首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 420 毫秒
1.
The effects of adrenoreceptor blocking agents on corticotropin-releasing factor (CRF)-induced behavioral changes in rats were examined. The i.c.v. injection of 1 micrograms ovine CRF significantly increased the grooming frequency, number of occurrences of rearing and total distance moved. I.c.v. administered phentolamine at a dose of 10 nmol completely suppressed the increase in rearing and total distance moved induced by CRF without affecting the grooming frequency, whereas 100 nmol phentolamine significantly decreased the grooming frequency as well as the rearing and total distance moved. In contrast, propranolol reduced the increase in rearing induced by CRF only at a dose which induced ataxia in rats. The increases in rearing and total distance moved induced by CRF were reduced by 10 nmol of yohimbine and 100 nmol of prazosin. S.c. injection of caffeine (10 mg/kg) produced a significant increase in grooming frequency, rearing, and total movement. Administration of 10 nmol phentolamine and yohimbine did not affect these behavioral changes induced by caffeine, while 100 nmol prazosin suppressed them. Therefore, prazosin depressed the behavior of rats non-specifically. These results suggest that CRF-induced behavioral hyperactivity is mediated at least in part by alpha-noradrenergic, mainly alpha 2-noradrenergic, systems in the brain.  相似文献   

2.
Martinez V  Wang L  Million M  Rivier J  Taché Y 《Peptides》2004,25(10):1733-1744
Urocortin (Ucn) 1, 2 and 3 are corticotropin-releasing factor (CRF)-related peptides recently characterized in mammals. Urocortin 1 binds with high affinity to CRF type 1 (CRF1) and type 2 (CRF2) receptors while Ucn 2 and Ucn 3 are selective CRF2 ligands. They also have a distinct pattern of distribution, both in the brain and the gastrointestinal tract, compatible with a role mediating, with CRF, the response to stress. In rats and mice, Ucn 1 injected centrally or peripherally inhibited gastric emptying and stimulated colonic propulsive motor function, mimicking the effects of stress or exogenous CRF. Centrally administered Ucn 2 inhibited gastric emptying with similar potency as CRF, while Ucn 1 and Ucn 3 were less potent. However, after peripheral administration, Ucn 1 and Ucn 2 were more potent than CRF. In mice, centrally administered Ucn 1 and 2 stimulated colonic motility with lower potency than CRF, and Ucn 3 was inactive. Studies with selective CRF1 and CRF2 antagonists demonstrated that the gastric-inhibitory and colonic-stimulatory effects of exogenously administered Ucns are mediated through CRF2 and CRF1 receptors, respectively. In addition, Ucn 2 showed visceral anti-nociceptive activity associated with the selective activation of CRF2 receptors. These observations suggest that, acting centrally and peripherally, Ucns might play a significant role in the modulation of gastrointestinal motor and pain responses during stress and stress-related pathophysiological conditions.  相似文献   

3.
The members of the CRF peptide family, corticotropin-releasing factor (CRF), urocortin I (Ucn I), urocortin II (Ucn II) and urocortin III (Ucn III) coordinate endocrine and behavioral responses to stress. CRF has also been demonstrated to stimulate dopamine (DA) synthesis.In our study, a superfusion system was used to investigate the effects of this peptide family on striatal DA release following electrical stimulation. The involvement of the CRF receptors was studied by pretreatment of rat striatal slices with selective CRF antagonists. CRF and Ucn I increased the release of [3H]DA while Ucn II and Ucn III were ineffective. The CRFR1 antagonist antalarmin inhibited the [3H]DA release induced by electrical stimulation and enhanced by CRF and Ucn I. The CRFR2 antagonist astressin-2B was ineffective.These results suggest that CRF and Ucn I mediate DA release through the activation of CRFR1. Ucn II and Ucn III are not involved in this process.Special Issue Dedicated to Miklós Palkovits.  相似文献   

