首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In meiotic cells of the fission yeast Schizosaccharomyces pombe, a DNA exonuclease activity increased approximately 5-fold after premeiotic S-phase and decreased to the initial level before the meiotic divisions. We have purified this activity, designated exonuclease I, to near homogeneity. The activity co-purified with a polypeptide with an apparent molecular weight of 36,000. With a linear double-stranded DNA substrate, exonuclease I degraded only the 5'-ended strand from each end to produce 3'-single-stranded tails. The enzyme also acted on nicked circular DNA with comparable affinity. The meiotic induction of exonuclease I and its mode of action, similar to that of recombination-promoting exonucleases from bacteria, suggest that exonuclease I is involved in meiotic homologous recombination in S. pombe.  相似文献   

2.
Cryptococcus neoformans is a basidiomycetous fungal pathogen that infects the central nervous system. The organism has a defined sexual cycle involving mating between haploid MATalpha and MATa cells. Recent studies have revealed signaling cascades that coordinately regulate differentiation and virulence of C. neoformans. One signaling cascade involves a conserved G-protein alpha subunit and cAMP, and senses nutrients during mating and virulence. The second is a conserved mitogen activated protein (MAP) kinase cascade that senses pheromone during mating, and also regulates haploid fruiting and virulence. Interestingly, some of the MAP kinase components are encoded by the MAT locus itself, which may explain the unique association of the MATalpha locus with physiology and virulence.  相似文献   

3.
During the transition from mitosis to meiosis, the kinetochore undergoes significant reorganization, switching from a bipolar to a monopolar orientation. To examine the centromere proteins that are involved in fundamental reorganization in meiosis, we observed the localization of 22 mitotic and 2 meiotic protein components of the kinetochore during meiosis in living cells of the fission yeast. We found that the 22 mitotic proteins can be classified into three groups: the Mis6-like group, the NMS (Ndc80-Mis12-Spc7) group, and the DASH group, based on their meiotic behavior. Mis6-like group proteins remain at the centromere throughout meiosis. NMS group proteins disappear from the centromere at the onset of meiosis and reappear at the centromere in two steps in late prophase. DASH group proteins appear shortly before metaphase of meiosis I. These observations suggest that Mis6-like group proteins constitute the structural basis of the centromere and that the NMS and DASH group proteins reassemble to establish the functional metaphase kinetochore. On the other hand, the meiosis-specific protein Moa1, which plays an important role in forming the meiotic monopolar kinetochore, is loaded onto the centromere significantly earlier than the NMS group, whereas another meiosis-specific protein, Sgo1, is loaded at times similar to the NMS group.  相似文献   

4.
Nematode proteins related to the human epidermal growth factor receptor and Ras proteins act in a common pathway to control cell fates in response to an inductive signal. Analysis of these gene products during C. elegans vulval induction allows detailed study of their function in the context of a developing organism.  相似文献   

5.
Signal transduction during oxidative stress   总被引:55,自引:0,他引:55  
As an unfortunate consequence of aerobic life, active oxygen species (AOS) are formed by partial reduction of molecular oxygen. Plants possess a complex battery of enzymatic and non-enzymatic antioxidants that can protect cells from oxidative damage by scavenging AOS. It is becoming evident that AOS, which are generated during pathogen attack and abiotic stress situations, are recognized by plants as a signal for triggering defence responses. An overview of the literature is presented on the signalling role of AOS in plant defence responses, cell death, and development. Special attention is given to AOS and redox-regulated gene expression and the role of kinases and phosphatases in redox signal transduction.  相似文献   

6.
7.
Temperature-sensitive pat1 mutants of the fission yeast Schizosaccharomyces pombe can be induced to undergo meiosis at the restrictive temperature, irrespective of the mat1 configuration and the nutritional conditions. Using a combination of exit from stationary phase and thermal inactivation of the 52-kilodalton protein kinase that is encoded by the pat1 (also called ran1) gene, highly synchronous meiotic cultures were obtained. Synthesis and tyrosyl phosphorylation of p34cdc2 was evident during meiotic G1 and S phases. During this period there was increased expression of p105wee1, a protein kinase implicated in the tyrosyl phosphorylation of p34cdc2. Following a relatively brief G2 period, during which a reduction in the steady-state level of p105wee1 occurred, there was an approximately 19-fold increase in the histone H1 phosphotransferase activity of p34cdc2. Only a single peak of histone H1 kinase activation was observed, which implies that unlike meiosis in amphibians and echinoderms, p34cdc2 is functional only during one of the meiotic divisions in S. pombe, presumably meiosis II. Stimulation of the kinase activity of p34cdc2 was associated with its tyrosyl dephosphorylation. This is analogous to mitotic M phase and suggests parallels in the mechanism of activation of p34cdc2 during mitosis and one of the meiotic divisions in S. pombe.  相似文献   

8.
Signal transduction in mammalian oocytes during fertilization   总被引:1,自引:0,他引:1  
  相似文献   

9.
The biochemical role of the visual-pigment protein, rhodopsin, is reviewed, with reference to vertebrate rods and cones and the microvillar photoreceptors of invertebrates. New results are presented on the structure of squid rhodopsin, which possesses an extensive proline-rich repeat at its C-terminus, using negative-stain electron microscopy.  相似文献   

