共查询到20条相似文献,搜索用时 15 毫秒
1.
Florian MC Dörr K Niebel A Daria D Schrezenmeier H Rojewski M Filippi MD Hasenberg A Gunzer M Scharffetter-Kochanek K Zheng Y Geiger H 《Cell Stem Cell》2012,10(5):520-530
- Download : Download high-res image (312KB)
- Download : Download full-size image
2.
Nudel binds Cdc42GAP to modulate Cdc42 activity at the leading edge of migrating cells 总被引:2,自引:0,他引:2
Shen Y Li N Wu S Zhou Y Shan Y Zhang Q Ding C Yuan Q Zhao F Zeng R Zhu X 《Developmental cell》2008,14(3):342-353
Cdc42GAP promotes inactivation of Cdc42, a small GTPase whose activation at the leading edge by guanine nucleotide exchange factors is critical for cell migration. How Cdc42GAP is regulated to ensure proper levels of active Cdc42 is poorly understood. Here we show that Nudel, a cytoplasmic dynein regulator, competes with Cdc42 for binding Cdc42GAP. Consequently, Nudel can inhibit Cdc42GAP-mediated inactivation of Cdc42 in a dose-dependent manner. Both Nudel and Cdc42GAP exhibit leading-edge localization in migrating cells. The localization of Nudel requires its phosphorylation by Erk1/2. Depleting Nudel by RNAi or overexpression of a nonphosphorylatable mutant abolishes Cdc42 activation and cell migration. Our data thus uncover Nudel as a regulator of Cdc42 during cell migration. Nudel facilitates cell migration by sequestering Cdc42GAP at the leading edge to stabilize active Cdc42 in response to extracellular stimuli. Excess active Cdc42 may in turn control its own activity by recruiting Cdc42GAP from Nudel. 相似文献
3.
The small G proteins Cdc42, Rac1, and Rac2 regulate the rearrangements of actin and membrane necessary for Fcgamma receptor-mediated phagocytosis by macrophages. Activated, GTP-bound Cdc42, Rac1, and Rac2 bind to the p21-binding domain (PBD) of PAK1, and this interaction provided a basis for microscopic methods to localize activation of these G proteins inside cells. Fluorescence resonance energy transfer-based stoichiometry of fluorescent chimeras of actin, PBD, Cdc42, Rac1, and Rac2 was used to quantify G protein activation relative to actin movements during phagocytosis of IgG-opsonized erythrocytes. The activation dynamics of endogenous G proteins, localized using yellow fluorescent protein-labeled PBD, was restricted to phagocytic cups, with a prominent spike of activation over an actin-poor region at the base of the cup. Refinements of fluorescence resonance energy transfer stoichiometry allowed calculation of the fractions of activated GTPases in forming phagosomes. Cdc42 activation was restricted to the leading margin of the cell, whereas Rac1 was active throughout the phagocytic cup. During phagosome closure, activation of Rac1 and Rac2 increased uniformly and transiently in the actin-poor region of phagosomal membrane. These distinct roles for Cdc42, Rac1, and Rac2 in the component activities of phagocytosis indicate mechanisms by which their differential regulation coordinates rearrangements of actin and membranes. 相似文献
4.
