首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potassium (K) has major biophysical and biochemical functions in plant physiology. However, plant responses to K deficiency at the whole plant level are not always clearly related to these well-known functions of K at the cellular level. The objective of this study was to investigate the morphological response of maize to increasing K deficiency and test to what extent this morphological response can be interpreted in the light of the simple model proposed by Leigh and Wyn Jones, suggesting that biophysical functions are affected first. Maize was grown in a greenhouse under hydroponic conditions. For half of the plants, K was removed from the nutrient solution from the 4th visible leaf stage. The K content in the starved plants dropped from 100 to 30 mM, and was not fully compensated by an increase in other cations. Leaf elongation rates were reduced on K-deprived plants, whereas axile root elongation rates were slightly increased between 45°C days and 75°C days after starvation, and reduced thereafter. During the first part of the starvation period, i.e. under moderate K deficiency (K concentration above 40 mM), all measured variables suggest that the whole plant response may be interpreted as the consequence of the reduced leaf growth, probably due to insufficient turgor pressure or cell-wall extensibility. This general pattern of response is in agreement with the model of Leigh and Wyn Jones. However, during the second part of the starvation period, i.e. under more severe K deficiency (K concentration below 40 mM), malfunction of additional physiological processes (mostly related to biochemical functions like photosynthetic processes) must be considered to explain the plant morphological response.  相似文献   

2.
Most existing water and nutrient uptake models are based on the assumption that roots are evenly distributed in the soil volume. This assumption is not realistic for field conditions, and significantly alters water or nutrient uptake calculations. Therefore, development of models of root system growth that account for the spatial distribution of roots is necessary.The objective of this work was to test a three dimensional architectural model of the maize root system by comparing simulated horizontal root maps with observed root maps obtained from the field. The model was built using the current knowledge on maize root system morphogenesis and parameters obtained under field conditions. Simulated root maps (0.45 × 0.75 m) of horizontal cross sections at 3 depths and 3 dates were obtained by using the model for a plant population. Actual root maps were obtained in a deep, barrier-free clay-loamy soil by digging pits, preparing selected horizontal planes and recording root contacts on plastic sheets.Results showed that both the number of cross-sections of axile roots, and their spatial distribution characterized with the R-index value of Clark and Evans (1954), were correctly accounted for by the model at all dates and depths. The number of cross-sections of laterals was also correctly predicted. However, laterals were more clustered around axile roots on simulated root maps than on observed root maps. Although slight discrepancies appeared between simulated and observed root maps in this respect, it was concluded that the model correctly accounted for the general colonization pattern of the soil volume by roots under a maize crop.  相似文献   

3.
Rates of extension, numbers of laterals and rates of respiration were measured in different fractions of wheat ( Triticum aestivum L. cv. Alexandria) roots following changes in carbohydrate supply. The supply of carbohydrate was varied by selective pruning and exogenously fed sugars. Pruning shoots to a single leaf (leaf-pruning) reduced the rate of O2 uptake by intact roots. Rates were not stimulated by shortterm feeding of sucrose (25 m M ), but were stimulated by the uncoupler p -trifluoro-methoxy(carbonylcyanide)phenylhydrazone (FCCP). Feeding glucose to roots of leaf-pruned and non-pruned plants for 16–24 h increased the rate of O2 uptake. It is concluded that respiration is under fine control by adenylates and coarse control by carbohydrate supply, with carbohydrates regulating directly the rate of some energy consuming process(es). These energy consuming processes are located in growing tissue fractions. Feeding glucose to leaf-pruned and non-pruned plants increased rates of O2 uptake in seminal root tips, the zone of developing lateral primordia and mature root sections with elongating laterals, but had no effect on mature sections from which the laterals had been excised. Leaf-pruning reduced the extension rate of seminal axes and first-order laterals when measured over 24 h. Feeding glucose to roots from the time of pruning increased the rate, but did not fully restore it to control values. Pruning roots to a single seminal axis (root-pruning) and feeding glucose to non-pruned plants had no effect on the extension rate of the seminal axis or its laterals over this time period, although rates were increased by root-pruning when measured over 3 days. The number of lateral root primordia was reduced by leaf-pruning and increased by root-pruning and feeding glucose. The results are discussed in terms of the role of carbohydrates in the control of root growth and branching.  相似文献   