4.
Corticotropin-releasing factor (CRF) mediates various aspects of the stress response. To differentiate between the roles of CRF(1) and CRF(2) receptor subtypes in monoaminergic neurotransmission, hypothalamic-pituitary-adrenocortical axis activity and behaviour we compared the effects of CRF and urocortin 1 with those of the selective CRF(2) receptor ligands urocortin 2 and urocortin 3. In vivo microdialysis in the rat hippocampus was used to assess free corticosterone, extracellular levels of serotonin (5-HT) and noradrenaline (NA), and their metabolites 5-hydroxyindoleacetic acid (5-HIAA) and 3-methoxy-4-hydroxyphenylglycol (MHPG), respectively. Intracerebroventricular (i.c.v.) injection of CRF and urocortin 1, 2 and 3 (1.0 microg) increased hippocampal levels of 5-HT and 5-HIAA. CRF and urocortin 1 increased NA and MHPG, whereas urocortin 2 and urocortin 3 elevated MHPG, but not NA levels. CRF and the urocortins induced an immediate increase in behavioural activity. CRF and urocortin 1 mainly caused grooming and exploratory behaviour. In contrast, urocortin 2 and urocortin 3 both induced exploratory behaviour, but not grooming, and increased time spent eating food pellets. All urocortins, but not CRF, suppressed food intake 4-6 h after injection. Hippocampal free corticosterone levels were elevated by CRF, urocortin 1 and 3, but not by urocortin 2. The time courses of the CRF- and urocortin 1-induced responses were significantly prolonged as compared to those of the CRF(2) receptor ligands. The stimulatory changes evoked by CRF and urocortin 1 were present up to 4-6 h after injection, whereas the effects of urocortin 2 and urocortin 3 returned to baseline within 2.5 h after injection. Pre-treatment with the selective antagonist antisauvagine-30 (5.0 microg, i.c.v.) confirmed that the effects of urocortin 3 were CRF(2) receptor-mediated. The differential time course of the monoaminergic, neuroendocrine and behavioural effects of CRF and urocortin 1, as compared to urocortin 2 and urocortin 3, and the specific behavioural pattern induced by the CRF(2) receptor ligands, suggest a distinct role for CRF(2) receptors in the stress response.  相似文献   

5.
We characterized the influence of the selective corticotropin-releasing factor 2 (CRF(2)) receptor agonist human urocortin 2 (Ucn 2), injected intracisternally, on gastric emptying and its mechanism of action compared with intracisternal CRF or urocortin (Ucn 1) in conscious rats. The methylcellulose phenol red solution was gavaged 20 min after peptide injection, and gastric emptying was measured 20 min later. The intracisternal injection of Ucn 2 (0.1 and 1 microg) and Ucn 1 (1 microg) decreased gastric emptying to 37.8 +/- 6.9%, 23.1 +/- 8.6%, and 21.6 +/- 5.9%, respectively, compared with 58.4 +/- 3.8% after intracisternal vehicle. At lower doses, Ucn 2 (0.03 microg) and Ucn 1 (0.1 microg) had no effect. The CRF(2) antagonist astressin(2)-B (3 microg ic) antagonized intracisternal Ucn 2 (0.1 microg) and CRF (0.3 microg)-induced inhibition of gastric emptying. Vagotomy enhanced intracisternal Ucn 2 (0.1 or 1 microg)-induced inhibition of gastric emptying compared with sham-operated group, whereas it blocked intracisternal CRF (1 microg) inhibitory action (45.5 +/- 8.4% vs. 9.7 +/- 9.7%). Sympathetic blockade by bretylium prevented intracisternal and intracerebroventricular Ucn 2-induced delayed gastric emptying, whereas it did not influence intravenous Ucn 2-, intracisternal CRF-, and intracisternal Ucn 1-induced inhibition of gastric emptying. Prazosin abolished the intracisternal Ucn 2 inhibitory effect, whereas yohimbine and propranolol did not. None of the pretreatments modified basal gastric emptying. These data indicate that intracisternal Ucn 2 induced a central CRF(2)-mediated inhibition of gastric emptying involving sympathetic alpha(1)-adrenergic mechanisms independent from the vagus contrasting with the vagal-dependent inhibitory actions of CRF and Ucn 1.  相似文献   

6.
CRF and melanocortin (MSH/ACTH) peptides share a number of central effects including anorexia and grooming. The effects of CRF may be secondary, due to CRF's effects on melanocortin peptide release. We investigated if the newly discovered selective melanocortin 4 receptor antagonist HS014 could influence CRF induced anorexia and grooming. The data show that ICV administration of CRF (3 mg/rat), significantly reduced food intake, feeding time and feeding episodes whereas it increased grooming time and grooming episodes. HS014 (5 mg/rat), that previously has been shown to antagonize the anorectic effect and the excessive grooming induced by alpha-MSH, did however not influence any of the behavioral effects induced by CRF when the peptides were administered together. The data indicate that the anorectic and grooming effects of CRF are independent of pathways involving the MC4 receptors. These data suggest that the anorectic and grooming effect of CRF are not due to a secondary effect caused by increase in release of melanocortins acting on the central MC receptors.  相似文献   