Identification of novel, evolutionarily conserved Cdc42p-interacting proteins and of redundant pathways linking Cdc24p and Cdc42p to actin polarization in yeast
下载免费PDF全文

Bi E Chiavetta JB Chen H Chen GC Chan CS Pringle JR 《Molecular biology of the cell》2000,11(2):773-793
In the yeast Saccharomyces cerevisiae, Cdc24p functions at least in part as a guanine-nucleotide-exchange factor for the Rho-family GTPase Cdc42p. A genetic screen designed to identify possible additional targets of Cdc24p instead identified two previously known genes, MSB1 and CLA4, and one novel gene, designated MSB3, all of which appear to function in the Cdc24p-Cdc42p pathway. Nonetheless, genetic evidence suggests that Cdc24p may have a function that is distinct from its Cdc42p guanine-nucleotide-exchange factor activity; in particular, overexpression of CDC42 in combination with MSB1 or a truncated CLA4 in cells depleted for Cdc24p allowed polarization of the actin cytoskeleton and polarized cell growth, but not successful cell proliferation. MSB3 has a close homologue (designated MSB4) and two more distant homologues (MDR1 and YPL249C) in S. cerevisiae and also has homologues in Schizosaccharomyces pombe, Drosophila (pollux), and humans (the oncogene tre17). Deletion of either MSB3 or MSB4 alone did not produce any obvious phenotype, and the msb3 msb4 double mutant was viable. However, the double mutant grew slowly and had a partial disorganization of the actin cytoskeleton, but not of the septins, in a fraction of cells that were larger and rounder than normal. Like Cdc42p, both Msb3p and Msb4p localized to the presumptive bud site, the bud tip, and the mother-bud neck, and this localization was Cdc42p dependent. Taken together, the data suggest that Msb3p and Msb4p may function redundantly downstream of Cdc42p, specifically in a pathway leading to actin organization. From previous work, the BNI1, GIC1, and GIC2 gene products also appear to be involved in linking Cdc42p to the actin cytoskeleton. Synthetic lethality and multicopy suppression analyses among these genes, MSB, and MSB4, suggest that the linkage is accomplished by two parallel pathways, one involving Msb3p, Msb4p, and Bni1p, and the other involving Gic1p and Gic2p. The former pathway appears to be more important in diploids and at low temperatures, whereas the latter pathway appears to be more important in haploids and at high temperatures. 相似文献
5.
In epithelia, cells are arranged in an orderly pattern with a defined orientation and shape. Cadherin containing apical adherens junctions (AJs) and the associated actomyosin cytoskeleton likely contribute to epithelial cell shape by providing apical tension. The Rho guanosine triphosphatases are well known regulators of cell junction formation, maintenance, and function. Specifically, Rho promotes actomyosin activity and cell contractility; however, what controls and localizes this Rho activity as epithelia remodel is unresolved. Using mosaic clonal analysis in the Drosophila melanogaster pupal eye, we find that Cdc42 is critical for limiting apical cell tension by antagonizing Rho activity at AJs. Cdc42 localizes Par6–atypical protein kinase C (aPKC) to AJs, where this complex limits Rho1 activity and thus actomyosin contractility, independent of its effects on Wiskott-Aldrich syndrome protein and p21-activated kinase. Thus, in addition to its role in the establishment and maintenance of apical–basal polarity in forming epithelia, the Cdc42–Par6–aPKC polarity complex is required to limit Rho activity at AJs and thus modulate apical tension so as to shape the final epithelium. 相似文献
6.
Cdc42(T35A) is an active construct of Cdc42, a Ras GTPase involved in signal transduction, containing a single-point mutation
in an important effector-binding region. We determined the backbone and side chain resonance assignments of 13C,15N-labelled Cdc42(T35A) from E. coli. 相似文献
7.
Cdc42 and Par6-PKCzeta regulate the spatially localized association of Dlg1 and APC to control cell polarization
下载免费PDF全文

Etienne-Manneville S Manneville JB Nicholls S Ferenczi MA Hall A 《The Journal of cell biology》2005,170(6):895-901
Cell polarization is essential in a wide range of biological processes such as morphogenesis, asymmetric division, and directed migration. In this study, we show that two tumor suppressor proteins, adenomatous polyposis coli (APC) and Dlg1-SAP97, are required for the polarization of migrating astrocytes. Activation of the Par6-PKCzeta complex by Cdc42 at the leading edge of migrating cells promotes both the localized association of APC with microtubule plus ends and the assembly of Dlg-containing puncta in the plasma membrane. Biochemical analysis and total internal reflection fluorescence microscopy reveal that the subsequent physical interaction between APC and Dlg1 is required for polarization of the microtubule cytoskeleton. 相似文献
8.