4.
Hordeum maritimum (Poacea) is a facultative halophyte potentially useful for forage production in saline zones. Here, we assessed whether moderate NaCl-salinity can modify the plant response to phosphorus (P) shortage. Plants were cultivated for 55 days under low or sufficient P supply (5 or 60 μmol plant−1 week−1 KH2PO4, respectively), with or without 100 mM NaCl. When individually applied, salinity and P deficiency significantly restricted whole-plant growth, with a more marked effect of the latter stress. Plants subjected to P deficiency showed a significant increase in root growth (as length and dry weight) and root/shoot DW ratio. Enhanced root growth and elongation presumably correspond to the well-known root adaptive response to mineral deficiency. However, leaf relative water content, leaf P concentration, and leaf gas exchange parameters were significantly restricted. The interactive effects of salinity and P deficiency were not added one to another neither on whole plant biomass nor on plant nutrient uptake. Indeed, 100 mM NaCl-addition to P-deficient plants significantly restored the plant growth and improved CO2 assimilation rate, root growth, K+/Na+ ratio and leaf proline and soluble sugar concentrations. It also significantly enhanced leaf total antioxidant capacity and leaf anthocyanin concentration. This was associated with significantly lower leaf osmotic potential, leaf Na+ and malondialdehyde (MDA) concentration. Taken together, these results suggest that mild salinity may mitigate the adverse effects of phosphorus deficiency on H. maritimum by notably improving the plant photosynthetic activity, the osmotic adjustment capacity, the selective absorption of K+ over Na+ and antioxidant defence.  相似文献   

5.
Sun  Haiguo  Zhang  Fusuo  Li  Long  Tang  Caixian 《Plant and Soil》2002,245(2):233-238
Effects of localized phosphate supply on the seedling growth of wheat (Triticum aestivum L.) genotypes 81(85)5-3-3-3 (P-efficient) and NC37 (P-inefficient) were studied using a device which allowed only 3 cm length of root segment to be exposed to phosphate treatment. Localized supply of 0 mmol P L–1 and the rest of root supplied with 0.1 mmol P L–1 (HLH), increased the shoot height, leaf area, root/shoot ratio for 81(85)5-3-3-3, length of root and root axis for NC37, and root axis length and density of first-laterals for both the genotypes, compared to plants with the whole root system in P-sufficient solution (HHH). This suggested that above- and below-ground morphological parameters of wheat were promoted by a localized P-deficiency, presumably via a P deficiency signal. There was a significant difference in the number of first-order laterals between the two wheat genotypes when most of the roots were grown without P and only 3 cm length of root was supplied with 0.3 mmol P L–1. The relationship between the number and density of 2nd-order lateral roots and level of local P supply was quadratic. Maximum number and density of 2nd-order lateral roots were obtained with a localized P supply of 0.70 mmol L–1.  相似文献   

6.
Astolfi  S.  De Biasi  M.G.  Passera  C. 《Photosynthetica》2001,39(2):177-181
The effect of sulphur deprivation and irradiance (180 and 750 µmol m–2 s–1) on plant growth and enzyme activities of carbon, nitrogen, and sulphur metabolism were studied in maize (Zea mays L. Pioneer cv. Latina) plants over a 15-d-period of growth. Increase in irradiance resulted in an enhancement of several enzyme activities and generally accelerated the development of S deficiency. ATP sulphurylase (ATPs; EC 2.7.7.4) and o-acetylserine sulphydrylase (OASs; EC 4.2.99.8) showed a particular and different pattern as both enzymes exhibited maximum activity after 10 d from the beginning of deprivation period. Hence in maize leaves the enzymes of C, N, and S metabolism were differently regulated during the leaf development by irradiance and sulphur starvation.  相似文献   

