首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial UDP-N-acetylglucosamine 2-epimerase catalyzes the reversible epimerization at C-2 of UDP-N-acetylglucosamine (UDP-GlcNAc) and thereby provides bacteria with UDP-N-acetylmannosamine (UDP-ManNAc), the activated donor of ManNAc residues. ManNAc is critical for several processes in bacteria, including formation of the antiphagocytic capsular polysaccharide of pathogens such as Streptococcus pneumoniae types 19F and 19A. We have determined the X-ray structure (2.5 A) of UDP-GlcNAc 2-epimerase with bound UDP and identified a previously unsuspected structural homology with the enzymes glycogen phosphorylase and T4 phage beta-glucosyltransferase. The relationship to these phosphoglycosyl transferases is very intriguing in terms of possible similarities in the catalytic mechanisms. Specifically, this observation is consistent with the proposal that the UDP-GlcNAc 2-epimerase-catalyzed elimination and re-addition of UDP to the glycal intermediate may proceed through a transition state with significant oxocarbenium ion-like character. The homodimeric epimerase is composed of two similar alpha/beta/alpha sandwich domains with the active site located in the deep cleft at the domain interface. Comparison of the multiple copies in the asymmetric unit has revealed that the epimerase can undergo a 10 degrees interdomain rotation that is implicated in the regulatory mechanism. A structure-based sequence alignment has identified several basic residues in the active site that may be involved in the proton transfer at C-2 or stabilization of the proposed oxocarbenium ion-like transition state. This insight into the structure of the bacterial epimerase is applicable to the homologous N-terminal domain of the bifunctional mammalian UDP-GlcNAc "hydrolyzing" 2-epimerase/ManNAc kinase that catalyzes the rate-determining step in the sialic acid biosynthetic pathway.  相似文献   

2.
The K1 capsule is an essential virulence determinant of Escherichia coli strains that cause meningitis in neonates. Biosynthesis and transport of the capsule, an alpha-2,8-linked polymer of sialic acid, are encoded by the 17-kb kps gene cluster. We deleted neuC, a K1 gene implicated in sialic acid synthesis, from the chromosome of EV36, a K-12-K1 hybrid, by allelic exchange. Exogenously added sialic acid restored capsule expression to the deletion strain (DeltaneuC), confirming that NeuC is necessary for sialic acid synthesis. The deduced amino acid sequence of NeuC showed similarities to those of UDP-N-acetylglucosamine (GlcNAc) 2-epimerases from both prokaryotes and eukaryotes. The NeuC homologue from serotype III Streptococcus agalactiae complements DeltaneuC. We cloned the neuC gene into an intein expression vector to facilitate purification. We demonstrated by paper chromatography that the purified neuC gene product catalyzed the formation of [2-(14)C]acetamidoglucal and [N-(14)C]acetylmannosamine (ManNAc) from UDP-[(14)C]GlcNAc. The formation of reaction intermediate 2-acetamidoglucal with the concomitant release of UDP was confirmed by proton and phosphorus nuclear magnetic resonance spectroscopy. NeuC could not use GlcNAc as a substrate. These data suggest that neuC encodes an epimerase that catalyzes the formation of ManNAc from UDP-GlcNAc via a 2-acetamidoglucal intermediate. The unexpected release of the glucal intermediate and the extremely low rate of ManNAc formation likely were a result of the in vitro assay conditions, in which a key regulatory molecule or protein was absent.  相似文献   

3.
The non-hydrolysing bacterial UDP-N-acetylglucosamine 2-epimerase (UDP-GlcNAc 2-epimerase) catalyses the conversion of UDP-GlcNAc into UDP-N-acetylmannosamine, an intermediate in the biosynthesis of several cell-surface polysaccharides. This enzyme is allosterically regulated by its substrate UDP-GlcNAc. The structure of the ternary complex between the Bacillus anthracis UDP-GlcNAc 2-epimerase, its substrate UDP-GlcNAc and the reaction intermediate UDP, showed direct interactions between UDP and its substrate, and between the complex and highly conserved enzyme residues, identifying the allosteric site of the enzyme. The binding of UDP-GlcNAc is associated with conformational changes in the active site of the enzyme. Kinetic data and mutagenesis of the highly conserved UDP-GlcNAc-interacting residues confirm their importance in the substrate binding and catalysis of the enzyme. This constitutes the first example to our knowledge, of an enzymatic allosteric activation by direct interaction between the substrate and the allosteric activator.  相似文献   