Cdc42 mediates nucleus movement and MTOC polarization in Swiss 3T3 fibroblasts under mechanical shear stress
下载免费PDF全文

Nucleus movement is essential during nucleus positioning for tissue growth and development in eukaryotic cells. However, molecular regulators of nucleus movement in interphase fibroblasts have yet to be identified. Here, we report that nuclei of Swiss 3T3 fibroblasts undergo enhanced movement when subjected to shear flows. Such movement includes both rotation and translocation and is dependent on microtubule, not F-actin, structure. Through inactivation of Rho GTPases, well-known mediators of cytoskeleton reorganization, we demonstrate that Cdc42, not RhoA or Rac1, controls the extent of nucleus translocation, and more importantly, of nucleus rotation in the cytoplasm. In addition to generating nuclei movement, we find that shear flows also causes repositioning of the MTOC in the direction of flow. This behavior is also controlled by Cdc42 via the Par6/protein kinase Czeta pathway. These results are the first to establish Cdc42 as a molecular regulator of not only shear-induced MTOC polarization in Swiss 3T3 fibroblasts, but also of shear-induced microtubule-dependent nucleus movement. We propose that the movements of MTOC and nucleus are coupled chemically, because they are both regulated by Cdc42 and dependent on microtubule structure, and physically, possibly via Hook/SUN family homologues similar to those found in Caenorhabditis elegans. 相似文献
9.
Parsons M Monypenny J Ameer-Beg SM Millard TH Machesky LM Peter M Keppler MD Schiavo G Watson R Chernoff J Zicha D Vojnovic B Ng T 《Molecular and cellular biology》2005,25(5):1680-1695
While a significant amount is known about the biochemical signaling pathways of the Rho family GTPase Cdc42, a better understanding of how these signaling networks are coordinated in cells is required. In particular, the predominant subcellular sites where GTP-bound Cdc42 binds to its effectors, such as p21-activated kinase 1 (PAK1) and N-WASP, a homolog of the Wiskott-Aldritch syndrome protein, are still undetermined. Recent fluorescence resonance energy transfer (FRET) imaging experiments using activity biosensors show inconsistencies between the site of local activity of PAK1 or N-WASP and the formation of specific membrane protrusion structures in the cell periphery. The data presented here demonstrate the localization of interactions by using multiphoton time-domain fluorescence lifetime imaging microscopy (FLIM). Our data here establish that activated Cdc42 interacts with PAK1 in a nucleotide-dependent manner in the cell periphery, leading to Thr-423 phosphorylation of PAK1, particularly along the lengths of cell protrusion structures. In contrast, the majority of GFP-N-WASP undergoing FRET with Cy3-Cdc42 is localized within a transferrin receptor- and Rab11-positive endosomal compartment in breast carcinoma cells. These data reveal for the first time distinct spatial association patterns between Cdc42 and its key effector proteins controlling cytoskeletal remodeling. 相似文献
10.
Cdc42 is a small GTP-binding protein which has been implicated in a number of cellular activities, including cell morphology, motility, cell-cycle progression, and malignant transformation. While GTPase-defective forms of Cdc42 inhibit cell growth, a mutation [Cdc42(F28L)] that allows the constitutive exchange of GDP for GTP and is GTPase-competent induces cellular transformation. These results suggest that Cdc42 must cycle between its GTP- and GDP-bound states to stimulate cell growth. In attempting to design Cdc42 molecules with more potent transforming activity, we set out to generate other types of Cdc42 mutants capable of constitutive GDP-GTP exchange. Here, we describe one such mutant, generated by changing a conserved aspartic acid residue at position 118 to an asparagine. The Cdc42(D118N) protein exchanges GDP for GTP more rapidly than wild-type Cdc42, but significantly more slowly than the Cdc42(F28L) mutant. Despite its slower rate of activation, the Cdc42(D118N) mutant is more potent at inducing cellular transformation than the Cdc42(F28L) protein, and causes a significant loss in actin stress fibers, reminiscent of what is observed with fibroblasts transformed by oncogenic Ras mutants. Effector-loop mutations made within the D118N background inhibit Cdc42-induced transformation and Cdc42-mediated antiapoptotic (survival) activity to similar extents. In addition, mutating aspartic acid 121 (to asparagine), which forms part of a caspase cleavage site (DLRD, residues 118-121 of Cdc42), in combination with the F28L mutation generates a Cdc42 molecule [Cdc42(F28L/D121N)] with transforming activity significantly stronger than that of Cdc42(F28L). Thus, mutations that combine some capacity for cycling between the GTP- and GDP-bound states with increased survival against apoptotic signals yield Cdc42 molecules with the maximum capability for inducing cellular transformation. 相似文献
11.
Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration 总被引:11,自引:0,他引:11
Watanabe T Wang S Noritake J Sato K Fukata M Takefuji M Nakagawa M Izumi N Akiyama T Kaibuchi K 《Developmental cell》2004,7(6):871-883
Rho family GTPases, particularly Rac1 and Cdc42, are key regulators of cell polarization and directional migration. Adenomatous polyposis coli (APC) is also thought to play a pivotal role in polarized cell migration. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts directly with APC. IQGAP1 and APC localize interdependently to the leading edge in migrating Vero cells, and activated Rac1/Cdc42 form a ternary complex with IQGAP1 and APC. Depletion of either IQGAP1 or APC inhibits actin meshwork formation and polarized migration. Depletion of IQGAP1 or APC also disrupts localization of CLIP-170, a microtubule-stabilizing protein that interacts with IQGAP1. Taken together, these results suggest a model in which activation of Rac1 and Cdc42 in response to migration signals leads to recruitment of IQGAP1 and APC which, together with CLIP-170, form a complex that links the actin cytoskeleton and microtubule dynamics during cell polarization and directional migration. 相似文献
12.
Four distinct patterns of memory CD8 T cell responses to chronic murine cytomegalovirus infection 总被引:4,自引:0,他引:4
Munks MW Cho KS Pinto AK Sierro S Klenerman P Hill AB 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(1):450-458
CMVs are beta herpesviruses that establish lifelong latent infection of their hosts. Acute infection of C57BL/6 mice with murine CMV elicits a very broad CD8 T cell response, comprising at least 24 epitopes from 18 viral proteins. In contrast, we show here that the CD8 T cell response in chronically infected mice was dominated by only five epitopes. Altogether, four distinct CD8 T cell kinetic patterns were evident. Responses to some epitopes, including M45, which dominates the acute response, contracted sharply after day 7 and developed into stable long-term memory. The response to m139 underwent rapid expansion and contraction, followed by a phase of memory inflation, whereas the response to an M38 epitope did not display any contraction phase. Finally, responses against two epitopes encoded by the immediate early gene IE3 were readily detectable in chronically infected mice but near the limit of detection during acute infection. CD8 T cells specific for the noninflationary M45 epitope displayed a classic central memory phenotype, re-expressing the lymph node homing receptor CD62L and homeostatic cytokine receptors for IL-7 and IL-15, and produced low levels of IL-2. Responses to two inflationary epitopes, m139 and IE3, retained an effector memory surface phenotype (CD62L(low), IL-7Ralpha(-), IL-15Rbeta(-)) and were unable to produce IL-2. We suggest that immunological choices are superimposed on altered viral gene expression profiles to determine immunodominance during chronic murine CMV infection. 相似文献
13.
14.
