首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The I-3 gene from the wild tomato species Lycopersicon pennellii confers resistance to race 3 of the devastating vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici. As an initial step in a positional cloning strategy for the isolation of I-3, we converted restriction fragment length polymorphism and conserved orthologue set markers, known genes and a resistance gene analogue (RGA) mapping to the I-3 region into PCR-based sequence characterised amplified region (SCAR) and cleaved amplified polymorphic sequence (CAPS) markers. Additional PCR-based markers in the I-3 region were generated using the randomly amplified DNA fingerprinting (RAF) technique. SCAR, CAPS and RAF markers were used for high-resolution mapping around the I-3 locus. The I-3 gene was localised to a 0.3-cM region containing a RAF marker, eO6, and an RGA, RGA332. RGA332 was cloned and found to correspond to a putative pseudogene with at least two loss-of-function mutations. The predicted pseudogene belongs to the Toll interleukin-1 receptor-nucleotide-binding site-leucine-rich-repeat sub-class of plant disease resistance genes. Despite the presence of two RGA332 homologues in L. esculentum, DNA gel blot and PCR analysis suggests that no other homologues are present in lines carrying I-3 that could be alternative candidates for the gene.Communicated by R. Hagemann  相似文献   

2.
Phytophthora infestans is the causal agent of late blight in potato. The Mexican species Solanum demissum is well known as a good resistance source. Among the 11 R gene differentials, which were introgressed from S. demissum, especially R8 and R9 differentials showed broad spectrum resistance both under laboratory and under field conditions. In order to gather more information about the resistance of the R8 and R9 differentials, F1 and BC1 populations were made by crossing Mastenbroek (Ma) R8 and R9 clones to susceptible plants. Parents and offspring plants were examined for their pathogen recognition specificities using agroinfiltration with known Avr genes, detached leaf assays (DLA) with selected isolates, and gene-specific markers. An important observation was the discrepancy between DLA and field trial results for Pi isolate IPO-C in all F1 and BC1 populations, so therefore also field trial results were included in our characterization. It was shown that in MaR8 and MaR9, respectively, at least four (R3a, R3b, R4, and R8) and seven (R1, Rpi-abpt1, R3a, R3b, R4, R8, R9) R genes were present. Analysis of MaR8 and MaR9 offspring plants, that contained different combinations of multiple resistance genes, showed that R gene stacking contributed to the Pi recognition spectrum. Also, using a Pi virulence monitoring system in the field, it was shown that stacking of multiple R genes strongly delayed the onset of late blight symptoms. The contribution of R8 to this delay was remarkable since a plant that contained only the R8 resistance gene still conferred a delay similar to plants with multiple resistance genes, like, e.g., cv Sarpo Mira. Using this “de-stacking” approach, many R gene combinations can be made and tested in order to select broad spectrum R gene stacks that potentially provide enhanced durability for future application in new late blight resistant varieties.  相似文献   

3.
Interspecific somatic hybrids between a dihaploid potato clone H-8105 susceptible to Phytophthora infestans (Mont.) de Bary and a resistant diploid tuberizing species Solanum bulbocastanum were generated and analysed. Only ten regenerants displaying the intermediate morphology with dominating characteristics of the wild parent (simple leaves, anthocyanin pigmentation) were produced in 15 weeks after a single PEG-mediated fusion event. The RAPD patterns confirmed the hybridity of all of them. The hybrids rooted poorly and grew slowly in vitro. The cytological analysis revealed a high degree of aneuploidy in the hybrids with morphological and growth anomalies in vitro, while the morphologically normal hybrids were tetraploids. All the S. bulbocastanum (+) H-8105 hybrids were unstable in culture and three of them were consequently lost during three years of propagation in vitro. The possible reasons for instability of somatic hybrids between the distantly related species are discussed.  相似文献   

4.
The resistance (R) proteins of the TIR- and non-TIR (or CC-) superfamilies possess a nucleotide binding site (NBS) domain. Within an R gene, the NBS is the region of highest conservation, suggesting an essential role in triggering R protein activity. We compared the NBS domain of functional R genes and resistance gene analogs (RGA) amplified from S. caripense genomic DNA via PCR using specific and degenerate primers with its counterpart from other plants. An overall high degree of sequence conservation was apparent throughout the P-loop, kinase-2 and kinase-3a motifs of NBS fragments from all plants. Within the non-TIR class of R genes a prominent sub-class similar to the potato R1 gene conferring resistance to late blight, was detected. All non-TIR-R1-like R gene fragments that were sequenced possessed an intact open reading frame, whereas 22% of all non-TIR-non-R1-like fragments and 59% of all TIR-NBS RGA fragments had an interrupted reading frame or contained transposon-specific sequence. The non-TIR-R1-like fragments had high similarity to Solanaceae R genes and low similarity to RGAs of other plant species including A. thaliana and the cereals. It is concluded that appearance of the non-TIR-R1-like NBS domain represents a relatively recent evolutionary development. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