4.
Glaze PA  Watson DC  Young NM  Tanner ME 《Biochemistry》2008,47(10):3272-3282
Legionaminic acid is a nine-carbon alpha-keto acid that is similar in structure to other members of the sialic acid family that includes neuraminic acid and pseudaminic acid. It is found as a component of the lipopolysaccharide in several bacterial species and is perhaps best known for its presence in the O-antigen of the causative agent of Legionnaires' disease, Legionella pneumophila. In this work, the enzymes responsible for the biosynthesis and activation of N, N'-diacetyllegionaminic acid are identified for the first time. A cluster of three L. pneumophila genes bearing homology to known sialic acid biosynthetic genes ( neuA,B,C) were cloned and overexpressed in Escherichia coli. The NeuC homologue was found to be a hydrolyzing UDP- N, N'-diacetylbacillosamine 2-epimerase that converts UDP- N, N'-diacetylbacillosamine into 2,4-diacetamido-2,4,6-trideoxymannose and UDP. Stereochemical and isotopic labeling studies showed that the enzyme utilizes a mechanism involving an initial anti elimination of UDP to form a glycal intermediate and a subsequent syn addition of water to generate product. This is similar to the hydrolyzing UDP- N-acetylglucosamine 2-epimerase (NeuC) of sialic acid biosynthesis, but the L. pneumophila enzyme would not accept UDP-GlcNAc as an alternate substrate. The NeuB homologue was found to be a N, N'-diacetyllegionaminic acid synthase that condenses 2,4-diacetamido-2,4,6-trideoxymannose with phosphoenolpyruvate (PEP), although the in vitro activity of the recombinant enzyme (isolated as a MalE fusion protein) was very low. The synthase activity was dependent on the presence of a divalent metal ion, and the reaction proceeded via a C-O bond cleavage process, similar to the reactions catalyzed by the sialic acid and pseudaminic acid synthases. Finally, the NeuA homologue was shown to possess the CMP- N, N'-diacetyllegionaminic acid synthetase activity that generates the activated form of legionaminic acid used in lipopolysaccharide biosynthesis. Together, the three enzymes constitute a pathway that converts a UDP-linked bacillosamine derivative into a CMP-linked legionaminic acid derivative.  相似文献   

5.
Lipid A is an integral component of the lipopolysaccharide (LPS) that forms the selective and protective outer monolayer of Gram-negative bacteria, and is essential for bacterial growth and viability. UDP-N-acetylglucosamine acyltransferase (LpxA) initiates lipid A biosynthesis by catalyzing the transfer of R-3-hydroxymyristic acid from acyl carrier protein to the 3'-hydroxyl group of UDP-GlcNAc. The enzyme is a homotrimer, and previous studies suggested that the active site lies within a positively charged cleft formed at the subunit-subunit interface. The crystal structure of Escherichia coli LpxA in complex with UDP-GlcNAc reveals details of the substrate-binding site, with prominent hydrophilic interactions between highly conserved clusters of residues (Asn198, Glu200, Arg204 and Arg205) with UDP, and (Asp74, His125, His144 and Gln161) with the GlcNAc moiety. These interactions serve to bind and orient the substrate for catalysis. The crystallographic model supports previous results, which suggest that acylation occurs via nucleophilic attack of deprotonated UDP-GlcNAc on the acyl donor in a general base-catalyzed mechanism involving a catalytic dyad of His125 and Asp126. His125, the general base, interacts with the 3'-hydroxyl group of UDP-GlcNAc to generate the nucleophile. The Asp126 side-chain accepts a hydrogen bond from His125 and helps orient the general base to participate in catalysis. Comparisons with an LpxA:peptide inhibitor complex indicate that the peptide competes with both nucleotide and acyl carrier protein substrates.  相似文献   