Activation of Cdc42 by trans interactions of the cell adhesion molecules nectins through c-Src and Cdc42-GEF FRG
下载免费PDF全文

Fukuhara T Shimizu K Kawakatsu T Fukuyama T Minami Y Honda T Hoshino T Yamada T Ogita H Okada M Takai Y 《The Journal of cell biology》2004,166(3):393-405
Nectins, Ca2+ -independent immunoglobulin-like cell-cell adhesion molecules, initiate cell-cell adhesion by their trans interactions and recruit cadherins to cooperatively form adherens junctions (AJs). In addition, the trans interactions of nectins induce the activation of Cdc42 and Rac small G proteins, which increases the velocity of the formation of AJs. We examined here how nectins induce the activation of Cdc42 in MDCK epithelial cells and L fibroblasts. Nectins recruited and activated c-Src at the nectin-based cell-cell adhesion sites. FRG, a GDP/GTP exchange factor specific for Cdc42, was then recruited there, tyrosine phosphorylated by c-Src, and activated, causing an increase in the GTP-bound active form of Cdc42. Inhibition of the nectin-induced activation of c-Src suppressed the nectin-induced activation of FRG and Cdc42. Inhibition of the nectin-induced activation of FRG or depletion of FRG by RNA interference suppressed the nectin-induced activation of Cdc42. These results indicate that nectins induce the activation of Cdc42 through c-Src and FRG locally at the nectin-based cell-cell adhesion sites. 相似文献
15.
Shear stress-induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases 总被引:7,自引:0,他引:7
Shear stress induces endothelial polarization and migration in the direction of flow accompanied by extensive remodeling of the actin cytoskeleton. The GTPases RhoA, Rac1, and Cdc42 are known to regulate cell shape changes through effects on the cytoskeleton and cell adhesion. We show here that all three GTPases become rapidly activated by shear stress, and that each is important for different aspects of the endothelial response. RhoA was activated within 5 min after stimulation with shear stress and led to cell rounding via Rho-kinase. Subsequently, the cells respread and elongated within the direction of shear stress as RhoA activity returned to baseline and Rac1 and Cdc42 reached peak activation. Cell elongation required Rac1 and Cdc42 but not phosphatidylinositide 3-kinases. Cdc42 and PI3Ks were not required to establish shear stress-induced polarity although they contributed to optimal migration speed. Instead, Rho and Rac1 regulated directionality of cell movement. Inhibition of Rho or Rho-kinase did not affect the cell speed but significantly increased cell displacement. Our results show that endothelial cells reorient in response to shear stress by a two-step process involving Rho-induced depolarization, followed by Rho/Rac-mediated polarization and migration in the direction of flow. 相似文献
16.
Orlando K Sun X Zhang J Lu T Yokomizo L Wang P Guo W 《Molecular biology of the cell》2011,22(5):624-633
Cdc42p plays a central role in asymmetric cell growth in yeast by controlling actin organization and vesicular trafficking. However, how Cdc42p is maintained specifically at the daughter cell plasma membrane during asymmetric cell growth is unclear. We have analyzed Cdc42p localization in yeast mutants defective in various stages of membrane trafficking by fluorescence microscopy and biochemical fractionation. We found that two separate exocytic pathways mediate Cdc42p delivery to the daughter cell. Defects in one of these pathways result in Cdc42p being rerouted through the other. In particular, the pathway involving trafficking through endosomes may couple Cdc42p endocytosis from, and subsequent redelivery to, the plasma membrane to maintain Cdc42p polarization at the daughter cell. Although the endo-exocytotic coupling is necessary for Cdc42p polarization, it is not sufficient to prevent the lateral diffusion of Cdc42p along the cell cortex. A barrier function conferred by septins is required to counteract the dispersal of Cdc42p and maintain its localization in the daughter cell but has no effect on the initial polarization of Cdc42p at the presumptive budding site before symmetry breaking. Collectively, membrane trafficking and septins function synergistically to maintain the dynamic polarization of Cdc42p during asymmetric growth in yeast. 相似文献
17.
