首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of varying the amino acid concentrations of the culture medium on matrix vesicle formation was studied in primary cultures of chicken epiphyseal growth plate chondrocytes grown in Dulbecco's modified Eagle's medium (DME) supplemented with 10% fetal bovine serum (FBS). Decreasing the levels of free amino acids in the culture medium to levels of one-half, one quarter, and one eighth of the values normally present in DME caused a progressive decline in matrix vesicle (MV) formation. Increasing the level in the culture medium of those amino acids that are enriched in extracellular fluid (ECF) of growth plate cartilage significantly increased formation of matrix vesicles (MV), as assayed by the alkaline phosphatase (AP) activities present in high-speed sediments from spent culture media. However, adjusting the levels of all amino acids to match those of the ECF produced the greatest stimulation of MV formation. Of the amino acids that are notably enriched in ECF, glutamate (GLU), alanine (ALA), serine (SER), asparagine (ASN), and taurine (TAU) individually enhanced MV production, whereas proline (PRO), glycine (GLY), and aspartate (ASP) had essentially no effect. The simple combination of ECF levels of ALA and GLU resulted in a stimulation of MV formation equal to that observed when the eight aforementioned amino acids were elevated to ECF levels. Other combinations of ASP and GLY, or of TAU, SER, and ASN showed some stimulation, but at a lower level. Increasing the amino acid concentrations, alone or in combination, also increased the levels of cellular AP, and to a lesser extent cellular protein. While increases in cellular AP were generally correlated with increased formation of AP-rich MV, this was not uniformly true. These results indicate that in addition to hormones and growth factors, nutritional factors such as the levels of amino acids are also critical for normal phenotypic expression, growth, and matrix formation by epiphyseal chondrocytes.  相似文献   

2.
Amino acids in bovine oviductal and uterine fluids were measured and compared with those in modified simplex optimized medium (KSOM) supplemented with either fetal calf serum or Minimum Essential Medium amino acids in addition to bovine serum albumin, fetal calf serum or polyvinyl alcohol. Concentrations of cysteine, threonine, tryptophan, alanine, aspartate, glycine, glutamate, proline, beta-alanine, and citrulline were higher in oviductal fluids than in KSOM-based culture media. Nonessential and essential amino acids were present in ratios of 5:1 and 2:1 in oviductal and uterine fluids, respectively. Concentrations of alanine (3.7 mM), glycine (14.1 mM) and glutamate (5.5 mM) were high in oviductal fluids, comprising 73% of the free amino acid pool. Of the amino acids measured in uterine fluids, alanine (3.1 mM), glycine (12.0 mM), glutamate (4.2 mM), and serine (2.7 mM) were highest in concentration, and the first three comprised 43% of the free amino acid pool. In conclusion, amino acid concentrations in the bovine reproductive tract were substantially higher than those in embryo culture media. Certain amino acids, particularly alanine, glutamate, glycine and taurine, are present in strikingly high concentrations in both oviductal and uterine fluids, suggesting that they might play important roles in early embryo development. The particular pattern of amino acid concentrations may be an important factor to be considered for the improvement of embryo culture media.  相似文献   

3.
Summary A serum-free medium for postembryonic chicken epiphyseal growth plate chondrocytes has been developed from 104 MCDB medium. To enable these fastidious cells to survive, grow, and express normal phenotype, a substantial increase over MCDB 104 in the level of many of the amino acids was required, as well as a change in the buffer system and the addition of SerXtend, a defined, serum-free product containing various growth factors, including fibroblast growth factor. Also required was the provision of cell attachment factors, either by coating culture surfaces with type II collagen, or better, by allowing the freshly released cells to recover for several hours in a medium supplemented with 10% fetal bovine serum before plating. Ths new serum-free medium, which we call USC-HC1, supports growth and replication, the retention of normal polygonal morphology, the expression of significant levels of cellular alkaline phosphatase activity, the production of sulfated proteoglycans, type II collagen, and the formation of alkaline phosphatase-rich matrix vesicles by the chondrocytes. The major advantage of USC-HC1, however, is that it will provide for the first time an opportunity to examine the effects of various defined growth and hormonal factors on the phenotypic expression and differentiation of growth plate chondrocytes, in the absence of the variable (stimulatory and inhibitory) factors present in fetal bovine serum. This work was supported by grant AM18983 from the National Institute of Arthritis, Diabetes, Digestive and Kidney Diseases, Bethesda, MD.  相似文献   

