首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The importance of C-terminal domain of β-glucosidase (family 3 glycosidase) from Thermotoga maritima, a hyper-thermophilic bacterium was investigated by gene shuffling. The amino acid sequences of β-glucosidases from T. maritima and A. tumefaciens share high degree of homology (approximately 40%). However, despite such a high homology, both enzymes exhibited quite distinct characteristics in terms of their pH and temperature profile and substrate specificities. To investigate the functional role of the C-terminal domains of T. maritima and A. tumefaciens β-glucosidases, three chimeric genes were constructed by shuffling at three selected regions. Out of the three chimeric enzymes, only two (Tm533/626At and Tm630/727At) were catalytically active. Parental and the chimeric enzymes were subsequently characterized for the substrate specificities and their response towards pH and temperature. Our results revealed that C-terminal domain was catalytically important. The study clearly establishes the significance of gene shuffling in probing the structure and function relationship in hyper-thermophilic bacterium and evolving enzymes with altered features.  相似文献   

2.
Thermotoga maritima β-glucosidase consists of three structural regions with 721 amino acids: the N-terminal domain, middle non-homologous region and a C-terminal domain. To investigate the role of these domains in the co-refolding of two fragments into catalytically active form, five sites coding the amino acid residue at 244, 331 in the N-terminal domain, 403 in the non-homologous region, 476 and 521 in the C-terminal domain were selected to split the gene. All the 10 resultant individual fragments were obtained as insoluble inclusion bodies and found to be catalytically inactive. However, the catalytic activity was recovered when the two fragments derived from N-terminal and C-terminal peptides were co-refolded together. It is quite interesting to find that not only the complement polypeptides such as N476/477C but also the truncated combination (N476/522C, amino acid residues from 477 to 521 is truncated) and overlapped combination (N476/245C and N476/404C, amino acid residues from 245 to 476 and from 404 to 476 are overlapped) also gave catalytically active enzymes. Our results showed that folding motifs consisted of the complete N-terminal domain play an important role in the co-refolding of the polypeptides into the catalytically active form.  相似文献   

3.
The microplasmodia of Physarum polycephalum express three types of β-glucosidases: secretory enzyme, a soluble cytoplasmic enzyme and a membrane-bound enzyme. We are interested in the physiological role of three enzymes. We report the sequence of cDNA for membrane β-glucosidase 1, which consists of 3825 nucleotides that includes an open reading frame encoding 1248 amino acids. The molecular weight of membrane β-glucosidase 1 was calculated to be 131,843 based on the predicted amino acid composition. Glycosyl hydrolase family 3 N-terminal and C-terminal domains were found within the N-terminal half of the membrane β-glucosidase 1 sequence and were highly homologous with the primary structures of fungal β-glucosidases. Notably, the C-terminal half of membrane β-glucosidase 1 contains two calx-β motifs, which are known to be Ca2+ binding domains in the Drosophila Na+/Ca2+ exchanger; an RGD sequence, which is known to be a cell attachment sequence; and a transmembrane region. In this way, Physarum membrane β-glucosidase 1 differs from all previously identified family 3 β-glucosidases. In addition to cDNA for membrane β-glucosidase 1, two other distinctly different mRNAs were also isolated. Two sequences were largely identical to cDNA for membrane β-glucosidase 1, but included a long insert sequence having a stop codon, leading to truncation of their products, which could account for other β-glucosidase forms occurred in Physarum poycephalum.

Thus, the membrane β-glucosidase is a new type family 3 enzyme fused with the Calx-β domain. We propose that Calx-β domain may modulate the β-glucosidase activity in response to changes in the Ca2+ concentration.  相似文献   


4.
A repressor element in the 5'-untranslated region of human Pax5 exon 1A   总被引:4,自引:0,他引:4  
Five members of the RecQ helicase family, RECQL, WRN, BLM, RTS and RECQL5, have been found in human and three of them (WRN, BLM and RTS) were disclosed to be the genes responsible for Werner, Bloom and Rothmund–Thomson syndromes, respectively. RECQL5 (RecQ helicase protein-like 5) was isolated as the fifth member of the family in humans through a search of homologous expressed sequence tags. The gene is expressed with at least three alternative splicing products, , β and γ. Here, we isolated mouse RECQL5β and determined the DNA sequence of full-length cDNA as well as the genome organization and chromosome locus. The mouse RECQL5β gene consists of 2949 bp coding 982 amino acid residues. Comparison of amino acid sequence among human (Homo sapiens), mouse (Mus musculus), Drosophila melanogaster and Caenorhabditis elegans RECQL5β homologs revealed three portions of highly conserved regions in addition to the helicase domain. Nineteen exons are dispersed over 40 kbp in the genome and all of the acceptor and donor sites for the splicing of each exon conform to the GT/AG rule. The gene is localized to the mouse chromosome 11E2, which has a syntenic relation to human 17q25.2-q25.3 where human RECQL5β exists. Our genetic characterizations of the mouse RECQL5β gene will contribute to functional studies on the RECQL5β products.  相似文献   

