首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Many of the physiological adaptations evolved in terrestrial invertebrates to resist desiccation have also been shown to enhance the survival of low temperatures. In this study we have examined temporal changes in the physiology of the collembolan Folsomia candida during acclimation to mild desiccation stress (98.2% RH), and how physiological changes correlate with resistance to subsequent cold shock, heat shock and acute desiccation stress. Drought-acclimation increased the resistance to cold and acute drought but reduced the resistance to heat shock. The composition of membrane phospholipid fatty acids (PLFA) changed during acclimation resulting in a higher degree of unsaturation by the end of the 192-h acclimation period. This resembles typical membrane alterations seen in ectothermic animals exposed to cold. Only small changes were seen in the neutral lipid fraction. The temporal changes in cold resistance and drought resistance correlated well with changes in PLFA composition and accumulation of sugars and polyols (’cryoprotectives’). It is proposed that the drought-induced PLFA desaturation, combined with the membrane protecting accumulation of cryoprotectives, are important physiological adaptations providing tolerance to both desiccation and cold.  相似文献   

2.
Summary Freeze-tolerance in larvae ofGynaephora groenlandica is enhanced by the accumulation of glycerol in the winter. Since summer larvae remain freeze-tolerant despite the lack of glycerol, we investigated glycerol metabolism as a function of acclimation and body temperature using non-invasive13C NMR spectroscopy. Major constituents of hemolymph isolated from cold- and warm-acclimated larvae were identified with the aid of standard NMR spectra and confirmed by TLC and GLC. Spectra obtained on live, warm-acclimated larvae showed the presence of lipids, glycogen, glucose, trehalose and amino acids. Similar spectra of cold-acclimated or previously frozen larvae showed the additional presence of glycerol. In vitro time-lapse13C spectra ofd-[1-13C]glucose added separately to hemolymph or extracted fat body tissue showed that glycerol is synthesized from glucose in the fat body tissue and distributed to the peripheral tissue via hemolymph. In vivo time-lapse13C spectra of cold- and warm-acclimated larvae were obtained after injection withd-[1-13C]glucose to monitor the production of labeled metabolic intermediates and end-products. [13C]Glycerol was produced between –30°C and 30°C but accumulated only below 5°C. Above 5°C glycerol was degraded and the13C label incorporated mainly into glycogen. The mechanism underlying temperature control of glycerol biosynthesis and degradation may provide a clue to the role of glycerol in enhancing freeze-tolerance in these insects.  相似文献   

3.
Freeze-tolerance and some of the underlying biochemical defence mechanisms in the earthworm Dendrobaena octaedra was investigated. Survival after slow cooling to -2 degrees C, -4 degrees C, or -6 degrees C was analysed in D. octaedra from three geographic regions representing large differences in winter temperature (Denmark, Finland and Greenland). A large variation in freeze-tolerance between the three populations of D. octaedra was found. Earthworms from the northern populations (Finland and Greenland) tolerated lower temperatures (-6 degrees C) than earthworms from the Danish population (poor survival at -4 degrees C and -2 degrees C). In the Finnish population, freezing led to the production of high concentrations of glucose, which reached values much higher than controls (94 mg g(-1) vs. 2 mg g(-1) dry weight). Other potential cryoprotectants were not elevated after freezing. The Danish and Greenlandic populations had substantially lower mean glucose levels after freezing than the Finnish population (about 15 mg g(-1)). Danish earthworms rapidly frozen did not accumulate glucose, and did not survive freezing at -2 degrees C. Danish earthworms exposed to osmotic stress in Ringer's solutions, containing different concentrations of glycerol, showed significantly elevated glucose levels, but did not survive rapid freezing. It was determined if freezing had an influence on the reproduction of the earthworms. After warming to summer temperatures (15 degrees C), survivors of freezing produced viable cocoons. In a field experiment it was tested if natural acclimatization during autumn and winter months had an effect on freeze-tolerance in the Danish population. There was a significant increase of post-freeze survival during this period. The results of the freezing experiments are discussed in relation to the general ecology of D. octaedra.  相似文献   