5.
The barley genes Rpg5, RGA1 and Adf3, which provide a strong resistance to many pathotypes of stem rust, were cloned a few years ago, but it was still unclear whether their homologues were represented in wheat and in related species. The paper describes the results of a bioinformatic research to determine the homologues of Rpg5, RGA1 and Adf3 in the genomes of Triticum aestivum and several wild grasses, which breeders usually use as sources of stem rust resistance, and which are available in the genome databases. It was found that the Th. elongatum sequence Q9FEC6 and T. aestivum sequence Q43655 were the highly identical homologues of the Adf3 sequence. T. urartu M8A999 sequence and T. aestivum W5FCU1 sequence were found to be the closest homologues of Rpg5 complete protein sequence, but the identity of their kinase domains was not as clear as that of the other domains. The separate Rpg5 kinase part analysis did not provide the strong evidences that its orthologs were present in our corn species. T. urartu M7ZZX9 sequence and T. aestivum W5FFP0 and W5FI33 sequences were shown to be the homologues of RGA1. The analysis of the predicted active sites allowed finding out the difference between sequences of Rpg5, RGA1, Adf3 protein and their homologues.  相似文献   

6.

Background  

The secondary genepool of our modern cultivated potato (Solanum tuberosum L.) consists of a large number of tuber-bearing wild Solanum species under Solanum section Petota. One of the major taxonomic problems in section Petota is that the series classification (as put forward by Hawkes) is problematic and the boundaries of some series are unclear. In addition, the classification has received only partial cladistic support in all molecular studies carried out to date.  相似文献   

7.
The wild potato species Solanum bulbocastanum is a source of genes for potent late blight resistance. We previously mapped resistance to a single region of the S. bulbocastanum chromosome 8 and named the region RB (for "Resistance from S. Bulbocastanum "). We now report physical mapping and contig construction for the RB region via a novel reiterative method of BAC walking and concomitant fine genetic mapping. BAC walking was initiated using RFLP markers previously shown to be associated with late blight resistance. Subcontig extension was accomplished using new probes developed from BAC ends. Significantly, BAC end and partial BAC sequences were also used to develop PCR-based markers to enhance map resolution in the RB region. As they were developed from BAC clones of known position relative to RB, our PCR-based markers are known a priori to be physically closer to the resistance region. These markers allowed the efficient screening of large numbers of segregating progeny at the cotyledon stage, and permitted us to assign the resistance phenotype to a region of approximately 55 kb. Our markers also directed BAC walking efforts away from regions distantly related to RB in favor of the 55-kb region. Because the S. bulbocastanum genotype used in BAC library construction is heterozygous for RB (RB/rb), codominant PCR-based markers, originally developed for fine-scale mapping, were also used to determine homolog origins for individual BAC clones. Ultimately, BAC contigs were constructed for the RB region from both resistant (RB) and susceptible (rb) homologs.Communicated by R. Hagemann  相似文献   

8.
Introduction of more durable resistance against Phytophthora infestans causing late blight into the cultivated potato is of importance for sustainable agriculture. We identified a new monogenically inherited resistance locus that is localized on chromosome 4. The resistance is derived from an ABPT clone, which is originally a complex quadruple hybrid in which Solanum acaule, S. bulbocastanum, S. phureja and S. tuberosum were involved. Resistance data of the original resistant accessions of the wild species and analysis of mobility of AFLP markers linked to the resistance locus suggest that the resistance locus is originating from S. bulbocastanum. A population of 1383 genotypes was screened with two AFLP markers flanking the Rpi-abpt locus and 98 recombinants were identified. An accurate high-resolution map was constructed and the Rpi-abpt locus was localized in a 0.5 cM interval. One AFLP marker was found to co-segregate with the Rpi-abpt locus. Its DNA sequence was highly similar with sequences found on a tomato BAC containing several resistance gene analogues on chromosome 4 and its translated protein sequence appeared to be homologous to several disease resistance related proteins. The results indicated that the Rpi-abpt gene is a member of an R gene cluster.  相似文献   

