首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The role of the N-terminus of the extrinsic 33 kDa protein of Photosystem II has been investigated by means of site-directed mutagenesis and cross-linking. Replacement of Asp-9 resulted in a dramatic increase in proteolytic sensitivity leading to the degradation of the protein forming a 31 kDa fragment with an undefined N-terminus. This fragment was unable to restore oxygen evolution. However, the variants of the 33 kDa protein which remained intact could reconstitute oxygen evolution as effectively as the wild-type protein. Cross-linking experiments with a water-soluble carbodiimide revealed that mutagenesis of residue D9 led to the disruption of an intramolecular salt bridge. Therefore we suggest that the N-terminus of the 33 kDa protein is necessary for maintaining the binding ability of the protein to Photosystem II but might not be involved in binding itself.  相似文献   

2.
Selective solubilization of Photosystem II membranes with the non-ionic detergent octyl thioglucopyranoside has allowed the isolation of a PS II system which has been depleted of the 22 and 10 kDa polypeptides but retains all three extrinsic proteins (33, 23 and 17 kDa). The PS II membranes which have been depleted of the 22 and 10 kDa species show high rates of oxygen evolution activity, external calcium is not required for activity and the manganese complex is not destroyed by exogenous reductants. When we compared this system to control PS II membranes, we observed a minor modification of the reducing side, and a conversion of the high-potential to the low-potential form of cytochrome b 559.Abbreviations Chl- chlorophyll - DCBQ- 2,5-dichloro-p-benzoquinone - DCMU- 3-(3,4-dichlorophenyl)-1,1-dimethylurea - ESR- electron spin resonance - MES- 2-(N-morpholino)ethanesulfonic acid - OTG- octyl--d-thioglucopyranoside - PS II- Photosystem II - PEG- polyethylene glycol, Mr=6000 - Tris- 2-amino-2-hydroxyethylpropane-1,3-diol  相似文献   

3.
The recombinant form of the extrinsic 23 kDa protein (psbP) of Photosystem II (PSII) was studied with respect to its capability to bind Mn. The stoichiometry was determined to be one manganese bound per protein. A very high binding constant, KA = 10− 17 M− 1, was determined by dialysis of the Mn containing protein against increasing EDTA concentration. High Field EPR spectroscopy was used to distinguish between specific symmetrically ligated Mn(II) from those non-specifically Mn(II) attached to the protein surface. Upon Mn binding PsbP exhibited fluorescence emission with maxima at 415 and 435 nm when tryptophan residues were excited. The yield of this blue fluorescence was variable from sample to sample. It was likely that different conformational states of the protein were responsible for this variability. The importance of Mn binding to PsbP in the context of photoactivation of PSII is discussed.  相似文献   

4.
Two cysteine residues of the extrinsic 33 kDa protein in the oxygen-evolving photosystemII (PS II) complexes were found to exist as cystine residues in situ. The 33 kDa protein, when reduced by 2-mercaptoethanol in either the presence or the absence of 6 M guanidine-HCl (Gdn-HCl), could not rebind with the CaCl2-treated PS II complexes, from which the 33 kDa protein was removed, and evolve any oxygen. Two sulfhydryl (SH) groups of the 33 kDa protein were easily reoxidized to a disulfide (S-S) bond by stirring under aerobic conditions with the concomitant regaining of both the binding ability to the CaCl2-treated PS II complexes and the oxygen-evolving activity.The molecular conformation of the 33 kDa protein was examined by circular dichroic (CD) spectrometry in the UV regions to reveal that the conformation in the reduced state was completely different from those of the untreated and reoxidized states. The disulfide (S-S) bond of the 33 kDa protein is thus essential to maintain the molecular conformation required to function.Abbreviations CD circular dichroism - Chl chlorophyll - DMQ 2,5-dimethyl-p-benzoquinone - DTNB 5,5-dithio-bis (2-nitrobenzoic acid) - EDTA ethylendiamine-tetraacetic acid - Gdn-HCl guanidine-hydrochloric acid - PS II photosystem II - SDS sodium dodecylsulfate This paper was presented at the U.S.-Japan Binational Seminar on Solar Energy Conversion, Okazaki, Japan, March 17–21, 1987  相似文献   

