 and 10.7 MJ/kg DM, respectively. Treatment did not alter (P > 0.05) litter size or number reared. Grass silage feed value did not significantly alter silage DM intake, or ewe and subsequent lamb performance. Increasing herbage allowance in mid-pregnancy decreased herbage utilisation (P < 0.05) and increased herbage intake (P < 0.05). Shearing increased silage intake (P < 0.05), lamb birth weight (P < 0.01) and tended to increase lamb weaning weight (P = 0.07). Relative to the housed shorn ewes, extended grazing did not alter (P > 0.05) ewe or subsequent lamb performance. It is concluded that shearing ewes at housing increased lamb birth weight due to increased silage intake probably associated with cold stress immediately post shearing and reduced heat stress in late pregnancy. Based on differences in lamb weight at weaning 0.8 kg of grass silage DM intake had the same feed value as a daily extended herbage DM allowance of 1.8 kg per ewe throughout the study. Neither silage feed value nor herbage allowance in mid-pregnancy affected lamb birth weight or subsequent growth rate.  相似文献   

20.
The suitability of silages containing buckwheat (Fagopyrum esculentum) and chicory (Cichorium intybus) for the nutrition of dairy cows was determined. Buckwheat and chicory were sown in mixture with ryegrass (Lolium multilorum), and a pure ryegrass culture served as a control forage. Swards were harvested 55 d after sowing and were ensiled after wilting, without additives in small round bales. Finally, buckwheat and chicory made up the dietary dry matter (DM) proportions of 0.46 and 0.34, respectively. Concentrates were restricted to 2 kg/d. Diets were fed to 3 x 6 late-lactating cows for 15 d at ad libitum access. During the collection period (days 10-15) amounts of feed intake and faeces, urine and milk were recorded and samples were taken. Ensilability was good for buckwheat and ryegrass swards, but was so less for the chicory sward, which was rich in total ash. The buckwheat silage was rich in acid detergent fibre (445 g/kg DM) and lignin (75.7 g/kg DM) and contained less crude protein (135 g/kg DM) and ether extract (15.8 g/kg DM) than the other silages. Consistent with that, the apparent digestibility of the organic matter and fibre were lowest when feeding this silage. The potassium concentrations in the chicory and ryegrass silages were high (61 g/ kg) and lower in buckwheat (47 g/kg). No significant treatment effects on intake, body weight, milk yield or milk composition as well as plasma beta-hydroxybutyrate and non-esterified fatty acids occurred. Being lowest in nitrogen (N) content, the buckwheat silage resulted in the lowest urine N losses and the most efficient N utilisation for milk protein synthesis, but this at cost of body N retention. The results show that silages containing buckwheat and chicory may be used as components of the forage part of dairy cows' diets even though they were found to have a lower feeding value than ryegrass silage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号