4.
During endochondral bone formation, avascular cartilage differentiates to hypertrophic cartilage that then undergoes erosion and vascularization leading to bone deposition. Resting cartilage produces inhibitors of angiogenesis, shifting to production of angiogenic stimulators in hypertrophic cartilage. A major protein synthesized by hypertrophic cartilage both in vivo and in vitro is transferrin. Here we show that transferrin is a major angiogenic molecule released by hypertrophic cartilage. Endothelial cell migration and invasion is stimulated by transferrins from a number of different sources, including hypertrophic cartilage. Checkerboard analysis demonstrates that transferrin is a chemotactic and chemokinetic molecule. Chondrocyte-conditioned media show similar properties. Polyclonal anti-transferrin antibodies completely block endothelial cell migration and invasion induced by purified transferrin and inhibit the activity produced by hypertrophic chondrocytes by 50–70% as compared with controls. Function-blocking mAbs directed against the transferrin receptor similarly reduce the endothelial migratory response. Chondrocytes differentiating in the presence of serum produce transferrin, whereas those that differentiate in the absence of serum do not. Conditioned media from differentiated chondrocytes not producing transferrin have only 30% of the endothelial cell migratory activity of parallel cultures that synthesize transferrin.

The angiogenic activity of transferrins was confirmed by in vivo assays on chicken egg chorioallantoic membrane, showing promotion of neovascularization by transferrins purified from different sources including conditioned culture medium.

Based on the above results, we suggest that transferrin is a major angiogenic molecule produced by hypertrophic chondrocytes during endochondral bone formation.

  相似文献   

5.
In order to investigate the dynamics of glutamate as a neurotransmitter and to avoid a complication by its metabolism, we studied the uptake and release of labeled non-metabolizabled-isomers of aspartate and glutamate in cerebral cortical slices and synaptosome preparation from guinea-pigs. The rate of uptake ofd-aspartate and glutamate was mutually inhibited in a non-competitive fashion, indicating that their uptake mechanisms are not exactly the same. By ouabain (0.05 mM), the uptake ofd-aspartate and glutamate into synaptosome preparation was less inhibited than that into cerebral slices. In synaptosome preparation most of the preloadedd-aspartate and glutamate was released by high-potassium (50 mM) stimulation, whereas in cerebral slices only a slight release was observed. However, when the slices were superfused with a medium free of sodium ions, which are absolutely necessary for the uptake, after preloaded with the labeled amino acids in the standard medium, a distinct release of radioactivity was induced by high-potassium stimulation. This potassium-induced release corresponded to only about 20% of the radioactivity accumulated in the slices. The accumulation ofd-aspartate and glutamate into cerebral slices was much larger on the basis of their protein content than that into synaptosome preparation, when a high concentration (1 mM) of the amino acids was added to the medium. These observations suggest that the uptake system ofd-aspartate and glutamate in cerebral slices is quite different from that in synaptosome preparation, and that the accumulation into cerebral slices is mainly localized in glial cells. In vivo the glial cell uptake is probably more important in removing the released neurotransmitter glutamate.Dedicated to Professor Yasuzo Tsukada.  相似文献   