7.
The presence of both Urocortin 1 (Ucn1) and corticotropin-releasing factor 2 receptors (CRF2R) in the hypothalamic supraoptic nucleus (SON) suggests that endogenous Ucn1 released within this brain area acts as a local signal that might be involved in the regulation of not only endocrine but also behavioural stress responses. To test this hypothesis, we monitored the effects induced by the administration of a range of doses of synthetic Ucn1 (0.001–1.0 μg) bilaterally into the SON of rats in the open field test (OFT). Ucn1 administration produced an inverted U-shaped dose–response curve on OFT behaviour, in particular the dose of 0.01 μg of Ucn1 significantly increased the number of rearing and grooming episodes without affecting locomotion. In addition, this dosage augmented also the latency to visit the centre of the open field. Pre-treatment with the CRF2R antagonist, astressin-2B (0.1 μg) normalized Ucn1 treatment-induced effects. These results suggest that Ucn1 released within the SON area interacts with CRF2R to control the state of arousal.  相似文献   

8.
We investigated the effects of corticotropin-releasing factor (CRF) and corticosterone (CORT) on foraging and locomotion in Western spadefoot toad (Spea hammondii) tadpoles and juveniles to assess the behavioral functions of these hormones throughout development. We administered intracerebroventricular injections of ovine CRF or CRF receptor antagonist alphahelical CRF((9-41)) to tadpoles and juveniles, and observed behavior within 1.5 h after injection. In both premetamorphic (Gosner stage 33) and prometamorphic (Gosner stages 35-37) tadpoles, CRF injections increased locomotion and decreased foraging. Injections of alphahelical CRF((9-41)) reduced locomotion but did not affect foraging in premetamorphic tadpoles, but dramatically increased foraging in prometamorphic tadpoles compared to both placebo and uninjected controls. Similarly, alphahelical CRF((9-41)) injections stimulated food intake and prey-catching behavior in juveniles. These results suggest that in later-staged amphibians, endogenous CRF secretion modulates feeding by exerting a suppressive effect on appetite. By contrast to the inhibitory effect of CRF, 3-h exposure to CORT (500 nM added to the aquarium water) stimulated foraging in prometamorphic tadpoles. These tadpoles also exhibited a CORT-mediated increase in foraging 6 h after CRF injection, which was associated with elevated whole-body CORT content and blocked by glucocorticoid receptor (GR) antagonist (RU486) injections. Thus, exogenous CRF influences locomotion and foraging in both pre- and prometamorphic tadpoles, but endogenous CRF secretion in relatively unstressed animals does not affect foraging until prometamorphic stages. Furthermore, the opposing actions of CRF and CORT on foraging suggest that they are important regulators of energy balance and food intake in amphibians throughout development.  相似文献   

9.
In addition to urocortin (Ucn I), Ucn II and Ucn III were identified as endogenous ligands for corticotropin-releasing factor type 2 receptor (CRF2 receptor). CRF2 receptor is abundantly located in central hypothalamic ventromedial nucleus (VMH) and in peripheral cardiovascular system. In this mini-review, we focused on the roles of these urocortins and CRF2 receptor in the hypothalamus and the cardiovascular system. Ucn II mRNA was increased in the parvocellular part or the magnocellular part of the hypothalamic paraventricular nucleus (PVN) following immobilization stress or 3 days of water deprivation, respectively. Therefore, it is thought that Ucn II may modulate CRF and vasopressin synthesis in the PVN in a paracrine or autocrine fashion through PVN CRF2 receptor. The early and later phases of Ucn I-mediated feeding suppression may be CRF1 and CRF2 receptor-mediated events, respectively. Ucn II decreases food intake at a later phase, beyond 4 h post injection. A large dose of corticosterone increased plasma leptin and insulin levels as well as the levels of CRF2 receptor mRNA. Adrenalectomy, starvation, and immobilization each lowered plasma leptin and insulin levels and were associated with decrements in CRF2 receptor mRNA levels in the VMH. Peripheral injection of leptin increased VMH CRF2 receptor mRNA, as can induce reductions of food intake and body weight, indicating that circulating leptin is involved in the regulation of VMH CRF2 receptor mRNA expression. Therefore, it is also plausible that VMH CRF2 receptor transduces the anorexogenic effects of leptin as well as those of urocortins. The systemic administration of Ucn II decreases mean arterial pressure (arterial vascular tone) and causes tachycardia via vascular CRF2 receptor in rats, similar to the effects of Ucn I. Thus, CRF2 receptor seems to mediate cardioprotective effects of urocortins.  相似文献   