5.
The 33 kDa protein of Photosystem II has one intrachain disulfide bond. Fluorescence spectroscopy shows that the major groups in the protein that bind to Ca2+ should be the carboxylic side groups of glutamic acid and/or aspartic acid. Fluorescence and Fourier-transform infrared (FTIR) spectroscopic studies indicate that the conformation of the 33 kDa protein is altered upon reduction, while the reduced protein still retains the secondary structure. FTIR spectroscopy also shows that the metal ions induce a relative decrease of unordered structure and -sheet, and a substantial increase of -helix in both the intact and the reduced 33 kDa protein. This indicates that the addition of cations results in a much more compact structure and that both the intact and the reduced 33 kDa proteins have the ability to bind calcium. The above results may suggest that the disulfide bridge is not essential for calcium binding.Abbreviations CD circular dichroism - FTIR Fourier transform infrared - La lanthanum - PS photosystem - Tb terbium  相似文献   

6.
Modern computational methods for protein structure prediction have been used to study the structure of the 33 kDa extrinsic membrane protein, associated to the oxygen evolving complex of photosynthetic organisms. A multiple alignment of 14 sequences of this protein from cyanobacteria, algae and plants is presented. The alignment allows the identification of fully conserved residues and the recognition of one deletion and one insertion present in the plant sequences but not in cyanobacteria. A tree of similarity, deduced from pair-wise comparison and cluster analysis of the sequences, is also presented. The alignment and the consensus sequence derived are used for prediction the secondary structure of the protein. This prediction indicates that it is a mainly-beta protein (25–38% of -strands) with no more than 4% of -helix. Fold recognition by threading is applied to obtain a topological 2D model of the protein. In this model the secondary structure elements are located, including several highly conserved loops. Some of these conserved loops are suggested to be important for the binding of the 33 kDa protein to Photosystem II and for the stability of the manganese cluster. These structural predictions are in good agreement with experimental data reported by several authors.  相似文献   

7.
Selective extraction-reconstitution experiments with the extrinsic Photosystem II polypeptides (33 kDa, 23 kDa and 17 kDa) have demonstrated that the manganese complex and the 33 kDa polypeptide are both necessary structural elements for the tight binding of the water soluble 17 and 23 kDa species. When the manganese complex is intact the 33 kDa protein interacts strongly with the rest of the photosynthetic complex. Destruction of the Mn-complex has two dramatic effects: i) The binding of the 33 kDa polypeptide is weaker, since it can be removed by exposure of the PS II system to 2 M NaCl, and ii) the 17 and 23 kDa species do not rebind to Mn-depleted Photosystem II membranes that retain the 33 kDa protein.Abbreviations Chl chlorophyll - HQ hydroquinone - MES 2(N-morpholino)ethanesulfonic acid - PS II Photosystem II - Tris 2-amino-2-hydroxymethylpropane-1,3-diol  相似文献   

8.
Chymotrypsin eliminated nine amino acid residues at the amino-terminal side of the extrinsic 23-kDa protein of the oxygen-evolving Photosystem II complex of spinach. The resultant 22-kDa fragment was able to bind to the Photosystem II complex but with lowered binding affinity. However, once the 22-kDa fragment bound to the complex, it retained most functions of the 23-kDa protein; the fragment provided a binding site for the extrinsic 18-kDa protein, preserved a tight trap for Ca2+ in the complex, and shifted the optimum Cl concentration for oxygen evolution from 30 to 10 mM, although it was less effective in sustaining oxygen evolution at Cl concentrations below 10 mM. These observations suggest that the elimination of nine amino acid residues at the amino-terminal region of the 23-kDa protein does not significantly alter the conformation of the protein, except for partial modification of its binding site and its interaction with Cl.  相似文献   

9.
The 33-kDa manganese-stabilizing protein (MSP) of Photosystem II (PS II) maintains the functional stability of the Mn cluster in the enzyme’s active site. This protein has been shown to possess characteristics similar to those of the intrinsically disordered, or natively unfolded proteins [Lydakis-Simantiris et al. (1999b) Biochemistry 38: 404–414]. Alternately it was proposed that MSP should be classified as a molten globule, based in part on the hypothesis that its lone disulfide bridge is necessary for structural stability and function in solution [Shutova et al. (2000) FEBS Lett. 467: 137–140]. A site-directed mutant MSP (C28A,C51A) that eliminates the disulfide bond reconstitutes O2 evolution activity and binds to MSP-free PS II preparations at wild-type levels [Betts et al. (1996) Biochim. Biophys. Acta 1274: 135–142]. This mutant was further characterized by incubation at 90 °C to determine the effect of loss of the disulfide bridge on MSP thermostability and solution structure. After heating at 90 °C for 20 min, C28A,C51A MSP was still able to bind to PS II preparations at molar stoichiometries similar to those of WT MSP and reconstitute O2 evolution activity. A fraction of the protein aggregates upon heating, but after resolubilization, it regains the ability to bind to PS II and reconstitute O2 evolution activity. Characterization of the solution structure of C28A,C51A MSP, using CD spectroscopy, UV absorption spectroscopy, and gel filtration chromatography, revealed that the mutant has a more disordered solution structure than WT MSP. The disulfide bond is therefore unnecessary for MSP function and the intrinsically disordered characteristics of MSP are not dependent on its presence. However, the disulfide bond does play a role in the solution structure of MSP in vivo, as evidenced by the lability of a C20S MSP mutation in Synechocystis 6803 [Burnap et al. (1994) Biochemistry 33: 13712–13718].  相似文献   