6.
Sialic acid is a major determinant of carbohydrate-receptor interactions in many systems pertinent to human health and disease. N-Acetylmannosamine (ManNAc) is the first committed intermediate in the sialic acid biosynthetic pathway; thus, the mechanisms that control intracellular ManNAc levels are important regulators of sialic acid production. UDP-GlcNAc 2-epimerase and GlcNAc 2-epimerase are two enzymes capable of generating ManNAc from UDP-GlcNAc and GlcNAc, respectively. Whereas the former enzyme has been shown to direct metabolic flux toward sialic acid in vivo, the function of the latter enzyme is unclear. Here we study the effects of GlcNAc 2-epimerase expression on sialic acid production in cells. A key tool we developed for this study is a cell-permeable, small molecule inhibitor of GlcNAc 2-epimerase designed based on mechanistic principles. Our results indicate that, unlike UDP-GlcNAc 2-epimerase, which promotes biosynthesis of sialic acid, GlcNAc 2-epimerase can serve a catabolic role, diverting metabolic flux away from the sialic acid pathway.  相似文献   

7.
The naturally occurring toxin L-2-amino-4-methoxy-trans-3-butenoic (AMB) acid irreversibly inhibits pyridoxal phosphate-linked aspartate aminotransferase. The inhibitor is a substrate for the enzyme, and as such is converted into a highly reactive intermediate which chemically reacts with an active site residue, thus irreversibly inactivating the enzyme. Enzymological and model studies on AMB are presented which enable one to determine the precise mechanism of action of this toxin. The mechanism involves Schiff base formation between the enzyme and toxin followed by alpha-C--H bond cleavage and aldimine isomerization to generate a bifunctional Michael acceptor. This molecule alkylates an active site residue by an addition and elimination route.  相似文献   

8.
Previous studies have reported that insect cell lines lack the capacity to generate endogenously the nucleotide sugar, CMP-Neu5Ac, required for sialylation of glycoconjugates. In this study, the biosynthesis of this activated form of sialic acid completely from endogenous metabolites is demonstrated for the first time in insect cells by expressing the mammalian genes required for the multistep conversion of endogenous UDP-GlcNAc to CMP-Neu5Ac. The genes for UDP-GlcNAc-2-epimerase/ManNAc kinase (EK), sialic acid 9-phosphate synthase (SAS), and CMP-sialic acid synthetase (CSAS) were coexpressed in insect cells using baculovirus expression vectors, but the CMP-Neu5Ac and precursor Neu5Ac levels synthesized were found to be lower than those achieved with ManNAc supplementation due to feedback inhibition of the EK enzyme by CMP-Neu5Ac. When sialuria-like mutant EK genes, in which the site for feedback regulation has been mutated, were used, CMP-Neu5Ac was synthesized at levels more than 4 times higher than that achieved with the wild-type EK and 2.5 times higher than that achieved with ManNAc feeding. Addition of N-acetylglucosamine (GlcNAc), a precursor for UDP-GlcNAc, to the media increased the levels of CMP-Neu5Ac even more to a level 7.5 times higher than that achieved with ManNAc supplementation, creating a bottleneck in the conversion of Neu5Ac to CMP-Neu5Ac at higher levels of UDP-GlcNAc. The present study provides a useful biochemical strategy to synthesize and enhance the levels of the sialylation donor molecule, CMP-Neu5Ac, a critical limiting substrate for the generation of complex glycoproteins in insect cells and other cell culture systems.  相似文献   