10.
The effect of nociceptin (an endogenous ligand of the ORL1 receptor) on mesolimbic dopamine release and simultaneous horizontal locomotion was studied in freely moving mice undergoing microdialysis of the nucleus accumbens. Intracerebroventricular (i.c.v.) administration of nociceptin (7 nmol) induced a long-lasting suppression of mesolimbic dopamine release and horizontal locomotion in wild-type but not ORL1 knockout mice. I.c.v. administration of the recently reported peptide nociceptin antagonist [Nphe1, Arg14, Lys15] nociceptin-NH(2) (known also as UFP-101, 5 nmol) completely abolished the suppressive effect of nociceptin on mesolimbic dopamine release. However, UFP-101 administration alone induced a mild and lasting suppression of mesolimbic dopamine release in both wild-type and ORL1 knockout mice that was magnified in ORL1 knockout mice by coadministration of nociceptin. UFP-101 administration alone suppressed locomotion in both genotypes. These results confirm that the suppressive action of nociceptin on mesolimbic dopamine release is mediated entirely by the ORL1 receptor, and that UFP-101 effectively antagonizes this action. However, the lack of a stimulatory effect of UFP-101 in wild-type mice indicates that despite being sensitive to exogenous nociceptin action, basal mesolimbic dopaminergic activity is not determined by endogenous nociceptin in mice.  相似文献   

11.
Central injection of Nociceptin/Orphanin FQ (N/OFQ), inhibits the anorectic effect of corticotropin-relasing factor (CRF) and stress in rats. Recently, Urocortin II (Ucn II) and Urocortin III (Ucn III), two selective CRF2 receptor agonists, have been identified. Here, we investigated the effect of intracerebroventricular (ICV) injection of 0.25, 0.75, 1.50 or 3 nmol/rat of Ucn II or Ucn III on food and water intake in food deprived rats. The effect of N/OFQ on Ucn II and UCNIII-induced anorexia was also studied. Results showed a greater inhibition of food consumption by Ucn II than Ucn III. Pretreatment with N/OFQ (0.25–2.0 nmol/rat) did not block the effects of Ucn II and UCNIII. Conversely, injection of N/OFQ (0.25–2.0 nmol/rat) blocked the anorectic effect of CRF (0.1 nmol/rat). These findings suggest that N/OFQ selectively prevent the anorectic effect mediated by activation of the CRF1 receptor system.  相似文献   

12.
13.
Sensitivity to the euphoric and locomotor‐activating effects of drugs of abuse may contribute to risk for excessive use and addiction. Repeated administration of psychostimulants such as methamphetamine (MA) can result in neuroadaptive consequences that manifest behaviorally as a progressive escalation of locomotor activation, termed psychomotor sensitization. The present studies addressed the involvement of specific components of the corticotropin‐releasing factor (CRF) system in locomotor activation and psychomotor sensitization induced by MA (1, 2 mg/kg) by utilizing pharmacological approaches, as well as a series of genetic knockout (KO) mice, each deficient for a single component of the CRF system: CRF‐R1, CRF‐R2, CRF, or the CRF‐related peptide Urocortin 1 (Ucn1). CRF‐R1 KO mice did not differ from wild‐type mice in sensitization to MA, and pharmacological blockade of CRF‐R1 with CP‐154,526 (15, 30 mg/kg) in DBA/2J mice did not selectively attenuate either the acquisition or expression of MA‐induced sensitization. Deletion of either of the endogenous ligands of CRF‐R1 (CRF, Ucn1) either enhanced or had no effect on MA‐induced sensitization, providing further evidence against a role for CRF‐R1 signaling. Interestingly, deletion of CRF‐R2 attenuated MA‐induced locomotor activation, elucidating a novel contribution of the CRF system to MA sensitivity, and suggesting the participation of the endogenous urocortin peptides Ucn2 and Ucn3. Immunohistochemistry for Fos was used to visualize neural activation underlying CRF‐R2‐dependent sensitivity to MA, identifying the basolateral and central nuclei of the amygdala as neural substrates involved in this response. Our results support further examination of CRF‐R2 involvement in neural processes associated with MA addiction.  相似文献   