9.
Cotton fibres are single, highly elongated cells derived from the outer epidermis of ovules, and are developmentally similar to the trichomes of Arabidopsis thaliana. To identify genes involved in the molecular control of cotton fibre initiation, we isolated four putative homologues of the Arabidopsis trichome-associated gene TRANSPARENT TESTA GLABRA1 (TTG1). All four WD-repeat genes are derived from the ancestral D diploid genome of tetraploid cotton and are expressed in many tissues throughout the plant, including ovules and growing fibres. Two of the cotton genes were able to restore trichome formation in ttg1 mutant Arabidopsis plants. Both these genes also complemented the anthocyanin defect in a white-flowered Matthiola incana ttg1 mutant. These results demonstrate parallels in differentiation between trichomes in cotton and Arabidopsis, and indicate that these cotton genes may be functional homologues of AtTTG1.  相似文献   

10.
The R1 gene for resistance to oomycete Phytophthora infestans (Mont.) de Bary, the causal agent of late blight disease of potato (Solanum tuberosum L.), was initially identified in S. demissum and potato varieties bred by introgressing the S. demissum germplasm. Later a sequence characterized amplified region (SCAR) marker R1-1205 of this gene was also found in S. stoloniferum and S. polytrichon. Here we describe the full-length R1 sequence cloned from S. stoloniferum. This sequence is translatable, and this evidence of structural gene integrity is reinforced by functional characterization of the S. stoloniferum R1 gene in an effectoromics experiment. When screened across a series of S. demissum and S. stoloniferum accessions, the R1 sequences differed by several single nucleotide polymorphisms and an indel; this indel served the basis for constructing SCAR markers R1-517 and R1-513 that reliably discerned two R1 orthologs. The demissum-specific marker R1-517 was found in all S. demissum accessions under study; it was also present in many demissum-derived potato varieties and hybrids. The stoloniferum-specific marker R1-513 was found in 27% of S. stoloniferum and S. polytrichon accessions; however, we failed to discern this marker in the genotypes of cultivated potato listing S. stoloniferum in their pedigrees. Most probably, such absence of R1-513 is best explained by an opportunistic breeding history of stoloniferum-derived founder lines, which were employed first and foremost in breeding for resistance to potato virus Y: eventually, these founder lines are devoid of the R1 gene.  相似文献   

11.
Imprinted genes play significant roles in the regulation of fetal growth and development, function of the placenta, and maternal nurturing behaviour in mammals. At present, few imprinted genes have been reported in pigs compared to human and mouse. In order to increase understanding of imprinted genes in swine, a polymorphism-based approach was used to assess the imprinting status of three porcine genes in 12 tissue types, obtained from F1 pigs of reciprocal crosses between Rongchang and Landrace pure breeds. In contrast to human and mouse homologues, porcine PPP1R9A was not imprinted, and was found to be expressed in all tissues examined. The expression of porcine NAP1L5 was detected in pituitary, liver, spleen, lung, kiduey, stomach, small intestine, skeletal muscle, fat, ovary, and uterus, but undetectable in heart. Furthermore, porcine NAP1L5 was paternally expressed in the tissues where it’s expression was observed. For PEG3, pigs expressed the paternal allele in skeletal muscle, liver, spleen, kidney, and uterus, but biallele in heart, lung, fat, stomach, small intestine, and ovary. Our data indicate that tissue distribution of the three gene differs among mammals, and the imprinting of NAP1L5 and PEG3 is well conserved.  相似文献   

12.
Potato is the world's fourth largest food crop yet it continues to endure late blight, a devastating disease caused by the Irish famine pathogen Phytophthora infestans. Breeding broad-spectrum disease resistance (R) genes into potato (Solanum tuberosum) is the best strategy for genetically managing late blight but current approaches are slow and inefficient. We used a repertoire of effector genes predicted computationally from the P. infestans genome to accelerate the identification, functional characterization, and cloning of potentially broad-spectrum R genes. An initial set of 54 effectors containing a signal peptide and a RXLR motif was profiled for activation of innate immunity (avirulence or Avr activity) on wild Solanum species and tentative Avr candidates were identified. The RXLR effector family IpiO induced hypersensitive responses (HR) in S. stoloniferum, S. papita and the more distantly related S. bulbocastanum, the source of the R gene Rpi-blb1. Genetic studies with S. stoloniferum showed cosegregation of resistance to P. infestans and response to IpiO. Transient co-expression of IpiO with Rpi-blb1 in a heterologous Nicotiana benthamiana system identified IpiO as Avr-blb1. A candidate gene approach led to the rapid cloning of S. stoloniferum Rpi-sto1 and S. papita Rpi-pta1, which are functionally equivalent to Rpi-blb1. Our findings indicate that effector genomics enables discovery and functional profiling of late blight R genes and Avr genes at an unprecedented rate and promises to accelerate the engineering of late blight resistant potato varieties.  相似文献   