9.
10.
N-Acetylmannosamine (ManNAc) is the first committed intermediate in sialic acid metabolism. Thus, the mechanisms that control intracellular ManNAc levels are important regulators of sialic acid production. In prokaryotic organisms, UDP-N-acetylglucosamine (GlcNAc) 2-epimerase and GlcNAc-6-P 2-epimerase are two enzymes capable of generating ManNAc from UDP-GlcNAc and GlcNAc-6-P, respectively. We have purified for the first time native GlcNAc-6-P 2-epimerase from bacterial source to apparent homogeneity (1 200 fold) using Butyl-agarose, DEAE-FPLC and Mannose-6-P-agarose chromatography. By SDS/PAGE the pure enzyme showed a molecular mass of 38.4 +/- 0.2 kDa. The maximum activity was achieved at pH 7.8 and 37 degrees C. Under these conditions, the K(m) calculated for GlcNAc-6-P was 1.5 mM. The 2-epimerase activity was activated by Na(+) and inhibited by mannose-6-P but not mannose-1-P. Genetic analysis revealed high homology with bacterial isomerases. GlcNAc-6-P 2-epimerase from E. coli K92 is a ManNAc-inducible protein and is detected from the early logarithmic phase of growth. Our results indicate that, unlike UDP-GlcNAc 2-epimerase, which promotes the biosynthesis of sialic acid, GlcNAc-6-P 2-epimerase plays a catabolic role. When E. coli grows using ManNAc as a carbon source, this enzyme converts the intracellular ManNAc-6-P generated into GlcNAc-6-P, diverting the metabolic flux of ManNAc to GlcNAc.  相似文献   

11.
The "non-hydrolyzing" bacterial UDP-N-acetylglucosamine 2-epimerase catalyzes the reversible interconversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylmannosamine (UDP-ManNAc). This homodimeric enzyme is allosterically activated by its substrate, UDP-GlcNAc, and it is thought that one subunit plays a regulatory role, while that of the other plays a catalytic role. In this work, five active site mutants were prepared (D95N, E117Q, E131Q, K15A, and H213N) and analyzed in terms of their effects on binding, catalysis, and allosteric regulation. His213 appears to play a role in UDP binding and may also assist in catalysis and/or regulation, but is not a key catalytic residue. Lys15 appears to be quite important for binding. All three of the carboxylate mutants showed dramatic decreases in the value of k(cat) but relatively unaffected values of K(M). Thus, these residues are playing key roles in catalysis and/or regulation. In the case of E117Q, the reaction intermediates are released into solution at a rate comparable to that of the overall catalysis. This may indicate that Glu117 plays the role as an acid/base catalyst in the second step of the UDP-GlcNAc epimerization reaction. All three carboxylate mutants were found to exhibit impaired allosteric control.  相似文献   

12.
Thibodeaux CJ  Liu HW 《Biochemistry》2011,50(11):1950-1962
1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that cleaves the cyclopropane ring of ACC, to give α-ketobutyric acid and ammonia as products. The cleavage of the C(α)-C(β) bond of an amino acid substrate is a rare event in PLP-dependent enzyme catalysis. Potential chemical mechanisms involving nucleophile- or acid-catalyzed cyclopropane ring opening have been proposed for the unusual transformation catalyzed by ACCD, but the actual mode of cyclopropane ring cleavage remains obscure. In this report, we aim to elucidate the mechanistic features of ACCD catalysis by investigating the kinetic properties of ACCD from Pseudomonas sp. ACP and several of its mutant enzymes. Our studies suggest that the pK(a) of the conserved active site residue, Tyr294, is lowered by a hydrogen bonding interaction with a second conserved residue, Tyr268. This allows Tyr294 to deprotonate the incoming amino group of ACC to initiate the aldimine exchange reaction between ACC and the PLP coenzyme and also likely helps to activate Tyr294 for a role as a nucleophile to attack and cleave the cyclopropane ring of the substrate. In addition, solvent kinetic isotope effect (KIE), proton inventory, and (13)C KIE studies of the wild type enzyme suggest that the C(α)-C(β) bond cleavage step in the chemical mechanism is at least partially rate-limiting under k(cat)/K(m) conditions and is likely preceded in the mechanism by a partially rate-limiting step involving the conversion of a stable gem-diamine intermediate into a reactive external aldimine intermediate that is poised for cyclopropane ring cleavage. When viewed within the context of previous mechanistic and structural studies of ACCD enzymes, our studies are most consistent with a mode of cyclopropane ring cleavage involving nucleophilic catalysis by Tyr294.  相似文献   