10.
Signal transduction in erythropoiesis.   总被引:1,自引:0,他引:1  
The polypeptide hormone erythropoietin (Ep) is a growth factor whose actions on the erythroid progenitor cell induce proliferation and differentiation. The signal transduction system activated by Ep to mediate these cellular processes remains largely uncharacterized despite many years of research devoted to its elucidation. It is clear that an Ep receptor-mediated activation of adenylate cyclase or guanylate cyclase does not occur, although cAMP and cGMP may play modulatory roles. The role of calcium in the action of Ep is less clear. Although the presence of extracellular calcium seems to be an absolute requirement for Ep-induced proliferation, the positive changes induced by Ep in intracellular calcium occur with a time course suggestive of influx through ion channels opening within the cell membrane rather than release of intracellular stores by inositol trisphosphate. There is good evidence for the involvement of phospholipases A2 and C in the actions of Ep, including an early rise in lipoxygenase metabolites of arachidonic acid. Activation of phospholipase C can also result in the activation of protein kinase C in response to Ep. We present a model for the signal transduction pathway of Ep that is consistent with current knowledge and provides a framework for the coordinate actions of several intracellular mechanisms in the mediation of Ep-induced proliferation.  相似文献   

11.
Signal transduction during wheat grain development   总被引:1,自引:0,他引:1  
Lingan Kong  Honghai Guo  Mingze Sun 《Planta》2015,241(4):789-801
  相似文献   

12.
In meiosis I sister centromeres are unified in their polarity on the spindle, and this unique behavior is known to require the function of meiosis-specific factors that set some intrinsic property of the centromeres. The fission yeast, Schizosaccharomyces pombe, possesses complex centromeres consisting of repetitive DNA elements, making it an excellent model in which to study the behavior of complex centromeres. In mitosis, during which sister centromeres mediate chromosome segregation by establishing bipolar chromosome attachments to the spindle, the central core of the S. pombe centromere chromatin has a unique irregular nucleosome pattern. Deletion of repeats flanking this core structure have no effect on mitotic chromosome segregation, but have profound effects during meiosis. While this demonstrates that the outer repeats are critical for normal meiotic sister centromere behavior, exactly how they function and how monopolarity is established remains unclear. In this study we provide the first analysis of the chromatin structure of a complex centromere during meiosis. We show that the nature and extent of the unique central core chromatin structure is maintained with no measurable expansion. This demonstrates that monopolarity of sister centromeres, and subsequent reversion to bipolarity, does not involve a global change to the centromeric chromatin structure.  相似文献   

13.
14.
15.
In plants, unlike animals, signal transduction studies are in their infancy. While intracellular Ca2+ appears to have second messenger functions, attempts to show that protein kinases, inositol phosphates and cyclic AMP are involved in signal transduction in plants have run into considerable difficulty.  相似文献   

16.
17.
Reciprocal interaction between bone marrow derived lymphoid precursor cells and the thymic environment leads, through a series of developmental events, to the generation of a diverse repertoire of functional T-cells. During thymopoiesis fetal liver or bone marrow derived precursors enter the thymus and develop into mature T-cells in response to cues derived from the environment. The thymic micro-environment provides signals to the lymphoid cells as a result of cell-cell interactions, locally produced cytokines, chemokines and hormones. Developing thymocytes, in turn, influence the thymic stroma to form a supportive micro-environment. Stage-specific signals provide an exquisite balance between cellular proliferation, differentiation, cell survival and death. The result of this intricate signaling concert is the production of the requisite numbers of well educated self-restricted T-cells. Mature T-cells are exported to the peripheral lymphoid organs, where, upon encountering antigen, naive T-cells further mature into effector cells that provide cytolytic or T helper functions. While there are extra-thymic locations for T-cell development, majority of T-cells in peripheral lymphoid organs are thymus derived. In mice and humans, T-cells develop throughout life although the efficacy declines significantly with age. It is not clear if this is a direct consequence of deterioration of the thymic environment by involution, a paucity of bone marrow derived precursors, or both. However, new data clearly shows that the involuted adult thymus retains the ability to generate new T-cells. Recent advances have revealed many components of an exquisitely balanced signaling cascades that regulate cell fate, cellular proliferation and cell death in the thymus. This article describes fundamental features of developing thymocytes and the thymic micro-environment as they relate to the signaling pathways.  相似文献   

18.
Signal transduction and gene control.   总被引:14,自引:0,他引:14  
  相似文献   

19.
Signal flow in visual transduction.   总被引:15,自引:0,他引:15  
L Lagnado  D Baylor 《Neuron》1992,8(6):995-1002
  相似文献   

20.
The relationship between cell proliferation and inositol lipid turnover has been studied by comparing the steady state of inositol derivative metabolism in quiescent and regenerating rat hepatocytes isolated at 4 h (G1 phase of first cell cycle) and 24 h (onset of M phase) after partial hepatectomy. The effect of two hormones able to regulate hepatic regeneration, insulin and vasopressin, has been considered, and the results can be summarized as follows: (i) at 4 h after partial hepatectomy, the precursor incorporation into inositol polyphosphates and the particulate phospholipase C activity increase with respect to quiescent hepatocytes, whereas the content of 11, 4, 5P3 does not change, suggesting an increased turnover of this molecule in this step of cell cycle priming; (ii) 24 h after partial hepatectomy, the radioactivity linked to IP3 and IP4, as well as soluble and particulate phospholipase C activity, and IP3 content increase, suggesting the presence, at the onset of M phase, of second messenger accumulation; (iii) only 24 h after partial hepatectomy, the inositol derivative metabolism is affected by vasopressin; and (iv) insulin exerts a modulatory role on inositol polyphosphate production without involving membrane-bound PLC activity or phosphoinositide hydrolysis. These data suggest that inositol-derived signal molecules are associated with hepatic regeneration; moreover, the metabolic pathway of such compounds seems to be regulated so that only specific inositol phosphates are present in each step of the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号