7.
Phosphorus, one of the essential elements for plants, is often a limiting nutrient in soils. Low phosphate (Pi) availability induces sugar-dependent systemic expression of genes and modulates the root system architecture (RSA). Here, we present the differential effects of sucrose (Suc) and auxin on the Pi deficiency responses of the primary and lateral roots of Arabidopsis (Arabidopsis thaliana). Inhibition of primary root growth and loss of meristematic activity were evident in seedlings grown under Pi deficiency with or without Suc. Although auxin supplementation also inhibited primary root growth, loss of meristematic activity was observed specifically under Pi deficiency with or without Suc. The results suggested that Suc and auxin do not influence the mechanism involved in localized Pi sensing that regulates growth of the primary root and therefore delineates it from sugar-dependent systemic Pi starvation responses. However, the interaction between Pi and Suc was evident on the development of the lateral roots and root hairs in the seedlings grown under varying levels of Pi and Suc. Although the Pi+ Suc- condition suppressed lateral root development, induction of few laterals under the Pi- Suc- condition point to increased sensitivity of the roots to auxin during Pi deprivation. This was supported by expression analyses of DR5uidA, root basipetal transport assay of auxin, and RSA of the pgp19 mutant exhibiting reduced auxin transport. A significant increase in the number of lateral roots under the Pi- Suc- condition in the chalcone synthase mutant (tt4-2) indicated a potential role for flavonoids in auxin-mediated Pi deficiency-induced modulation of RSA. The study thus demonstrated differential roles of Suc and auxin in the developmental responses of ontogenetically distinct root traits during Pi deprivation. In addition, lack of cross talk between local and systemic Pi sensing as revealed by the seedlings grown under either the Pi- Suc- condition or in the heterogeneous Pi environment highlighted the coexistence of Suc-independent and Suc-dependent regulatory mechanisms that constitute Pi starvation responses.  相似文献   

8.
缺氮和复氮对菘蓝幼苗生长及氮代谢的影响   总被引:1,自引:0,他引:1  
对基质育苗后水培的菘蓝进行缺氮与复氮处理,分析其生长情况及氮代谢产物含量的变化,探讨缺氮和复氮对菘蓝幼苗生长及氮代谢的影响,以提高菘蓝产量和品质以及栽培过程中的氮素利用效率。结果显示:(1)正常供氮条件下,菘蓝幼苗的叶绿素含量、谷氨酰胺合成酶(GS)活性、硝态氮含量、靛玉红含量为最高,而其株高、主根直径、根的鲜重与干重、叶的鲜重与干重、根系活力均最小。(2)缺氮处理增加了菘蓝幼苗的主根直径和根干重,提高其根系活力和硝酸还原酶(NR)活性,促进游离氨基酸在叶中的积累;但降低了GS的活性,也降低了叶中硝态氮、可溶性蛋白、靛玉红及根中游离氨基酸的含量;缺氮对叶中靛蓝的含量无明显影响。(3)复氮处理增加了菘蓝幼苗的株高、主根长、根鲜重、叶鲜重、叶干重,提高了其根系活力,降低了NR和GS的活性;与对照相比,复氮降低了叶中硝态氮含量,提高了叶中可溶性蛋白、靛蓝及根中游离氨基酸的含量,但对叶中游离氨基酸和靛玉红含量影响较小。研究表明,缺氮后再复氮有利于菘蓝幼苗叶的生长,同时有利于增加其叶内靛蓝含量,从而提高其产量和品质。  相似文献   