13.
Apiyo D  Zhao L  Tsai MD  Selby TL 《Biochemistry》2005,44(30):9980-9989
Phosphatidylinositol-specific phospholipase Cs (PLCs) are a family of phosphodiesterases that catalyze the cleavage of the P-O bond via transesterification using the internal hydroxyl group of the substrate as a nucleophile, generating the five-membered cyclic inositol phosphate as an intermediate or product. To better understand the role of calcium in the catalytic mechanism of PLCs, we have determined the X-ray crystal structure of an engineered PLC enzyme from Bacillus thuringiensis to 2.1 A resolution. The active site of this enzyme has been altered by substituting the catalytic arginine with an aspartate at position 69 (R69D). This single-amino acid substitution converted a metal-independent, low-molecular weight enzyme into a metal ion-dependent bacterial PLC with an active site architecture similar to that of the larger metal ion-dependent mammalian PLC. The Ca(2+) ion shows a distorted square planar geometry in the active site that allows for efficient substrate binding and transition state stabilization during catalysis. Additional changes in the positions of the catalytic general acid/general base (GA/GB) were also observed, indicating the interrelation of the intricate hydrogen bonding network involved in stabilizing the active site amino acids. The functional information provided by this X-ray structure now allows for a better understanding of the catalytic mechanism, including stereochemical effects and substrate interactions, which facilitates better inhibitor design and sheds light on the possibilities of understanding how protein evolution might have occurred across this enzyme family.  相似文献   

14.
The FAD-dependent hydroxynitrile lyase from almond (Prunus amygdalus, PaHNL) catalyzes the cleavage of R-mandelonitrile into benzaldehyde and hydrocyanic acid. Catalysis of the reverse reaction-the enantiospecific formation of alpha-hydroxynitriles--is now widely utilized in organic syntheses as one of the few industrially relevant examples of enzyme-mediated C-C bond formation. Starting from the recently determined X-ray crystal structure, systematic docking calculations with the natural substrate were used to locate the active site of the enzyme and to identify amino acid residues involved in substrate binding and catalysis. Analysis of the modeled substrate complexes supports an enzymatic mechanism that includes the flavin cofactor as a mere "spectator" of the reaction and relies on general acid/base catalysis by the conserved His-497. Stabilization of the negative charge of the cyanide ion is accomplished by a pronounced positive electrostatic potential at the binding site. PaHNL activity requires the FAD cofactor to be bound in its oxidized form, and calculations of the pKa of enzyme-bound HCN showed that the observed inactivation upon cofactor reduction is largely caused by the reversal of the electrostatic potential within the active site. The suggested mechanism closely resembles the one proposed for the FAD-independent, and structurally unrelated HNL from Hevea brasiliensis. Although the actual amino acid residues involved in the catalytic cycle are completely different in the two enzymes, a common motif for the mechanism of cyanogenesis (general acid/base catalysis plus electrostatic stabilization of the cyanide ion) becomes evident.  相似文献   

15.
The “non-hydrolyzing” bacterial UDP-N-acetylglucosamine 2-epimerase catalyzes the reversible interconversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylmannosamine (UDP-ManNAc). This homodimeric enzyme is allosterically activated by its substrate, UDP-GlcNAc, and it is thought that one subunit plays a regulatory role, while that of the other plays a catalytic role. In this work, five active site mutants were prepared (D95N, E117Q, E131Q, K15A, and H213N) and analyzed in terms of their effects on binding, catalysis, and allosteric regulation. His213 appears to play a role in UDP binding and may also assist in catalysis and/or regulation, but is not a key catalytic residue. Lys15 appears to be quite important for binding. All three of the carboxylate mutants showed dramatic decreases in the value of kcat but relatively unaffected values of KM. Thus, these residues are playing key roles in catalysis and/or regulation. In the case of E117Q, the reaction intermediates are released into solution at a rate comparable to that of the overall catalysis. This may indicate that Glu117 plays the role as an acid/base catalyst in the second step of the UDP-GlcNAc epimerization reaction. All three carboxylate mutants were found to exhibit impaired allosteric control.  相似文献   