6.
The objective of the investigation was to explore the notion that chondrocytes in the growth plate secrete nucleotides and that these compounds are used to regulate cell maturation and matrix mineralization. Chondrocytes were isolated from the cephalic region of chick embryo sterna and maintained in culture until confluent. To promote expression of the mature phenotype, cultures were then treated with retinoic acid. During the culture period, medium was removed and analyzed for nucleotides using a modified reverse-phase high-performance liquid chromatography (HPLC) procedure. We found that culture medium, conditioned by the chondrocytes, contained significant quantities of nucleotides. Moreover, the nucleotide concentrations were similar in magnitude to levels reported for media conditioned by other cell types. In terms of species, adenosine diphosphate (ADP) was the major nucleotide present in the conditioned medium; adenosine monophosphate (AMP) was present, but at a lower concentration than ADP. To examine the possibility that adenosine triphosphate (ATP) was released by the cultured chondrocytes, but was rapidly degraded into ADP and AMP, we examined the kinetics of ATP breakdown by chondrocytes. We found that chondrocytes degraded over 70% of exogenous ATP within 15 minutes. Similar experiments performed with ADP and AMP indicated that these nucleotides were also degraded by the cells, but at a slower rate than ATP. To determine whether the extracellular nucleotides modulate cartilage development, we examined the effect of exogenous ATP on four major determinants of chondrocyte function: alkaline phosphatase activity, cell proliferation rate, anaerobic metabolism, and mineral deposition. We found that ATP caused only minimum alterations in cell number and alkaline phosphatase activity; however, it increased the lactate content of the medium probably by stimulating anaerobic glycolysis. We noted that ATP had a significant effect on the amount and type of mineral deposited into chondrocyte cultures. Compared with untreated controls, ATP stimulated formation of a small amount of poorly crystallized calcium phosphate. The results of the study show for the first time that chondrocytes release nucleotides into the extracellular milieu. Although they are rapidly degraded, they serve to regulate both mineral formation and energy metabolism. © 1995 Wiley-Liss Inc.  相似文献   

7.
重组CHO细胞培养过程中氨对细胞代谢的影响   总被引:4,自引:2,他引:4  
研究了重组CHO细胞批培养过程中,氨浓度对细胞的葡萄糖、谷氨酰胺及其它氨基酸代谢的影响。表明,细胞对葡萄糖和谷氨酰胺的得率系数随着氨浓度的增加而降低,起始氨浓度为566mmol/L的批培养过程与起始氨浓度为021mmol/L的批培养过程相比,细胞对葡萄糖和谷氨酰胺的得率系数分别下降了78%和74%,细胞对其它氨基酸的得率系数也分别下降了50%~70%。氨浓度的增加明显地改变了细胞的代谢途径,葡萄糖代谢更倾向于厌氧的乳酸生成。在谷氨酰胺的代谢过程中,谷氨酸经谷氨酸脱氢酶进一步生成α酮戊二酸的过程受到了氨的抑制,而氨对谷氨酸经谷氨酸转氨酶反应生成α酮戊二酸的过程有促进作用,但总体上谷氨酸进一步脱氨生成α酮戊二酸的反应受到了氨的限制。  相似文献   

8.
Homotaurine (3-aminopropanesulfonate), free or derivatized, is in widespread pharmaceutical and laboratory use. Studies with enrichment cultures indicated that the compound is degradable as a sole source of carbon or as a sole source of nitrogen for bacterial growth. A pure culture of Burkholderia sp. was isolated which assimilated the amino group from homotaurine in a glucose-salts medium, and which released an organosulfonate, 3-sulfopropanoate, into the medium stoichiometrically. The deamination involved an inducible 2-oxoglutarate-dependent aminotransferase to yield glutamate, and 3-sulfopropanal. Release of the amino group was attributed to the measured NADP-coupled glutamate dehydrogenase.  相似文献   