9.
Strigolactones (SLs) are important ex-planta signalling molecules in the rhizosphere, promoting the association with beneficial microorganisms, but also affecting plant interactions with harmful organisms. They are also plant hormones in-planta, acting as modulators of plant responses under nutrient-deficient conditions, mainly phosphate (Pi) starvation. In the present work, we investigate the potential role of SLs as regulators of early Pi starvation signalling in plants. A short-term pulse of the synthetic SL analogue 2′-epi-GR24 promoted SL accumulation and the expression of Pi starvation markers in tomato and wheat under Pi deprivation. 2′-epi-GR24 application also increased SL production and the expression of Pi starvation markers under normal Pi conditions, being its effect dependent on the endogenous SL levels. Remarkably, 2′-epi-GR24 also impacted the root metabolic profile under these conditions, promoting the levels of metabolites associated to plant responses to Pi limitation, thus partially mimicking the pattern observed under Pi deprivation. The results suggest an endogenous role for SLs as Pi starvation signals. In agreement with this idea, SL-deficient plants were less sensitive to this stress. Based on the results, we propose that SLs may act as early modulators of plant responses to P starvation.  相似文献   

10.
11.
Phosphate (Pi) deficiency in soils is a major limiting factor for plant growth. In response to Pi deprivation, one prominent metabolic adaptation in plants is the decrease in membrane phospholipids that consume approximately one‐third cellular Pi. The level of two phospholipid‐hydrolyzing enzymes, phospholipase Dζ2 (PLDζ2) and non‐specific phospholipase C4 (NPC4), is highly induced in Pi‐deprived Arabidopsis. To determine the role of PLDζ2 and NPC4 in plant growth under Pi limitation, Arabidopsis plants deficient in both PLDζ2 and NPC4 (npc4pldζ2) were generated and characterized. Lipid remodeling in leaves and roots was analyzed at three different durations of Pi deficiency. NPC4 affected lipid changes mainly in roots at an early stage of Pi deprivation, whereas PLDζ2 exhibited a more overt effect on lipid remodeling in leaves at a later stage of Pi deprivation. Pi deficiency‐induced galactolipid increase and phospholipid decrease were impeded in pldζ2 and npc4pldζ2 plants. In addition, seedlings of npc4pldζ2 had the same root hair density as pldζ2 but shorter root hair length than pldζ2 in response to Pi deficiency. The loss of NPC4 decreased root hair length but had no effect on root hair density. These data suggest that PLDζ2 and NPC4 mediate the Pi deprivation‐induced lipid remodeling in a tissue‐ and time‐specific manner. PLDζ2 and NPC4 have distinctively different roles in root hair growth and development in response to Pi deprivation; PLDζ2 negatively modulates root hair density and length, whereas NPC4 promotes root hair elongation.  相似文献   