10.
Years of genetic, biochemical, and structural work have provided a number of insights into the oxygen evolving complex (OEC) of Photosystem II (PSII) for a variety of photosynthetic organisms. However, questions still remain about the functions and interactions among the various subunits that make up the OEC. After a brief introduction to the individual subunits Psb27, PsbP, PsbQ, PsbR, PsbU, and PsbV, a current picture of the OEC as a whole in cyanobacteria, red algae, green algae, and higher plants will be presented. Additionally, the role that these proteins play in the dynamic life cycle of PSII will be discussed.  相似文献   

11.
Cross-reconstitution of the extrinsic proteins and Photosystem II (PS II) from a green alga, Chlamydomonas reinhardtii, and a higher plant,Spinacia oleracea, was performed to clarify the differences of binding properties of the extrinsic proteins between these two species of organisms. (1) Chlamydomonas PsbP and PsbQ directly bound to Chlamydomonas PS II independent of the other extrinsic proteins but not to spinach PS II. (2) Chlamydomonas PsbP and PsbQ directly bound to the functional sites of Chlamydomonas PS II independent of the origins of PsbO, while spinach PsbP and PsbQ only bound to non-functional sites on Chlamydomonas PS II. (3) Both Chlamydomonas PsbP and spinach PsbP functionally bound to spinach PS II in the presence of spinach PsbO. (4) While Chlamydomonas PsbP functionally bound to spinach PS II in the presence of Chlamydomonas PsbO, spinach PsbP bound loosely to spinach PS II in the presence of Chlamydomonas PsbO with no concomitant restoration of oxygen evolution. (5) Chlamydomonas PsbQ bound to spinach PS II in the presence of Chlamydomonas PsbP and PsbO or spinach PsbO but not to spinach PS II in the presence of spinach PsbP and Chlamydomonas PsbO or spinach PsbO. (6) Spinach PsbQ did not bind to spinach PS II in the presence of Chlamydomonas PsbO and PsbP. On the basis of these results, we showed a simplified scheme for binding patterns of the green algal and higher plant extrinsic proteins with respective PS II.  相似文献   

12.
PsbP is a membrane extrinsic subunit of Photosystem II (PS II), which is involved in retaining Ca2+ and Cl, two inorganic cofactors for the water-splitting reaction. In this study, we re-investigated the role of N-terminal region of PsbP on the basis of its three-dimensional structure. In previous paper [Ifuku and Sato (2002) Plant Cell Physiol 43: 1244–1249], a truncated PsbP lacking 19 N-terminal residues (Δ19) was found to bind to NaCl-washed PS II lacking PsbP and PsbQ without activation of oxygen evolution at all. Three-dimensional (3D) structure of PsbP suggests that deletion of 19 N-terminal residues would destabilize its protein structure, as indicated by the high sensitivity of Δ19 to trypsin digestion. Thus, a truncated PsbP lacking 15 N-terminal residues (Δ15), which retained core PsbP structure, was produced. Whereas Δ15 was resistant to trypsin digestion and bound to NaCl-washed PS II membranes, it did not show the activation of oxygen evolution. This result indicated that the interaction of 15-residue N-terminal flexible region of PsbP with PS II was important for Ca2+ and Cl retention in PS II, although the 15 N-terminal residues were not essential for the binding of PsbP to PS II. The possible N-terminal residues of PsbP that would be involved in this interaction are discussed.  相似文献   