16.
Hadi T  Dahl U  Mayer C  Tanner ME 《Biochemistry》2008,47(44):11547-11558
Peptidoglycan recycling is a process in which bacteria import cell wall degradation products and incorporate them back into either peptidoglycan biosynthesis or basic metabolic pathways. The enzyme MurQ is an N-acetylmuramic acid 6-phosphate (MurNAc 6-phosphate) hydrolase (or etherase) that hydrolyzes the lactyl side chain from MurNAc 6-phosphate and generates GlcNAc 6-phosphate. This study supports a mechanism involving the syn elimination of lactate to give an alpha,beta-unsaturated aldehyde with (E)-stereochemistry, followed by the syn addition of water to give product. The observation of both a kinetic isotope effect slowing the reaction of [2-(2)H]MurNAc 6-phosphate and the incorporation of solvent-derived deuterium into C2 of the product indicates that the C2-H bond is cleaved during catalysis. The observation that the solvent-derived (18)O isotope is incorporated into the C3 position of the product, but not the C1 position, provides evidence of the cleavage of the C3-O bond and argues against imine formation. The finding that 3-chloro-3-deoxy-GlcNAc 6-phosphate serves as an alternate substrate is also consistent with an elimination-addition mechanism. Upon extended incubations of MurQ with GlcNAc 6-phosphate, the alpha,beta-unsaturated aldehydic intermediate accumulates in solution, and (1)H NMR analysis indicates it exists as the ring-closed form of the (E)-alkene. A structural model is developed for the Escherichia coli MurQ and is compared to that of the structural homologue glucosamine-6-phosphate synthase. Putative active site acid/base residues are probed by mutagenesis, and Glu83 and Glu114 are found to be crucial for catalysis. The Glu83Ala mutant is essentially inactive as an etherase yet is capable of exchanging the C2 proton of substrate with solvent-derived deuterium. This suggests that Glu83 may function as the acidic residue that protonates the departing lactate.  相似文献   

17.
Crystal structures of an inactive mutant (D308A) of the lytic transglycosylase MltA from Escherichia coli have been determined in two different apo-forms, as well as in complex with the substrate analogue chitohexaose. The chitohexaose binds with all six saccharide residues in the active site groove, with an intact glycosidic bond at the bond cleavage center. Its binding induces a large reorientation of the two structural domains in MltA, narrowing the active site groove and allowing tight interactions of the oligosaccharide with residues from both domains. The structures identify residues in MltA with key roles in the binding and recognition of peptidoglycan and confirm that Asp-308 is the single catalytic residue, acting as a general acid/base. Moreover, the structures suggest that catalysis involves a high energy conformation of the scissile glycosidic linkage and that the putative oxocarbenium ion intermediate is stabilized by the dipole moment of a nearby alpha-helix.  相似文献   