12.
In this paper we firstly show some general responses of biomass partitioning upon nitrogen deprivation. Secondly, these responses are explained in terms of allocation of carbon and nitrogen, photosynthesis and respiration, using a simulation model. Thirdly, we present a hypothesis for the regulation of biomass partitioning to shoots and roots.Shortly after nitrogen deprivation, the relative growth rate (RGR) of the roots generally increases and thereafter decreases, whereas that of the shoot decreases immediately. The increased RGR of the root and decreased RGR of the shoot shortly after a reduction in the nitrogen supply, cause the root weight ratio (root weight per unit plant weight) to increase rapidly.We showed previously that allocation of carbon and nitrogen to shoots and roots can satisfactorily be described as a function of the internal organic plant nitrogen concentration. Using these functions in a simulation model, we analyzed why the relative growth rate of the roots increases shortly after a reduction in nitrogen supply. The model predicts that upon nitrogen deprivation, the plant nitrogen concentration and the rate of photosynthesis per unit plant weight rapidly decrease, and the allocation of recently assimilated carbon and nitrogen to roots rapidly increases. Simulations show that the increased relative growth rate of the root upon nitrogen deprivation is explained by decreased use of carbon for root respiration, due to decreased carbon costs for nitrogen uptake. The stimulation of the relative growth rate of the root is further amplified by the increased allocation of carbon and nitrogen to roots. Using the simple relation between the plant nitrogen concentration and allocation, the model describes plant responses quite realistically.Based on information in the literature and on our own experiments we hypothesize that allocation of carbon is mediated by sucrose and cytokinins. We propose that nitrogen deprivation leads to a reduced cytokinin production, a decreased rate of cytokinin export from the roots to the shoot, and decreased cytokinin concentrations. A reduced cytokinin concentration in the shoot represses cell division in leaves, whereas a low cytokinin concentration in roots neutralizes the inhibitory effect of cytokinins on cell division. A reduced rate of cell division in the leaves leads to a reduced unloading of sucrose from the phloem into the expanding cells. Consequently, the sucrose concentration in the phloem nearby the expanding cells increases, leading to an increase in turgor pressure in the phloem nearby the leaf's division zone. In the roots, cell division continues and no accumulation of sugars occurs in dividing cells, leading to only marginal changes in osmotic potential and turgor pressure in the phloem nearby the root's cell division zone. These changes in turgor pressure in the phloem of roots and sink leaves affect the turgor pressure gradients between source leaf-sink leaf and source leaf-root in such a way that relatively more carbohydrates are exported to the roots. As a consequence RWR increases after nitrogen deprivation. This hypothesis also explains the strong relationship between allocation and the plant nitrogen status.  相似文献   

13.
Soybean (Glycine max) is an important oil crop in agricultural production, but low phosphorus (P) availability limits soybean growth and production. Expansin is a family of plant cell wall proteins and involved in a variety of physiological processes, including cell division and enlargement, root growth and leaf development. To test the potential effects of expansins on crop production, we have developed soybean transgenic plants overexpressing a soybean β‐expansin gene GmEXPB2, which was significantly induced by phosphate (Pi) starvation. The results indicated that constitutive overexpression of GmEXPB2 promoted leaf expansion, sequentially stimulated root growth and consequently resulted in improved P efficiency in the transgenic plants under P‐limited conditions in hydroponics. In particular, when tested in calcareous (CS) and acid soils (AS), the two GmEXPB2 transgenic soybean lines showed above 25 and 40% increases in plant dry weight and P content, respectively to wild‐type plants in low‐P CS, but not in AS. To our knowledge, this is the first report in which improvement of P efficiency could be achieved through constitutive overexpression of an endogenous EXPB gene in soybean. These findings suggest that genetic modification of root and leaf traits might be a suitable strategy for improving crop production in low‐P soils.  相似文献   

14.
Developmental plasticity is one main adaptative response of plants to the availability of nutrients. In the present study, the naturally occurring variation existing in Arabidopsis for the growth responses to phosphate availability was investigated. Initially details of the effects of phosphate starvation for the four currently used accessions Cvi, Col, Ler and Ws were compared. A set of 10 growth parameters, concerning the aerial part and the root system, was measured in both single‐point and time‐course experiments. The length of the primary root and the number of laterals were found to be consistently reduced by phosphate starvation in all four accessions. These two robust parameters were selected to further screen a set of 73 accessions originating from a wide range of habitats. One‐half of the accessions showed also a reduced primary root and less lateral roots when phosphate‐starved, and 25% were not responsive to phosphate availability. For the last quarter of accessions, phosphate starvation was found to affect only one of the two growth parameters, indicating the occurrence of different adaptative strategies. These accessions appear to offer new tools to investigate the molecular basis of the corresponding growth responses to phosphate availability.  相似文献   