5.
The stability of almond β-glucosidase in five different organic media was evaluated. After 1 hour of incubation at 30°C, the enzyme retained 95, 91, 81, 74 and 56% relative activity in aqueous solutions [30% (v/v)] of dioxane, DMSO, DMF, acetone and acetonitrile, respectively. Transglucosylation involving p-nitrophenyl β-D-glucopyranoside as donor and β-1-N-acetamido-D-glucopyranose, which is a glycosylasparagine mimic, as acceptor was explored under different reaction conditions using almond βglucosidase and cloned Pichia etchellsii β-glucosidase II. The yield of disaccharides obtained in both reactions turned out to be 3%. Both enzymes catalyzed the formation of (1→3)- as well as (1→6)- regioisomeric disaccharides, the former being the major product in cloned β-glucosidase II reaction while the latter predominated in the almond enzyme catalyzed reaction. Use of β-1-N-acetamido-D-mannopyranose and β-1-N-acetamido-2-acetamido-2-deoxy-D-glucopyranose as acceptors in almond β-glucosidase catalyzed reactions, however, did not afford any disaccharide products revealing the high acceptor specificity of this enzyme.  相似文献   

6.
7.
8.
The bacteriochlorophyll a-binding polypeptide B806–866-β was extracted from membranes of the green thermophilic bacterium Chloroflexus aurantiacus with chloroform/methanol/ammonium acetate. Purification of the antenna polypeptide (6.3 kDa) was achieved by chromatography on Sephadex LH-60, Whatman DE-32 and by FPLC. The complete amino acid sequence (53 amino acid residues) was determined. The B806–866-β polypeptide is sequence homologous to the antenna β-polypeptides of purple bacteria (27–40%) and exhibits the characteristic three domain structure of the B870, B800–850 and B800–820 antenna complexes. The two typical His residues, conserved in all antenna β-polypeptides of purple bacteria, were found: His-24 lies within the N-terminal hydrophilic domain and His-42 within the central hydrophobic domain. This polypeptide together with the previously described -polypeptide form the basic structural unit of the B806–866 antenna complex from C. aurantiacus.  相似文献   

9.
Hymenoic acid (1) is a natural compound isolated from cultures of a fungus, Hymenochaetaceae sp., and this structure was determined by spectroscopic analyses. Compound 1 is a novel sesquiterpene, trans-4-[(1′E,5′S)-5′-carboxy-1′-methyl-1′-hexenyl]cyclohexanecarboxylic acid. This compound selectively inhibited the activity of human DNA polymerase λ (pol λ) in vitro, and 50% inhibition was observed at a concentration of 91.7 μM. Compound 1 did not influence the activities of the other seven mammalian pols (i.e., pols , γ, δ, ε, η, ι, and κ), but also showed no effect even on the activity of pol β, which is thought to have a very similar three-dimensional structure to the pol β-like region of pol λ. This compound also did not inhibit the activities of prokaryotic pols and other DNA metabolic enzymes tested. These results suggested that compound 1 could be a selective inhibitor of eukaryotic pol λ. This compound had no inhibitory activities against two N-terminal truncated pol λ, del-1 pol λ (lacking nuclear localization signal (NLS), BRCA1 C-terminus (BRCT) domain [residues 133–575]), and del-2 pol λ (lacking NLS, BRCT, domain and proline-rich region [residues 245–575]). The compound 1-induced inhibition of intact pol λ activity was non-competitive with respect to both the DNA template-primer and the dNTP substrate. On the basis of these results, the pol λ inhibitory mechanism of compound 1 is discussed.  相似文献   