13.
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most devastating plant bacterial disease worldwide. Different bacterial blight resistance (R) genes confer race-specific resistance to different strains of Xoo. We fine mapped a fully recessive gene, xa24, for bacterial blight resistance to a 71-kb DNA fragment in the long arm of rice chromosome 2 using polymerase chain reaction-based molecular markers. The xa24 gene confers disease resistance at the seedling and adult stages. It mediates resistance to at least the Philippine Xoo races 4, 6 and 10 and Chinese Xoo strains Zhe173, JL691 and KS-1-21. Sequence analysis of the DNA fragment harboring the dominant (susceptible) allele of xa24 suggests that this gene should encode a novel protein that is not homologous to any known R proteins. These results will greatly facilitate the isolation and characterization of xa24. The markers will be convenient tools for marker-assisted selection of xa24 in breeding programs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
In vertebrate development the Dickkopf protein family carries out multiple functions and is represented by at least four different genes with distinct biological activities. In invertebrates such as Drosophila and Caenorhabditis, Dickkopf genes have so far not been identified. Here we describe the identification and characterization of a Dickkopf gene with a deduced amino acid sequence closely related to that of chicken Dkk-3 in the basal metazoan Hydra. HyDkk-3 appears to be the only Dickkopf gene in Hydra. The gene is expressed in the gastric region in nematocytes at a late differentiation stage. In silico searches of EST and genome databases indicated the absence of Dkk genes from the protostomes Drosophila and Caenorhabditis, whereas within the deuterostomes, a Dkk-3 gene could be identified in the genome of the urochordate Ciona intestinalis. The results indicate that at an early stage of evolution of multicellularity Dickkopf proteins have already played important roles as developmental signals. They also suggest that vertebrate Dkk-1, 2 and 4 may have originated from a common ancestor gene of Dkk-3.H. Fedders and R. Augustin contributed equally to this workEdited by D. Tautz  相似文献   

15.
RBP1 is an important splicing factor involved in alternative splicing of the pre-mRNA of Drosophila sex-determining gene dsx. In this work, the Bombyx mori homologue of the rbp1 gene, Bmrbp1, was cloned. The pre-mRNA of Bmrbp1 gene is alternatively spliced to produce four mature mRNAs, named Bmrbp1-PA, Bmrbp1-PB, Bmrbp1-PC and Bmrbp1-PD, with nucleotide lengths of 799 nt, 1,316 nt, 894 nt and 724 nt, coding for 142 aa, 159 aa, 91 aa and 117 aa, respectively. BmRBP1-PA and BmRBP1-PD contain a N terminal RNA recognization motif (RRM) and a C terminal arginine/serine-rich domain, while BmRBP1-PB and BmRBP1-PC only share a RRM. Amino acid sequence alignments showed that BmRBP1 is conserved with its homologues in other insects and with other SR family proteins. The RT-PCR showed that Bmrbp1-PA was strongly expressed in all examined tissues and development stages, but Bmrbp1-PB was weakly expressed in these tissues and stages. The expression of both Bmrbp1-PA and Bmrbp1-PB showed no obvious sex difference. While the Bmrbp1-PC and Bmrbp1-PD were beyond detection by RT-PCR very likely due to their tissue/stage specificity. These results suggested that Bmrbp1 should be a member of SR family splicing factors, whether it is involved in the sex-specific splicing of Bmdsx pre-mRNA needs further research.  相似文献   

16.
The use of resistant varieties is an important tool in the management of late blight, which threatens potato production worldwide. Clone MaR8 from the Mastenbroek differential set has strong resistance to Phytophthora infestans, the causal agent of late blight. The F1 progeny of a cross between the susceptible cultivar Concurrent and MaR8 were assessed for late blight resistance in field trials inoculated with an incompatible P. infestans isolate. A 1:1 segregation of resistance and susceptibility was observed, indicating that the resistance gene referred to as R8, is present in simplex in the tetraploid MaR8 clone. NBS profiling and successive marker sequence comparison to the potato and tomato genome draft sequences, suggested that the R8 gene is located on the long arm of chromosome IX and not on the short arm of chromosome XI as was suggested previously. Analysis of SSR, CAPS and SCAR markers confirmed that R8 was on the distal end of the long arm of chromosome IX. R gene cluster directed profiling markers CDPSw54 and CDPSw55 flanked the R8 gene at the distal end (1 cM). CDPTm21-1, CDPTm21-2 and CDPTm22 flanked the R8 gene on the proximal side (2 cM). An additional co-segregating marker (CDPHero3) was found, which will be useful for marker assisted breeding and map based cloning of R8.  相似文献   