15.
Plénet  D.  Mollier  A.  Pellerin  S. 《Plant and Soil》2000,224(2):259-272
Biomass accumulation by crops depends on both light interception by leaves and on the efficiency with which the intercepted light is used to produce dry matter. Our aim was to identify which of these processes were affected for maize (Zea mays L., cv Volga) field crops grown under phosphorus (P) deficiency. In the preceding paper (Plénet et al., 2000), it was shown that P deficiency severely reduced leaf growth. In this paper, the effect of P deficiency on the radiation-use efficiency (RUE) was investigated. The experimental work was carried out in 1995, 1996 and 1997 on a long-term P fertilisation trial located on a sandy soil in the south-west of France. Three P fertilisation regimes have been applied since 1972: no- P (P0 treatment) and different rates of P fertiliser (P1.5: 1.5 times the grain P export and P3: 3 times the grain P export). These fertilisation regimes have led to contrasted levels of soil P supply. Only slight differences were observed between the P1.5 and P3 treatment for above-ground biomass accumulation and grain yield. Conversely the grain yield was significantly reduced in P0 (–11%). Above-ground biomass production was severely reduced, with the maximum difference between treatment (–60% in P0) occurring between 400 and 600 °C days after sowing. The lower biomass production in P0 was accounted for by the reduced amount of photosynthetically active radiation (PAR) absorbed by the canopy, which was itself the consequence of the reduced leaf area index (see Plénet et al., 2000). The calculated RUE were found to depend on the plant stage, especially during the pre-flowering period, and on the average air temperature. No effect of P deficiency was observed on the calculated RUE, even during the period when above-ground biomass accumulation was the most severely reduced. These results obtained in field crop conditions strengthen the idea that P deficiency affects plant growth, especially leaf growth, earlier and to a greater extent than photosynthesis per unit leaf area.  相似文献   

16.
Hartig net structure and ontogeny were compared in ectomycorrhizae synthesized between the broad host range fungus, Laccaria bicolor and two hosts, Betula alleghaniensis and Pinus resinosa. In B. alleghaniensis, the Hartig net was present in the epidermis of the three ectomycorrhizal types formed, fast-growing first-order laterals with proximal colonization, clavate second-order laterals, and nonclavate second-order laterals. Root hair-fungus interactions occurred in this association. In P. resinosa, the Hartig net developed in epidermal and cortical cell layers of monopodial and dichotomously branched first-order laterals. Short monopodial laterals exhibited a mantle only. Fungal hyphae in the Hartig net exhibited a complex labyrinthine mode of growth in ectomycorrhizae of both tree species.  相似文献   

17.
den Hertog  J.  Stulen  I.  Lambers  H. 《Plant Ecology》1993,104(1):369-378
The response ofPlantago major ssp,pleiosperma plants, grown on nutrient solution in a climate chamber, to a doubling of the ambient atmospheric CO2 concentration was investigated. Total dry matter production was increased by 30% after 3 weeks of exposure, due to a transient stimulation of the relative growth rate (RGR) during the first 10 days. Thereafter RGR returned to the level of control plants. Photosynthesis, expressed per unit leaf area, was stimulated during the first two weeks of the experiment, thereafter it dropped and nearly reached the level of the control plants. Root respiration was not affected by increased atmospheric CO2 levels, whereas shoot, dark respiration was stimulated throughout the experimental period. Dry matter allocation over leaves stems and roots was not affected by the CO2 level. SLA was reduced by 10%, which can partly be explained by an increased dry matter content of the leaves. Both in the early and later stages of the experiment, shoot respiration accounted for a larger part of the carbon budget in plants grown at elevated atmospheric CO2. Shifts in the total carbon budget were mainly due to the effects on shoot respiration. Leaf growth accounted for nearly 50% of the C budget at all stages of the experiment and in both treatments.Abbreviations LAR leaf area ratio - LWR leaf weight ratio - RGR relative growth rate - R/S root to shoot ratio - RWR root weight ratio - SLA specific leaf area - SWR stem weight ratio  相似文献   