10.
FNR regulates the expression of target genes in response to anaerobiosis. It resembles the catabolite gene activator or cAMP-receptor protein (CRP) except for the presence of an N-terminal cysteine cluster, which may form a redox-sensing iron-binding site. Site-directed mutagenesis has shown that 3 of the 4 cysteine residues in the N-terminal cluster (Cys-20, -23 and -29, but not Cys-16) and the only other cysteine residue (Cys-122), are essential for the normal activation and repression of PNR-dependent promoters. Deletion of residues Pro-3-Arg-9 (inclusive) had no effect, but FNR was inactivated by a frameshift extending through the C-terminal DNA-binding domain. Four independent in vivo mutants contained identical Gly-96→Asp substitutions, which may inactivate FNR by distorting a sharp turn between β-strands in the predicted structure.  相似文献   

11.
12.
13.
Cytochrome P450(11β) is deeply involved in the final steps of biosynthesis of mineralocorticoids. This paper deals with following issues about this enzyme. (1) The structure and function of the enzymes of various animal species are discussed. By making alignment of amino acid sequences of the enzymes, we identified peptide domains essential for the enzyme actions such as a putative steroid binding domain and a heme binding region. Estimates of molecular similarity among the P450(11β) family enzymes suggested that the enzymes having both 11β-hydroxylation activity and aldosterone (ALDO) synthetic activity of certain animals such as frog, cattle and pig are more similar to the ALDO synthases of the other animals, such as rat, mouse and human, than the 11β-hydroxylases of these animals. (2) The molecular nature of the P450(11β) family enzymes of genetically hypertensive rats as well as adrenal regeneration hypertension (ARH) rats is examined. (i) Mutation was found in the P450(11β) gene of Dahl's salt-resistant normotensive rat. Steroidogenic activity expressed by the mutated gene accounted well for abnormal plasma levels of steroid hormones in this rat. (ii) 11β-, 18- and 19-Hydroxylation activities of adrenal mitochondria prepared from spontaneously hypertensive rat (SHR), Wistar-Kyoto rat (WKY), and stroke-prone (SP)-SHR were not significantly different from each other. Levels of mRNA of ALDO synthase in adrenal glands of 50-week-old SHR was significantly lower than those of 10-week-old SHR, WKY and SHR-SP. (iii) No significant difference in 19-hydroxylation activity was found between adrenal mitochondria prepared from ARH rat and those from control rat. The level of message of ALDO synthase was lower in adrenal glands of ARH rat.  相似文献   

14.
We have previously demonstrated that the C-terminal regions of the rat and human pancreatic polypeptide (PPP) precursors exhibit a high degree of divergence, whereas the N-terminal regions are highly conserved. This blend of structural conservation and divergence in the precursors appears to be caused by splice junction sliding and translational frameshift in the 3'-region of the PPP gene [Yonekura et al., J. Biol. Chem. 263 (1988) 2990–2997]. In the present study, we determined the nucleotide (nt) sequences of the chicken PPP (cPPP) cDNA and gene, and compared them with those of the mammals. In cPPP, the C-terminal region of the precursor is quite heterologous with respect to the rat (rPPP) and human (hPPP) precursors, and this heterogeneity is accentuated by the large deletion in exon 3 of cPPP. Furthermore, mutational accumulation during evolution caused the structural organization of the 3'-region of cPPP to change; cPPP is terminated in exon 3, whereas rPPP and hPPP are terminated in exon 4. Thus, our previous observation regarding the possibility of ‘mosaic evolution’ [Yamamoto et al., J. Biol. Chem. 261 (1986) 6156–6159] of PPP has been extended and confirmed by this study. Available evidence suggests that ‘mosaic evolution’ is a phenomenon unique to PPP, and not to the genes encoding the other members of the PPP family, neuropeptide-Y and peptide-YY.  相似文献   

15.
The Sulfolobus solfataricus β-glycosidase (Sβgly) is a thermostable and thermophilic glycosyl-hydrolase with broad substrate specificity. The enzyme hydrolizes β-D-gluco-, fuco-, and galactosides, and a large number of /Winked glycoside dimers and oligomers, linked β1-3, β1-4, and β1-6, It is able to hydrolize oligosaccharides with up to 5 glucose residues. Furthermore, it is also able to promote transglycosylation reactions. The corresponding gene has been cloned and overexpressed both in yeast and Escherichia coli. Based on sequence and functional data, the Sβgly has been assigned to the so-called BGA family of glycosyl-hydrolases, including β-glycosidases, β-galactosidases and phosho-β-galactosidases from mesophilic and thermophilic organisms of the three domains. The Sβgly has been crystallized and the resolution of its structure is in progress. Because of its special properties, the enzymes has considerable biotechnological potential.  相似文献   