4.
The composition of molecular species of phosphatidylethanolamines (PEs) and phosphatidylcholines (PCs) was analysed in fat body and muscle tissues of Chymomyza costata larvae of different physiological states that markedly differed in their level of freeze-tolerance. Actively moving and feeding 3rd instar larvae had low (zero) capacity of freeze-tolerance and similar phospholipid (PL) compositions irrespective of their developmental destiny (non-diapause vs. diapause). Extensive remodelling of PL composition was found in these larvae in response to: (a) chilling of non-diapause larvae at 5 degrees C for 1 month; (b) developmental transition to diapause; and (c) chilling of diapause larvae. Transition to diapause and chilling led to an increase in freeze-tolerance. The increase in molar proportion of molecular species containing palmitic/linoleic (16:0/18:2) fatty acyls (FAs) esterified to sn-1/sn-2 positions of glycerol was the most prominent change, which was tightly statistically correlated with increasing freeze-tolerance. The increase of PLs with combination of 16:0/18:2 FAs was registered consistently in PEs and PCs in fat body and muscle tissues in response to chilling and to diapause onset. This increase was countered by a decreases of various molecular species, depending on tissue and lipid class. Most decreasing species shared one common theme: they had a saturated FA (palmityl, margaryl, stearyl) esterified at sn-1 position and a monounsaturate (palmitoleyl, oleyl) esterified at sn-2 position of glycerol. Possible adaptive meaning of PL molecular species remodelling is discussed.  相似文献   

5.
To improve survival during winter, temperate species use a variety of behavioural and physiological adaptations. Among songbirds, the maintenance of lipid reserves is a widely‐used strategy to cope with the severity of winter; however, little is known regarding how multiple synchronously acting environmental mechanisms work together to drive these effects. In a context where temperate winter conditions are becoming more variable, it is important to widen our understanding regarding the flexible adaptations that may allow wintering species to adjust to projected climate change. Using a long‐term dataset collected across multiple wintering populations (7 years; 8 locations), we analyzed the effects of daily variation in weather (e.g. temperature, snowfall) on the variation in energy reserves (i.e. fat stores) of wintering snow buntings Plectrophenax nivalis. Our results support the prediction that birds carry more reserves to increase the safety margin against starvation when conditions are energy‐demanding and access to food is unpredictable (i.e. colder, snowier conditions). Birds responded to daily changes in weather by increasing their reserves as conditions deteriorated, with maximal temperatures and snow depth being the most important predictors of fattening decisions. We also found that females consistently exhibited higher fat reserves than males relative to their body size, suggesting that differential physiological adaptations among sexes or social dominance may play an additional role in explaining variation in energy reserves across individuals in this species. Overall, our findings increase knowledge on phenotypic adjustments used by species wintering in temperate zones to match variation in their environment.  相似文献   

6.
During severe weather, Redshanks suffer the heaviest mortality amongst all the shorebird species wintering around the North Sea coasts of the British Isles. An earlier study had suggested that this resulted from a failure to accumulate sufficient body fat reserves before mid-winter. Detailed field studies in northeast England between 1993 and 1995 of seasonal changes in body mass, and in estimated lean and fat masses, of two races of Redshank, both of which winter in the same estuary, were accompanied by similar studies of small numbers held in captivity with unlimited food. After differences in body size were allowed for, there were no differences in body composition and its seasonal pattern of change in birds of the Icelandic and British races. Body mass changes in wild birds paralleled those in captives between November and March, and mid-winter levels were not limited by food supply; indeed they were slightly higher in a winter with lower prey densities. It is concluded that Redshanks regulate body mass and, indirectly, fat reserves at levels set by a trade-off between the risks of predation and starvation. Unlike most other shorebird species, they take very small prey in relation to their body size and hence must feed for long periods during each tidal cycle to achieve their daily energy intake needs. Thus they have little scope to extend their feeding time during severe weather, which also forces them to feed on ice-free exposed coastal habitats where wind chill cannot be avoided. Both factors lead to more rapid depletion of fat reserves than in other species which have higher energy intake rates or lower total daily requirements.  相似文献   