14.
Corticotropin-releasing factor (CRF) is involved in a variety of physiological functions including regulation of hypothalamo-pituitary-adrenal axis activity during stressful periods. Urocortins (Ucns) are known to be members of the CRF family peptides. CRF has a high affinity for CRF receptor type 1 (CRF(1) receptor). Both Ucn2 and Ucn3 have very high affinity for CRF receptor type 2 (CRF(2) receptor) with little or no binding affinity for the CRF(1) receptor. Gonadotropin-releasing hormone (GnRH) is known to be involved in the regulation of the stress response. Gonadotropin-inhibitory hormone (GnIH) neurons interact directly with GnRH neurons, and the action of GnIH is mediated by a novel G-protein coupled receptor, Gpr147. This study aimed to explore the possible function of CRF family peptides and the regulation of GnRH mRNA in hypothalamic GnRH cells. Both mRNA and protein expression of the CRF(1) receptor and CRF(2) receptor were found in hypothalamic GnRH N39 cells. CRF suppressed GnRH mRNA levels via the CRF(1) receptor, while Ucn2 increased the levels via the CRF(2) receptor. Both CRF and Ucn2 increased Gpr147 mRNA levels. The results indicate that CRF and Ucn2 can modulate GnRH mRNA levels via each specific CRF receptor subtype. Finally, CRF suppressed GnRH protein levels, while Ucn2 increased the levels. Differential regulation of GnRH by CRF family peptides may contribute to the stress response and homeostasis in GnRH cells.  相似文献   

15.
Urocortins (Ucn1-3), members of the corticotropin-releasing factor (CRF) family of neuropeptides, are emerging as potent immunomodulators. Localized, cellular expression of Ucn1 and Ucn2, but not Ucn3, has been demonstrated during inflammation. Here, we investigated the role of Ucn3 in a rat model of Crohn's colitis and the relative contribution of CRF receptors (CRF1 and CRF2) in regulating Ucn3 expression at baseline and during inflammation. Ucn3 mRNA and peptide were ubiquitously expressed throughout the GI tract in naïve rats. Ucn3 immunoreactivity was seen in epithelial cells and myenteric neurons. On day 1 of colitis, Ucn3 mRNA levels decreased by 80% and did not recover to baseline even by day 9. Next, we ascertained pro- or anti-inflammatory actions of Ucn3 during colitis. Surprisingly, unlike observed anti-inflammatory actions of Ucn1, exogenous Ucn3 did not alter histopathological outcomes during colitis and neither did it alter levels of pro-inflammatory cytokines IL-6 and TNF-α. At baseline, colon-specific knockdown of CRF1, but not CRF2 decreased Ucn3 mRNA by 78%, whereas during colitis, Ucn3 mRNA levels increased after CRF1 knockdown. In cultured cells, co-expression of CRF1 + CRF2 attenuated Ucn3-stimulated intracellular Ca2+ peak by 48% as compared to cells expressing CRF2 alone. Phosphorylation of p38 kinase increased by 250% during colitis and was significantly attenuated after Ucn3 administration. Thus, our results suggest that a balanced and coordinated expression of CRF receptors is required for proper regulation of Ucn3 at baseline and during inflammation.  相似文献   

16.
3,4-methylenedioxymethamphetamine (MDMA, ecstasy) is a widely abused drug that impairs behavioral, emotional and cognitive functions in humans and animals. The aim of this study was to evaluate MDMA effects on the spontaneous behavioral repertoire of rats with a focus on the gender differences. MDMA was given subcutaneously in a single dose of 2.5, 5 and 10 mg/kg and the spontaneous behavior of male and female rats was studied using the open field test. Behavioral patterns (locomotion, rearing, floor-sniffing, air-sniffing, grooming, immobility and stereotypy) were registered in two sessions - 30 and 60 min following MDMA administration; each session lasting 5 min. We found that MDMA totally disrupted the structure and timing of spontaneous behavioral patterns in both genders; no evident differences were measured between either of the sessions. MDMA irrespective of the dosage produced hyperlocomotion, excessive floor-sniffing and almost absolute suppression of grooming and immobility. A biphasic effect of MDMA was found in rearing. Gender differences were present namely in rearing and sniffing stereotypy. This study also confirms that behavioral experiments should focus on more behavioral elements than only on e.g. locomotion and that the observer-based approach still gives the most reliable results.  相似文献   