17.
The South American tree Solanum mauritianum Scopoli (Solanaceae), a major environmental weed in South Africa and New Zealand, has been targeted for biological control, with releases of agents restricted to South Africa. The leaf-sucking lace bug, Gargaphia decoris Drake (Tingidae), so far the only agent released, has become established in South Africa with recent reports of severe damage at a few field sites. To evaluate the insect’s suitability for release in New Zealand, host-specificity testing was carried out in South Africa in laboratory and open-field trials, with selected cultivated and native species of Solanum from New Zealand. No-choice tests confirmed the results of earlier trials that none of the three native New Zealand Solanum species are acceptable as hosts. Although the cultivated Solanum muricatum Aiton and S. quitoense Lam. also proved unacceptable as hosts, some cultivars of S. melongena L. (eggplant) supported feeding, development and oviposition in the no-choice tests. Although eggplant was routinely accepted under laboratory no-choice conditions in this and previous studies, observations in the native and introduced range of G. decoris, open-field trials and risk assessment based on multiple measures of insect performance indicate that the insect has a host range restricted to S. mauritianum. These results strongly support the proposed release of G. decoris in New Zealand because risks to non-target native and cultivated Solanum species appear to be negligible. An application for permission to release G. decoris in New Zealand will be submitted to the regulatory authority. Handling editor: John Scott.  相似文献   

18.
We examined the relationship between the recurrent flowering character and the expression patterns of TERMINAL FLOWER 1 (TFL1) homologs in roses, using flower buds of Rosa multiflora, R. rugosa, R. chinensis, and six other rose species and nine rose cultivars. RTFL1 (Rosa TFL1) genes were amplified from rose genomic DNA using a combination of degenerate and gene-specific primers by thermal asymmetric interlaced-PCR and normal PCR, respectively. Their copy numbers in different species were determined by Southern blots. We used real-time PCR to analyze the expression patterns of RTFL1 genes at four developmental stages (pre-sprouting, young, mid-aged, and mature flower buds). Our results show that there are at least three RTFL1 homologs in roses; RTFL1a, RTFL1b, and RTFL1c. The sequences of the homologs were more similar among the same homolog in different species than among the different homologs in the same species. For RTFL1a, we detected two copies in R. multiflora, two copies in R. rugosa, and one copy in R. chinensis. For RTFL1c, we detected one copy in R. multiflora, two copies in R. rugosa, and three copies in R. chinensis. We detected only one copy of RTFL1b in R. chinensis. RTFL1c was expressed at high levels at all four flowering stages in R. multiflora and R. rugosa, which are non-recurrent flowering species, whereas it was barely detected in R. chinensis (a recurrent flowering species) at any stage. These results were further verified in six other non-recurrent flowering species and nine recurrent flowering cultivars. These results suggest that the recurrent flowering habit in roses results from lower expression of RTFL1c, which may be related to recurrent flowering character in roses.  相似文献   

19.
Pro-apoptotic proteins from the reaper, hid, grim (RHG) family are primary regulators of programmed cell death in Drosophila due to their antagonistic effect on inhibitor of apoptosis (IAP) proteins, thereby releasing IAP-inhibition of caspases that effect apoptosis. Using a degenerate PCR approach to conserved domains from the 12 Drosophila species, we have identified the first reaper and hid orthologs from a tephritid, the Caribfly Anastrepha suspensa. As-hid is the first identified non-drosophilid homolog of hid, and As-rpr is the second non-drosophilid rpr homolog. Both genes share more than 50% amino acid sequence identity with their Drosophila homologs, suggesting that insect pro-apoptotic peptides may be more conserved than previously anticipated. Importantly, both genes encode the conserved IBM and GH3 motifs that are key for IAP-inhibition and mitochondrial localization. Functional verification of both genes as cell death effectors was demonstrated by cell death assays in A. suspensa embryonic cell culture, as well as in heterologous Drosophila melanogaster S2 cells. Notably, heterologous cell death activity was found to be higher for Anastrepha genes than their Drosophila counterparts. In common with the Drosophila cognates, As-hid and As-rpr negatively regulated the Drosophila inhibitor of apoptosis (DIAP1) gene to promote apoptosis, and both genes when used together effected increased cell death activity, indicating a co-operative function for As-hid and As-rpr. We show that these tephritid cell death genes are functional and potent as cell death effectors, and could be used to design improved transgenic lethality systems for insect population control.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号