18.
Plants experience unique challenges due to simultaneous life in two spheres, above- and belowground. Interactions with other organisms on one side of the soil surface may have impacts that extend across this boundary. Although our understanding of plant–herbivore interactions is derived largely from studies of leaf herbivory, belowground root herbivores may affect plant fitness directly or by altering interactions with other organisms, such as pollinators. In this study, we investigated the effects of leaf herbivory, root herbivory, and pollination on plant growth, subsequent leaf herbivory, flower production, pollinator attraction, and reproduction in cucumber (Cucumis sativus). We manipulated leaf and root herbivory with striped cucumber beetle (Acalymma vittatum) adults and larvae, respectively, and manipulated pollination with supplemental pollen. Both enhanced leaf and root herbivory reduced plant growth, and leaf herbivory reduced subsequent leaf damage. Plants with enhanced root herbivory produced 35% fewer female flowers, while leaf herbivory had no effect on flower production. While leaf herbivory reduced the time that honey bees spent probing flowers by 29%, probing times on root-damaged plants were over twice as long as those on control plants. Root herbivory increased pollen limitation for seed production in spite of increased honey bee preference for plants with root damage. Leaf damage and hand-pollination treatments had no effect on fruit production, but plants with enhanced root damage produced 38% fewer fruits that were 25% lighter than those on control plants. Despite the positive effect of belowground damage on honey bee visitation, root herbivory had a stronger negative effect on plant reproduction than leaf herbivory. These results demonstrate that the often-overlooked effects of belowground herbivores may have profound effects on plant performance.  相似文献   

19.
Alfalfa is sensitive to waterlogging, and its yields are significantly reduced under this condition. We investigated the effects of soil flooding on free abscisic acid (ABA) accumulation in shoots and roots of alfalfa in relation to plant growth and stomatal conductance responses. The production of dry matter in alfalfa was significantly affected by flooding mainly as a result of a rapid reduction in root growth. Shoot dry matter accumulation was maintained during the first 10 d of treatment and started to decline thereafter. Foliar concentration of the major mineral elements (N, P, K) was reduced by flooding, whereas only K concentration decreased in roots of flooded plants. Regrowth declined with duration of flooding and was less than 50% of controls after 2 weeks. While no changes in ABA concentration could be detected in flooded roots, an increase was noted within a few days in leaves when compared to unflooded controls. This increase in free ABA coincided with the accumulation of large quantities of starch in leaves and a rapid decline in leaf stomatal conductance. Our results support the suggestion that leaf ABA originates from the leaf itself and may be accumulating along with starch as a result of reduced translocation to the roots. Our observation of large accumulations of sucrose in flooded roots agrees with previous reports that supply of carbohydrates is not a limiting factor to root anaerobic metabolism in flooded alfalfa.  相似文献   

20.
Development of the root system, appearance of nodules, and relationshipsbetween these two processes were studied on pea (Pisum sativumL., cv. Solara). Plants were grown in growth cabinets for 4weeks on a nitrogen—free nutrient solution inoculatedwith Rhizobium leguminosarum. Plant stages, primary root length,distance from the primary root base to the most distal first-orderlateral root, and distance from the root base to the most distalnodule, were recorded daily. Distribution of nodules along theprimary root and distribution of laterals were recorded by samplingroot systems at two plant stages. Primary root elongation ratewas variable, and declined roughly in conjunction with the exhaustionof seed reserves. First-order laterals appeared acropetallyon the primary root. A linear relationship was found betweenthe length of the apical unbranched zone and root elongationrate, supporting the hypothesis of a constant time lag betweenthe differentiation of first-order lateral's primordia and theiremergence. Decline of the primary root elongation rate was precededby a reduction in density and length of first-order laterals.Nodules appeared not strictly but roughly acropetally on theprimary root. A linear relationship was found between the lengthof the apical zone without nodule and root elongation rate,supporting the hypothesis of a constant time lag between infectionand appearance of a visible nodule. A relationship was foundbetween the presence/absence of nodules on a root segment andthe root elongation rate between infection and appearance ofnodules on the considered root segment. Regulation of both processesby carbohydrate availability, as a causal mechanism, is proposed. Key words: Pisum sativum L, root system, nodules  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号