7.
Third-instar larvae of the goldenrod gall fly Eurosta solidaginis (Diptera: Tephritidae) survive extended periods in winter during which tissue water is frozen. Both low temperature and reduced water activity during freezing present challenges for the structural integrity of cellular lipids. Fatty acids of both phospholipids and triacylglycerols from fat body cells of E. solidaginis were analyzed throughout fall and early winter, a period that encompasses the acquisition of freeze-tolerance, to determine if adaptations to freezing include changes in fatty acid unsaturation. The five most abundant fatty acids from both fractions were (in decreasing order) oleic (40–65%), palmitoleic (18–20%), palmitic (12–17%), linoleic (5–10%), and stearic acids (4 –7%). This represents a typical complement of Dipteran fatty acids, although oleic acid levels were higher in E. solidaginis than those reported from other Dipterans (˜28%; Downer 1985). From September to November, monounsaturates increased from 59 to 70% in phospholipids at the expense of saturated fatty acids (25% –20%) suggesting activation of a Δ9-desaturase enzyme. These changes resulted in an increase in the ratio of unsaturated to saturated fatty acids (U/S) from 3.0 to 4.2, although there was no change in the average number of double bonds per fatty acid (unsaturation index, UI ≈ 1.2 in phospholipids and 0.9 in triacylglycerols throughout the season). These changes were temporally correlated to decreasing ambient temperatures and increasing larval and fat body cell freeze-tolerance. Accepted: 31 October 1996  相似文献   

8.
In a field experiment we have examined the effect of long-term grassland management regimes (viz., intensive versus extensive) and dominant plant species (viz., Arrhenatherum elatius, Holcus lanatus and Dactylis glomerata) on soil organic carbon (SOC) build up, soil microbial communities using biomarker phospholipid fatty acids (PLFA), and the relationship between SOC and PLFAs of major groups of microorganisms (viz., bacteria, fungi, and actinomycetes). The results have revealed that changes in SOC were not significantly affected by the intensity of management or by the plant species composition or by their interaction. The amount of PLFA of each microbial group was affected weakly by management regime and plant species, but the canonical variance analysis (CVA), based on individual PLFA values, demonstrated significant (P<0.05) effects of management regime and plant species on the composition of microbial community. Positive and significant (P<0.01) relationships were observed between PLFA of bacteria (R2=0.47), fungi (R2=0.33), actinomycetes (R2=0.71) and total microbial PLFA (R2=0.53) and SOC content.  相似文献   

9.
Changes in membrane lipid composition (membrane remodelling) have been associated with metabolic depression in some aestivating snails but has not been studied in aestivating frogs. This study examined the membrane phospholipid composition of two Australian aestivating frog species Cyclorana alboguttata and Cyclorana australis. The results showed no major membrane remodelling of tissue in either frog species, or in mitochondria of C. alboguttata due to aestivation. Mitochondrial membrane remodelling was not investigated in C. australis. Where investigated in C. alboguttata, total protein and phospholipid content, and citrate synthase (CS) and cytochrome c oxidase (CCO) activities in tissues and mitochondria mostly did not change with aestivation in liver. In skeletal muscle, however, CS and CCO activities, mitochondrial and tissue phospholipids, and mitochondrial protein decreased with aestivation. These decreases in muscle indicate that skeletal muscle mitochondrial content may decrease during aestivation. Na+K+ATPase activity of both frog species showed no effect of aestivation. In C. alboguttata different fat diets had a major effect on both tissue and mitochondrial phospholipid composition indicating an ability to remodel membrane composition that is not utilised in aestivation. Therefore, changes in lipid composition associated with some aestivating snails do not occur during aestivation in these Australian frogs.  相似文献   

10.
Summary The larvae ofGynaephora groenlandica, a long-lived moth endemic to the high arctic, are perennially freeze-tolerant and able to increase their freeze-tolerance by synthesizing glycerol. Cold-induced mitochondrial changes were correlated (using electron microscopy, DNA staining, cytochrome c assay, and oxygen uptake) with glycerol production (using NMR spectroscopy) in larvae under different acclimations and in the field. Hypometabolism in summer- or warm-acclimated larvae led to glycerol accumulation. Extended exposure to near-zero or freezing temperatures caused mitochondrial degradation and glycerol accumulation. Rapid freezing of warm-acclimated larvae did not result in mitochondrial breakdown. Mitochondrial reconstitution upon warm-acclimation occurred much more rapidly (<1 week) than did degradation (>2 months). Concomitant with mitochondrial breakdown was reduced oxidative metabolism, but the cytochrome c concentration remained independent of acclimation temperature. The adaptive response to cold by mitochondrial degradation and glycerol accumulation byG. groenlandica may be linked to diapause in other species of ectotherms.  相似文献   