13.
14.
Various washing procedures were tested on Triton-prepared PS II particles for their ability to remove the 33 kDa extrinsic polypeptide (33 kDa EP) associated with the water-splitting complex. Residual 33 kDa EP was evaluated by Coomassie blue staining of SDS gels of washed particles and by Western blotting with an antibody specific for the 33 kDa EP. A wash with 16 mM Tris buffer, pH 8.3, inhibited water-splitting activity but did not remove all the 33 kDa EP. Sequential washes with 30 mM octyl glucoside (pH 8.0 and 6.8), and a single wash with 0.8 M Tris were also ineffective in removing all the 33 kDa EP. Washing with 1 M CaCl2 was more effective in removing 33 kDa EP; while only a faint trace of protein was detectable by Coomassie-staining, immunoblotting revealed a considerable remainder. The treated particles retained some water-splitting activity. The two step procedure of Miyao and Murata (1984) involving 1 M NaCl and 2.3 M urea was most effective, removing all but a trace of antibody positive protein. Our finding suggests that (1) the degree of depletion of the 33 kDa EP cannot be judged on the basis of Coomassie stain alone, and (2) this extrinsic protein is very tightly associated with the membrane, perhaps via a hydrophilic portion of this otherwise hydrophilic protein. The results also suggest that the presence or absence of the 33 kDa protein per se is not the primary determinant of residual water splitting activity.Abbreviations Chl chlorophyll - DCPIP dichlorophenolindophenol - DPC diphenolcarbazide - DTT dithiothreitol - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MES 2(N-morpholino)ethanesulfonic acid - SDS sodium dodecyl sulfate - Tris Tris(hydroxymethyl)aminomethane  相似文献   

15.
A highly purified oxygen evolving Photosystem II core complex was isolated from PS II membranes solubilized with the non-ionic detergent n-octyl--D-thioglucoside. The three extrinsic proteins (33, 23 and 17 kDa) were functionally bound to the PS II core complex. Selective extraction of the 22, 10 kDa, CP 26 and CP 29 proteins demonstrated that these species are not involved in the binding of the extrinsic proteins (33, 23 and 17 kDa) or the DCMU sensitivity of the Photosystem II complex.Abbreviations Chl chlorophyll - DCBQ 2,6-dichloro-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - LHC light-harvesting complex - MES 2-(N-morpholino)ethanesulfonic acid - OGP n-octyl--d-glucoside - OTG n-octyl--d-thioglucoside - PAGE polyacrylamide gel electrophoresis - PS II Photosystem II - SDS sodium dodecyl sulfate  相似文献   

16.
This communication introduces a new spectrophotometric assay for the detection of peroxide generated by Photosystem II (PS II) under steady state illumination in the presence of an electron acceptor. The assay is based on the formation of an indamine dye in a horseradish peroxidase coupled reaction between 3-(dimethylamino)benzoic acid and 3-methyl-2-benzothiazolinone hydrazone. Using this assay, we found that as the O2 evolution activity of PS II-enriched membrane fragments is decreased by treatments which cause the dissociation of the 33 and/or 23 and 16 kDa extrinsic proteins (i.e., CaCl2-washing, NaCl-washing, lauroylcholine-treatment and ethylene glycol-treatment), light-induced peroxide formation increases. Both the losses of O2 evolution and increases in peroxide formation seen under these conditions are reversed by CaCl2 addition, indicating that the two activities originate from the water-splitting site. However, the increased rates of peroxide formation do not quantitatively match the losses in O2 evolution activity. We suggest that a rapid consumption of the peroxide takes place via a catalase/peroxidase activity at the water-splitting site which competes with both the O2 evolution and peroxide formation reactions. The observed peroxide formation is interpreted as arising from enhanced water accessibility to the catalytic site upon perturbation of the extrinsic proteins which then leads to alternate water oxidation side reactions.Abbreviations Chl chlorophyll - DCBQ 2,6-dichloro-p-benzoquinone - DCMU 3-(3,4-dichloro)-1,1-dimethylurea - DCPIP 1,6-dichlorophenolindophenol - DMAB 3-(dimethylamino)benzoic acid - DMBQ 2,6-dimethyl-p-benzoquinone - DPC diphenylcarbazide - HEPES 4-(2-hydroxyethyl)-1-piperazinesulfonic acid - HMD HRP, MBTH, DMAB - HRP horseradish peroxidase - LCC lauroylcholine chloride - MBTH 3-methyl-2-benzothiazolinone hydrazone - MES 4-morpholinoethanesulfonic acid  相似文献   