18.
Bovine CD38/NAD+ glycohydrolase catalyzes the hydrolysis of NAD+ to nicotinamide and ADP-ribose and the formation of cyclic ADP-ribose via a stepwise reaction mechanism. Our recent crystallographic study of its Michaelis complex and covalently-trapped intermediates provided insights into the modalities of substrate binding and the molecular mechanism of bCD38. The aim of the present work was to determine the precise role of key conserved active site residues (Trp118, Glu138, Asp147, Trp181 and Glu218) by focusing mainly on the cleavage of the nicotinamide–ribosyl bond. We analyzed the kinetic parameters of mutants of these residues which reside within the bCD38 subdomain in the vicinity of the scissile bond of bound NAD+. To address the reaction mechanism we also performed chemical rescue experiments with neutral (methanol) and ionic (azide, formate) nucleophiles. The crucial role of Glu218, which orients the substrate for cleavage by interacting with the N-ribosyl 2′-OH group of NAD+, was highlighted. This contribution to catalysis accounts for almost half of the reaction energy barrier. Other contributions can be ascribed notably to Glu138 and Asp147 via ground-state destabilization and desolvation in the vicinity of the scissile bond. Key interactions with Trp118 and Trp181 were also proven to stabilize the ribooxocarbenium ion-like transition state. Altogether we propose that, as an alternative to a covalent acylal reaction intermediate with Glu218, catalysis by bCD38 proceeds through the formation of a discrete and transient ribooxocarbenium intermediate which is stabilized within the active site mostly by electrostatic interactions.  相似文献   

19.
Zhu J  Patel R  Pei D 《Biochemistry》2004,43(31):10166-10172
S-ribosylhomocysteinase (LuxS) catalyzes the cleavage of the thioether bond in S-ribosylhomocysteine (SRH) to produce homocysteine and 4,5-dihydroxy-2,3-pentanedione (DPD), the precursor of type II bacterial quorum sensing molecule. The proposed mechanism involves a series of proton-transfer reactions, which are catalyzed by an Fe2+ ion and two general acids/bases in the LuxS active site, resulting in the migration of the ribose carbonyl group from its C1 to C3 position. Subsequent beta-elimination at C4 and C5 positions completes the catalytic cycle. In this work, the regiochemistry and stereochemical course of the proton transfer reactions were determined by carrying out the reactions using various specifically deuterium-labeled SRH as substrate and analyzing the reaction products by 1H NMR spectroscopy and mass spectrometry. Our data indicate a suprafacial transfer of the ribose C2 proton to its C1 position and the C3 proton to the C2 position during catalysis, whereas the ribose C4 proton is completely washed into solvent. The primary deuterium kinetic isotope effect suggests that the conversion of 2-keto intermediate to 3-keto intermediate is partially rate limiting. However, mutation of Glu-57, the putative second general acid/base in catalysis, to an aspartic acid renders the final beta-elimination step rate limiting.  相似文献   

20.
Hartman MC  Jiang S  Rush JS  Waechter CJ  Coward JK 《Biochemistry》2007,46(41):11630-11638
In glycosyltransferase-catalyzed reactions a new carbohydrate-carbohydrate bond is formed between a carbohydrate acceptor and the carbohydrate moiety of either a sugar nucleotide donor or lipid-linked saccharide donor. It is currently believed that most glycosyltransferase-catalyzed reactions occur via an electrophilic activation mechanism with the formation of an oxocarbenium ion-like transition state, a hypothesis that makes clear predictions regarding the charge development on the donor (strong positive charge) and acceptor (minimal negative charge) substrates. To better understand the mechanism of these enzyme-catalyzed reactions, we have introduced a strongly electron-withdrawing group (fluorine) at C-5 of both donor and acceptor substrates in order to explore its effect on catalysis. In particular, we have investigated the effects of the 5-fluoro analogues on the kinetics of two glycosyltransferase-catalyzed reactions mediated by UDP-GlcNAc:GlcNAc-P-P-Dol N-acetylglucosaminyltransferase (chitobiosyl-P-P-lipid synthase, CLS) and beta-N-acetylglucosaminyl-beta-1,4 galactosyltransferase (GalT). The 5-fluoro group has a marked effect on catalysis when inserted into the UDP-GlcNAc donor, with the UDP(5-F)-GlcNAc serving as a competitive inhibitor of CLS rather than a substrate. The (5-F)-GlcNAc beta-octyl glycoside acceptor, however, is an excellent substrate for GalT. Both of these results support a weakly associative transition state for glycosyltransferase-catalyzed reactions that proceed with inversion of configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号