11.
Ectotherm animals including insects are known to undergo seasonal restructuring of the cell membranes in order to keep their functionality and/or protect their structural integrity at low body temperatures. Studies on insects so far focused either on fatty acids or on composition of molecular species in major phospholipid classes. Here we extend the scope of analysis and bring results on seasonal changes in minor phospholipid classes, lysophospholipids (LPLs), free fatty acids, phytosterols and tocopherols in heteropteran insect, Pyrrhocoris apterus. We found that muscle tissue contains unusually high amounts of LPLs. Muscle and fat body tissues also contain high amounts of β-sitosterol and campesterol, two phytosterols derived from plant food, while only small amounts of cholesterol are present. In addition, two isomers (γ and δ) of tocopherol (vitamin E) are present in quantities comparable to, or even higher than phytosterols in both tissues. Distinct seasonal patterns of sterol and tocopherol concentrations were observed showing a minimum in reproductively active bugs in summer and a maximum in diapausing, cold-acclimated bugs in winter. Possible adaptive meanings of such changes are discussed including: preventing the unregulated transition of membrane lipids from functional liquid crystalline phase to non-functional gel phase; decreasing the rates of ion/solute leakage; silencing the activities of membrane bound enzymes and receptors; and counteracting the higher risk of oxidative damage to PUFA in winter membranes.  相似文献   

12.
Objective: A systems dynamics computer model was developed to examine how the interactions between carbohydrate and fat metabolism influence body weight regulation. It reflects the operation of a two reservoir‐system: one representing the body's limited glycogen, and the other, its large fat reserves. The outflows from the reservoirs correspond to the oxidation of glucose and fat, whose relative contributions are affected by the size of the prevailing glycogen and fat reserves. Together, they meet the body's energy expenditure. Replenishments occur three times per day, in portions restoring total glycogen content to specific levels. A parameter mimicking the action of insulin is necessary to create realistic responses. Research Methods and Procedures: The model was run for 125‐day periods to establish the degree of adiposity for which rates of fat oxidation become commensurate with fat intake and the influence thereon of various dietary, environmental, lifestyle, and inherited variables. Results: Equivalent degrees of adiposity can be sustained under a variety of conditions. For instance, the impact on steady‐state body fat contents of a 10% increase or decrease in the energy provided by dietary fat is offset by a 26‐gram decrease or increase in mean glycogen levels. Discussion: Environmental factors such as food diversity, palatability, and availability can be expected to raise the range within which glycogen levels are habitually maintained. This restrains fat oxidation, until expansion of the fat mass is sufficient to promote fat oxidation to a rate commensurate with dietary fat intake. This metabolic leverage can explain why increased food offerings tend to raise the prevalence of obesity.  相似文献   

13.
Food availability and predation risk can have drastic impacts on animal behaviour and populations. The tradeoff between foraging and predator avoidance is crucial for animal survival and will strongly affect individual body mass, since large fat reserves are beneficial to reduce starvation but may increase predation risk. However, two‐factor experiments simultaneously investigating the interactive effects of food and predation risk, are still rare. We studied the effects of food supplementation and natural predation risk imposed by pygmy owls Glaucidium passerinum on the abundance and fat reserves of tit species in boreal forests of north Europe, from January to March in 2012 and in 2013. Food supplementation increased the number of individuals present in a given forest patch, whereas the level of predation risk had no clear impact on the abundance of tit species. The stronger impact of food supply respect to predation risk could be the consequence of the harsh winter conditions in north Europe, with constant below‐zero temperatures and only few (5–7 h) daylight hours available for foraging. Predation risk did not have obvious effects on tit abundance but influenced food consumption and, together with food supplementation, affected the deposition of subcutaneous fat in great tits Parus major. High owl predation risk had detrimental effects on body fat reserves, which may reduce over‐winter survival, but the costs imposed by pygmy owl risk were compensated when food was supplemented. The starvation–predation tradeoff faced by great tits in winter may thus be mediated through variation in body fat reserves. In small species living in harsh environment, this tradeoff appeared thus to be biased towards avoidance of starvation, at the cost of increasing predation risk.  相似文献   