17.
Three extrinsic proteins (PsbO, PsbP and PsbQ), with apparent molecular weights of 33, 23 and 17 kDa, bind to the lumenal side of Photosystem II (PS II) and stabilize the manganese, calcium and chloride cofactors of the oxygen evolving complex (OEC). The effect of these proteins on the structure of the tetramanganese cluster, especially their possible involvement in manganese ligation, is investigated in this study by measuring the reported histidine-manganese coupling [Tang et al. (1994) Proc Natl Acad Sci USA 91: 704–708] of PS II membranes depleted of none, two or three of these proteins using ESEEM (electron spin echo envelope modulation) spectroscopy. The results show that neither of the three proteins influence the histidine ligation of manganese. From this, the conserved histidine of the 23 kDa protein can be ruled out as a manganese ligand. Whereas the 33 and 17 kDa proteins lack conserved histidines, the existence of a 33 kDa protein-derived carboxylate ligand has been posited; our results show no evidence for a change of the manganese co-ordination upon removal of this protein. Studies of the pH-dependence of the histidine–manganese coupling show that the histidine ligation is present in PS II centers showing the S2 multiline EPR signal in the pH-range 4.2–9.5. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
The Photosystem II (PS II) manganese stabilizing protein (MSP) possesses characteristics, including thermostability, ascribed to the natively unfolded class of proteins (Lydakis-Simantiris et al. (1999) Biochemistry 38: 404–414). A site-directed mutant of MSP, C28A, C51A, which lacks the -S–S- bridge, also binds to PS II at wild-type levels and reconstitutes oxygen evolution activity [Betts et al. (1996) Biochim Biophys Acta 1274: 135–142], although the mutant protein is even more disordered in solution. Both WT and C28A, C51A MSP aggregate upon heating, but an examination of the effects of protein concentration and pH on heat-induced aggregation showed that each MSP species exhibited greater resistance to aggregation at a pH near their pI (5.2) than do either bovine serum albumin (BSA) or carbonic anhydrase, which were used as model water soluble proteins. Increases in pH above the pI of the MSPs and BSA enhanced their aggregation resistance, a behavior which can be predicted from their charge (MSP) or a combination of charge and stabilization by -S–S- bonds (BSA). In the case of aggregation resistance by MSP, this is likely to be an important factor in its ability to avoid unproductive self-association reactions in favor of formation of the protein–protein interactions that lead to formation of the functional oxygen evolving complex.  相似文献   

19.
Mercury (Hg2+), a sulfhydryl group reactant, wasused to probe structure-function relationships in photosystem II (PSII). In the present work, we investigated the impact of mercury on the polypeptide composition of PSII submembrane preparations. Electrophoretic analysis revealed that the incubation of the membranes in the presence of mercury produces the depletion of a polypeptide of molecular weight of 33 kDa. This polypeptide corresponds to the extrinsic protein EP33 of the oxygen evolving complex removed following urea treatment. However, the two closely related extrinsic polypeptides of 16 and 23 kDa, usually removed concomitantly after urea treatment, remained unaffected after the mercury treatment. These data demonstrated the existence of an intrinsic binding site for EP23. The molecular mode of action of mercury in the oxygen evolving complex of PSII is discussed.  相似文献   

20.
To determine the contribution of charged amino acids to binding with the photosystem II complex (PSII), the amino or carboxyl groups of the extrinsic 18 kDa protein were modified with N- succinimidyl propionate (NSP) or glycine methyl ester (GME) in the presence of a water-soluble carbodiimide, respectively. Based on isoelectric point shift, 4-10 and 10-14 amino groups were modified in the presence of 2 and 4 mM NSP, respectively. Similarly, 3-4 carboxyl groups were modified by reaction with 100 mM GME. Neutralization of negatively charged carboxyl groups with GME did not alter the binding activity of the extrinsic 18 kDa protein. However, the NSP-modified 18 kDa protein, in which the positively charged amino groups had been modified to uncharged methyl esters, failed to bind with the PSII membrane in the presence of the extrinsic 23 kDa protein. This defect can not be attributed to structural or conformational alterations imposed by chemical modification, as the fluorescence and circular dichroism spectra among native, GME- and NSP-modified extrinsic 18 kDa proteins were similar. Thus, we have concluded that the positive charges of lysyl residues in the extrinsic 18 kDa protein are important for its interaction with PSII membranes in the presence of the extrinsic 23 kDa protein. Furthermore, it was found that the negative charges of carboxyl groups of this protein did not participate in binding with the extrinsic 23 kDa protein associated with PSII membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号