16.
17.
The thermophilic fungus Talaromyces emersonii CBS 814.70 is capable of growth on lactose containing media. The cell protein produced towards the end of growth on that substrate is similar to those levels produced during growth of the organism on cellulose. During growth of the organism on lactose, cellulase is secreted into the medium. Analysis of the components of the cellulase system shows that both β-glucosidase and endoglucanase enzymes are produced. Levels of β-glucosidase produced during growth of the organism on lactose are well in excess of levels of that enzyme produced at any time during growth of the organism on cellulose, and we have shown that the form of that enzyme produced during growth on lactose is β-glucosidase III (BG-III). Analysis of the forms of endoglucanase indicates that not all forms of enzyme produced during growth on cellulose are produced during growth on lactose. β-Galactosidase activity was found to be present in the mycelial associated fraction, though our evidence suggests that this may simply be an incidental activity of the cell associated form of β-glucosidase IV (BG-IV).  相似文献   

18.
The genomic organization of genes encoding β-1,4-endoglucanases (cellulases) from the plant-parasitic cyst nematodes Heterodera glycines and Globodera rostochiensis (HG-eng1, Hg-eng2, GR-eng1, and GR-eng2) was investigated. HG-eng1 and GR-eng1 both contained eight introns and structural domains of 2151 and 2492 bp, respectively. HG-eng2 and GR-eng2 both contained seven introns and structural domains of 2324 and 2388 bp, respectively. No significant similarity in intron sequence or size was observed between HG-eng1 and HG-eng2, whereas the opposite was true between GR-eng1 and GR-eng2. Intron positions among all four cyst nematode cellulase genes were conserved identically in relation to the predicted amino acid sequence. HG-eng1, GR-eng1, and GR-eng2 had several introns demarcated by 5′-GC…AG-3′ in the splice sites, and all four nematode cellulase genes had the polyadenylation and cleavage signal sequence 5′-GAUAAA-3′—both rare occurences in eukaryotic genes. The 5′- flanking regions of each nematode cellulase gene, however, had signature sequences typical of eukaryotic promoter regions, including a TATA box, bHLH-type binding sites, and putative silencer, repressor, and enhancer elements. Database searches and subsequent phylogenetic comparison of the catalytic domain of the nematode cellulases placed the nematode genes in one group, with Family 5, subfamily 2, glycosyl hydrolases from Scotobacteria and Bacilliaceae as the most homologous groups. The overall amino acid sequence identity among the four nematode cellulases was from 71 to 83%, and the amino acid sequence identity to bacterial Family 5 cellulases ranged from 33 to 44%. The eukaryotic organization of the four cyst nematode cellulases suggests that they share a common ancestor, and their strong homology to prokaryotic glycosyl hydrolases may be indicative of an ancient horizontal gene transfer.  相似文献   

19.
We propose models for in vitro grown mammalian prion protein fibrils based upon left handed beta helices formed both from the N-terminal and C-terminal regions of the proteinase resistant infectious prion core. The C-terminal threading onto a β-helical structure is almost uniquely determined by fixing the cysteine disulfide bond on a helix corner. In comparison to known left handed helical peptides, the resulting model structures have similar stability attributes including relatively low root mean square deviations in all atom molecular dynamics, substantial side-chain-to-side-chain hydrogen bonding, good volume packing fraction, and low hydrophilic/hydrophobic frustration. For the N-terminus, we propose a new threading of slightly more than two turns, which improves upon the above characteristics relative to existing three turn β-helical models. The N-terminal and C-terminal beta helices can be assembled into eight candidate models for the fibril repeat units, held together by large hinge (order 30 residues) domain swapping, with three amenable to fibril promoting domain swapping via a small (five residue) hinge on the N-terminal side. Small concentrations of the metastable C-terminal β helix in vivo might play a significant role in templating the infectious conformation and in enhancing conversion kinetics for inherited forms of the disease and explain resistance (for canines) involving hypothesized coupling to the methionine 129 sulfur known to play a role in human disease.Key words: prion, amyloid fibril, domain swap, beta helix, computational biology  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号