14.
1. We assessed sex‐specific seasonal changes in major energy storage compounds (triglycerides, glycogen) in Gammarus fossarum and Gammarus pulex collected from the field, with respect to their reproductive activity. 2. The dynamics of stored energy followed a seasonal pattern in both species and sexes. Moreover, over a 4‐year period, these changes were independent of the year in which they were investigated. Stored energy reached a peak in late winter, but was depleted in late summer and early autumn, coinciding with the reproductive periods. 3. Triglyceride (annual mean ± SD) accounted for 79.7 ± 11.9% of the total stored energy and was responsible for the seasonal pattern. In contrast, glycogen contributed a lesser percentage (20.3 ± 11.9%). Over the study period, the amount of stored energy ranged between 0.39 and 4.08 kJ g?1 dry mass (triglyceride: 0.19–3.69 kJ g?1 dry mass; glycogen: 0.14–0.80 kJ g?1 dry mass). 4. In both species, the energy reserves of males were drastically depleted shortly before the cessation of precopulatory mate guarding in the field, thus offering a bioenergetic explanation for the reproductive period in these two widespread species.  相似文献   

15.
We have investigated the lipid chemistry during cold acclimation in the freeze tolerant earthworm Dendrobaena octaedra. The dominant phospholipid fatty acids (PLFA) of D. octaedra were 20:4, 20:5 and 20:1 (50% of total PLFA) followed by 18:0, 18:1 and 18:2omega6,9 (25% of total PLFA). The ability to tolerate freezing in this species was acquired after acclimation at low temperature for 2-4 weeks. During this period one particular membrane PLFA, 18:2omega6,9, increased significantly and there was a good correlation between the proportion of this PLFA and the survival of freezing. The composition of neutral lipid fatty acids (NLFA), most likely representing storage lipids (triacylglycerides), also changed during cold acclimation so that the overall degree of unsaturation increased. Using a common-garden experiment approach, we compared lipid composition of three genetically different populations (Denmark, Finland and Greenland) that differed in their freeze tolerance. Inter-populational differences and differences due to cold acclimation in overall fatty acid composition were evident in both PLFAs and NLFAs. Specifically, the PLFAs, 20:4 and 20:5, were considerably more represented in worms from Greenland, and this contributed to a higher UI of PLFAs in this population.  相似文献   

16.
Needle hardiness of introduced yellow pine, Pinus banksiana Lamb., lodgepole pine, P. contorta Dougl, and native white spruce, Picea glauca (Moench) Voss, were assessed by the effective prefreezing temperature method. Yellow pine needles were less hardy than lodgepole pine or white spruce needles in Alaska on each date measured. Although hardiness decreased in springtime in all species, decreases in hardiness in yellow pine began before temperatures were above ?20°C, apparently in response to day length, while decreases in hardiness in lodgepole pine and white spruce began only when mean temperatures were above 0°C. Hardiness was increased by decreasing the water content of yellow pine and spruce needles. However, only the latter increased its field hardiness by decreased water contents, and only to a small degree. Large decreases in phospholipid occurred during the dehardening period, indicating the presence of major membrane-associated changes. However, changes in hardiness did not closely parallel those in phospholipid; hardiness decreased before phospholipid did in spruce and after phospholipid did in lodgepole pine. In yellow pine, changes in hardiness were more closely related to changes in phospholipid content. Decreases in phospholipid appeared to be correlated with the day length in all species.  相似文献   