Dbl is a representative prototype of a growing family of oncogene products that contain the Dbl homology/pleckstrin homology elements in their primary structures and are associated with a variety of neoplastic pathologies. Members of the Dbl family have been shown to function as physiological activators (guanine nucleotide exchange factors) of the Rho-like small GTPases. Although the expression of GTPase-defective versions of Rho proteins has been shown to induce a transformed phenotype under different conditions, their transformation capacity has been typically weak and incomplete relative to that exhibited by dbl-like oncogenes. Moreover, in some cases (e.g. NIH3T3 fibroblasts), expression of GTPase-defective Cdc42 results in growth inhibition. Thus, in attempting to reconstitute dbl-induced transformation of NIH3T3 fibroblasts, we have generated spontaneously activated ("fast-cycling") mutants of Cdc42, Rac1, and RhoA that mimic the functional effects of activation by the Dbl oncoprotein. When stably expressed in NIH3T3 cells, all three mutants caused the loss of serum dependence and showed increased saturation density. Furthermore, all three stable cell lines were tumorigenic when injected into nude mice. Our data demonstrate that all three Dbl targets need to be activated to promote the full complement of Dbl effects. More importantly, activation of each of these GTP-binding proteins contributes to a different and distinct facet of cellular transformation. 相似文献
18.
Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity 总被引:1,自引:0,他引:1
下载免费PDF全文

Scratch-induced disruption of cultured monolayers induces polarity in front row cells that can be visualized by spatially localized polymerization of actin at the front of the cell and reorientation of the centrosome/Golgi to face the leading edge. We previously reported that centrosomal reorientation and microtubule polarization depend on a Cdc42-regulated signal transduction pathway involving activation of the Par6/aPKC complex followed by inhibition of GSK-3beta and accumulation of the adenomatous polyposis coli (APC) protein at the plus ends of leading-edge microtubules. Using monolayers of primary rodent embryo fibroblasts, we show here that dishevelled (Dvl) and axin, two major components of the Wnt signaling pathway are required for centrosome reorientation and that Wnt5a is required for activation of this pathway. We conclude that disruption of cell-cell contacts leads to the activation of a noncanonical Wnt/dishevelled signal transduction pathway that cooperates with Cdc42/Par6/aPKC to promote polarized reorganization of the microtubule cytoskeleton. 相似文献
19.
Autotaxin (ATX) is a strong motogen that can increase invasiveness and angiogenesis. In the present study, we investigated the signal transduction mechanism of ATX-induced tumor cell motility. Unlike N19RhoA expressing cells, the cells expressing N17Cdc42 or N17Rac1 showed reduced motility against ATX. ATX activated Cdc42 and Rac1 and increased complex formation between these small G proteins and p21-activated kinase (PAK). Furthermore, ATX phosphorylated focal adhesion kinase (FAK) that was not shown in cells expressing dominant negative mutants of Cdc42 or Rac1. Collectively, these data strongly indicate that Cdc42 and Rac1 are essential for ATX-induced tumor cell motility in A2058 melanoma cells, and that PAK and FAK might be also involved in the process. 相似文献
20.
The Rho family small G-protein Cdc42 has been implicated in a diversity of biological functions. Multiple downstream effectors have been identified. How Cdc42 discriminates the interaction with its multiple downstream effectors is not known. Activated Cdc42-associated tyrosine kinase (ACK) is a very specific effector of Cdc42. To delineate the Cdc42 signaling pathway mediated by ACK, we set about to identify the specific ACK-binding region in Cdc42. We utilized TC10, another member of the Rho family of G-proteins that is 66.7% identical to Cdc42, to construct TC10/Cdc42 chimeras for screening the specific ACK-binding region in Cdc42. A region between switch I and switch II has been identified as the specific ACK-binding (AB) region. The replacement of the AB region with the corresponding region in TC10 resulted in the complete loss of ACK-binding ability but did not affect the binding to WASP, suggesting that the AB region confers the binding specificity to ACK. On the other hand, replacement of the corresponding region of TC10 with the AB region enabled TC10 to acquire ACK-binding ability. Eight residues are different between the AB region and the corresponding region of TC10. The mutational analysis indicated that all eight residues contribute to the binding to ACK2. The assays for the Cdc42-mediated activation of ACK2 indicated that the AB region is essential for Cdc42 to activate ACK2 in cells. Thus, our studies have defined a specific ACK-binding region in Cdc42 and have provided a molecular basis for generating ACK binding-defective mutants of Cdc42 to delineate ACK-mediated signaling pathway. 相似文献