17.
Urocortins (UCNs) and their receptors are potent immunoregulators in the gastrointestinal (GI) tract, where they can exert both pro- and anti-inflammatory effects. We examined the contribution of Ucn1 and its receptors to the pathogenesis, progression, and resolution of colitis. Trinitrobenzene sulfonic acid was used to induce colitis in rats. Ucn1 mRNA and immunoreactivity (IR) were ubiquitously expressed throughout the GI tract under basal conditions. During colitis, Ucn1 mRNA levels fell below basal levels on day 1 then increased again by day 6, in association with an increase in the number of Ucn1-IR inflammatory cells. Ucn1-IR cells were also numerous in proliferating granulation tissue. In contrast to Ucn1 expression, average phosphorylated ERK1/2 (pERK1/2) expression rose above controls levels on day 1 and was very low on day 6 of colitis. Knockdown of corticotropin-releasing factor 2 (CRF(2)) but not CRF(1) by RNA interference during colitis significantly decreased the macroscopic lateral spread of ulceration compared with uninjected controls or animals with CRF(1) knockdown. After knockdown of CRF(2), but not of CRF(1) during colitis, edema resolution assessed microscopically was slowed, and myeloperoxidase activity remained elevated even at day 6. Ucn1 and TNF-α mRNA peaked earlier, whereas pERK1/2 activation was attenuated after CRF(2) knockdown. Thus we conclude that local CRF(2) and pERK1/2 activation is pivotal for macroscopic spread of colitis and resolution of edema. Elimination of CRF(2), but not CRF(1), results in uncoordinated immune and pERK1/2 signaling responses.  相似文献   

18.
Comparison of the anorexigenic activity of CRF family peptides   总被引:1,自引:0,他引:1  
Corticotropin releasing factor (CRF) family peptides have an important role in the control of food intake. We investigated the effects of CRF family peptides on food intake and body weight gain in mice. Of the CRF family peptides, including CRF, urocortin1 (Ucn1), urocortin2 (Ucn2) and urocortin3 (Ucn3), peripherally administered Ucn1 was shown to have the most potent inhibitory effect on the food intake and body weight gain of both lean and high fat fed obese mice. In addition, repeated administration of Ucn1 lowered blood glucose and acylated ghrelin, and decreased the visceral fat weight of high fat fed obese mice.  相似文献   

19.
Urocortin 2 (Ucn2) is a member of the corticotropin releasing factor (CRF) peptide family, which binds to CRF type 2 receptor. We previously reported on expression of Ucn2 in proopiomelanocortin cells of rat pituitary and its inhibitory action on LH secretion. We also demonstrated that Ucn2 is involved in the mechanism underlying immobilization-induced suppression of LH secretion; the details remain unclear. Here, we found that Ucn2 increased the expression of miR-325-3p, one of three microRNAs with predicted sequence for binding to LH β-subunit 3'-untranslated region (3'-UTR) in monolayer cultured rat anterior pituitary cells, and that miR-325-3p was expressed in LH cells of the anterior pituitary. Immobilization also increased miR-325-3p expression in the anterior pituitary, and its increase was blocked by pretreatment with anti-Ucn2 IgG. Overexpression of miR-325-3p in cultured pituitary cells significantly suppressed intracellular contents and secretion of LH, while miR-325-3p knockdown blocked Ucn2-induced suppression of intracellular contents and secretion of LH. Coexpression of miR-325-3p with LH β-subunit 3'-UTR-fused luciferase vector significantly suppressed luciferase activity compared with that of mock transfectants. These results suggest that miR-325-3p is involved in immobilization-induced suppression of LH translation and secretion and that Ucn2 plays a role in the increase in miR-325-3p expression.  相似文献   

20.
Urocortin   总被引:2,自引:0,他引:2  
Urocortin (Ucn) is a 40 amino acid peptide which is closely related to corticotrophin-releasing factor (CRF). It is expressed in specific regions of the brain but is also detectable in other organs notably the heart. Although some of the effects of Ucn in the nervous system such as enhanced anxiety and activity mimic those of CRF, Ucn is a much more potent suppressor of appetite/feeding behaviour. Moreover, Ucn has much more potent effects on the cardiovascular system than CRF, including enhanced cardiac contractility/heart rate and enhanced resistance of cardiac cells to injury induced, for example, by ischaemia/reperfusion. This suggests Ucn may play a key role in the response of the cardiovascular system to stress. In addition, Ucn represents a novel cardioprotective agent which may be of therapeutic use in treating the damaging effects of cardiac ischaemia and subsequent reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号