17.
In some neotropical environments, fishes often experience periods of poor food supply, especially due to extreme fluctuations in rainfall regime. The fish species that experience periods of drought such as the traíra Hoplias malabaricus (Bloch 1794), may stand up to long-term food deprivation. In this study, experiments were performed in order to determine the dynamic of utilization of endogenous reserves in this species during starvation. Adult traíra were both fasted for 30–240 days and re-fed for 30 days following 90 and 240 days of fasting. Glycogen and perivisceral fat were primary energy substrates consumed. During the first 30 days, fish consumed hepatic and muscular glycogen, without exhausting these reserves, and used lipids from perivisceral fat. Hepatic lipids were an important energy source during the first 60 days of starvation and perivisceral fat were consumed gradually, being exhausted after 180 days. Protein mobilization was noticeable after 60 days of fasting, and became the major energy source as the lipid reserves were decreased (between 90 and 180 days). Following the longest periods of food deprivation, fish had utilized hepatic glycogen again. Fish re-fed for 30 days after 90 and 240 days of fasting were able to recover hepatic glycogen stores, but not the other energy reserves.  相似文献   

18.
Synopsis Seasonal cycles of reserve deposition and utilization in many fishes, amphibians and reptiles alleviate temporal mismatches of energy supply and demand. Utilization of reserves can be related to maintenance during periods of reduced food supply, to reproduction, particularly during periods of poor food availability, and to migration. Published data on the seasonal cycles of reserves and reproduction inSebastes suggest that reserves are important for maintenance during wintertime periods of low food availability. Unlike many other ectothermic vertebrates, some species ofSebastes deposit fat reserves at the same time as gametogenesis, a pattern consistent with the longevity and iteroparity evident in the genus. Other species ofSebastes have similar seasonal timing of fat cycles, but since reproduction takes place later in the year, the decline in reserves during winter coincides with the main period of reproductive activity. The significance of this is not clear. Interspecific differences in amounts of reserves may be related to geographical differences in the seasonality or abundance of food. Intraspecific variation in reserves, marked most strongly by allometry of reserves with regard to fish legth, bears further study, since it may link the proces of sexual maturation and the responses of repeat spawners to variability in food supply and other environmental factors.  相似文献   

19.
Metabolic responses to prolonged food shortage (35 days) and subsequent re‐feeding (14 days) were investigated in adults of an introduced beetle, Alphitobius diaperinus Panzer, as a function of temperature (12, 16, 20 and 24 °C). Various qualitative and quantitative changes that greatly vary according to the temperature experienced occurred in metabolite levels during prolonged starvation. Whereas levels of protein and ATP did not change significantly, triglycerides decreased markedly and glycogen changed little. Metabolite levels were differently affected by temperature, with triglycerides being less rapidly degraded at 20 than at 24 °C and almost completely depleted at 12 and 16 °C; in contrast to higher temperatures, glycerol is accumulated at 12 °C. Physiological adaptation to starvation and low temperatures are highly linked and energy allocation for starvation vs. temperature acclimation must be strictly regulated, both being essential for insect survival. Re‐synthesis rates during recovery are probably highly temperature‐dependent for all metabolites. The proteins retained during starvation and the preferential degradation of lipids allowed a rapid recovery. Above 16 °C, adult A. diaperinus regained locomotory activity rapidly and the triglyceride, glycerol and glycogen reserves were restored. This tropical species may be able to colonize other environments such as natural and/or artificial biotopes where conditions are close to those of its natural habitat.  相似文献   

20.
J. A. Virgl    F. Messier 《Journal of Zoology》1992,228(3):461-477
We quantified seasonal variation in body composition and morphology of adult muskrats ( Ondatra zibethicus ) inhabiting freshwater marsh environments in central Saskatchewan, Canada. The study areas were characterized by long and cold winters extending over six months during which muskrats were restricted to foraging under ice. A total of 162 adult muskrats were collected during nine sampling periods across the year. The large accumulation of fat reserves (16% of body mass) during winter and the concurrent decline in protein mass suggested a reduced maintenance requirement associated with the presence of energy-rich food resources. Dietary fibre content increased significantly during mid-summer and was manifested by changes in gut morphology. Mobilization of fat reserves during summer months by both sexes reflected high energetic demands for reproduction. Males depleted fat reserves soon after spring break-up, while near-exhaustion of fat reserves in females occurred 4–6 weeks later, during lactation. Pregnant females contained significantly greater fat and protein reserves compared to non-pregnant and lactating females. The dynamics of body reserves in muskrats should be viewed as an integral part of the sex-specific life-history traits of this important herbivore species of marsh environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号