9.
We report here a comparative study of the development and behavior of chondrocytes isolated from normal growth plate tissue, tibial dyschondroplasic lesions, and from articular cartilage. The objective of these studies was to determine whether the properties exhibited by chondrocytes in dysplasic lesions or in articular cartilage were due to their cellular phenotype, their environment, or both. We had previously analyzed the electrolytes and amino acid levels in the extracellular fluid of avian growth plate chondrocytes. Using these data, we constructed a culture medium (DATP5) in which growth plate cells essentially recapitulate their normal behavior in vivo. Here, we used DATP5 to examine the behavior of chondrocytes isolated from lesions of tibial dyschondroplasia (TD). We found that once isolated from lesion and grown in this supportive medium, dysplasic chondrocytes behaved essentially like normal growth plate cells. These findings suggest that the cause of TD is local factors operating in vivo to prevent these cells from developing normally. With respect to articular chondrocytes, our data indicate that they more closely retain normal protein and proteoglycan synthesis when grown in serum-free media. These cells readily induced mineral formation in vitro, both in the presence and absence of serum. However, in serum-containing media, mineralization was significantly enhanced when the cells were exposed to retinoic acid (RA) or osteogenic protein-1 (OP-1). Our studies support previous work indicating the presence of autocrine factors produced by articular chondrocytes in vivo that prevent mineralization and preserve matrix integrity. The lack of inhibitory factors and the presence of supporting factors are likely reasons for the induction of mineralization by articular chondrocytes in vitro.  相似文献   

10.
Hindquarters from starved rats were perfused with plasma concentrations of amino acids, but without other added substrates. Release of amino acids was similar to that previously reported, but, if total amino acid changes were recorded, alanine and glutamine were not formed in excess of their occurrence in muscle proteins. In protein balance (excess insulin) there was no net formation of either alanine or glutamine, even though the branched-chain amino acids and methionine were consumed. If [U-14C]valine was present, radiolabelled 3-hydroxyisobutyrate and, to a lesser extent, 2-oxo-3-methylbutyrate accumulated and radiolabel was incorporated into citrate-cycle intermediates and metabolites closely associated with the citrate cycle (glutamine and glutamate, and, to a smaller extent, lactate and alanine). If a 2-chloro-4-methylvalerate was present to stimulate the branched-chain oxo acid dehydrogenase, flux through this step was accelerated, resulting in increased accumulation of 3-hydroxyisobutyrate, decreased accumulation of 2-oxo-3-methylbutyrate, and markedly increased incorporation of radiolabel (specific and total) into all measured metabolites formed after 3-hydroxyisobutyrate. It is concluded that: amino acid catabolism by skeletal muscle is confined to degradation of the branched-chain amino acids, methionine and those that are interconvertible with the citrate cycle; amino acid catabolism is relatively minor in supplying carbon for net synthesis of alanine and glutamine; and partial degradation products of the branched-chain amino acids are quantitatively significant substrates released from muscle for hepatic gluconeogenesis. For valine, 3-hydroxyisobutyrate appears to be quantitatively the most important intermediate released from muscle. A side path for inter-organ disposition of the branched-chain amino acids is proposed.  相似文献   

11.
Abstract— The amino acid and carbohydrate metabolism of confluent cultures of C-6 glioma cells has been investigated. It was observed that the presence of glutamine in the incubation fluid was essential to maintain high glutamine levels in the cells during a 2 h incubation. When cells were incubated in a cerebrospinal fluid-like medium glutamate, glutamine, aspartate and γ-aminobutyrate (GABA) levels were comparable to those occurring in whole forebrain of adult rat in vivo. Glucose uptake was high, approx 1 μmol/mg protein/2 h, 50% of which was accounted for by lactate production. Of the remaining glucose uptake a substantial proportion was unaccounted for by known oxygen-coupled citric acid cycle flux, or glycogen or amino acid synthesis. Interestingly, the cells released into the medium significant amounts of the neuroinhibitory amino acids, GABA and glycine, and rapidly cleared the medium of the neuroexcitatory amino acids glutamate and aspartate. Metabolism of [2-14C]glucose and [3H]acetate by the cells indicated rapid labelling of the glutamate and aspartate pools of the cells by glucose in 1 h, but the relative specific activities of glutamine and GABA were much lower. The metabolism of tracer concentrations of [3H]acetate to glutamate by the cells indicated greater dilution of this isotope compared to that of labelled glucose. However, the ratio of 3H to 14C radioactivity in glutamate and other amino acids was similar to that in the mixture of glucose and acetate added to the medium. Therefore, some active route of acetate metabolism which communicates metabolically with the route of glucose metabolism to glutamate appears to exist in the cells. Significant acetate activation and fatty acid turnover would explain the present results. Some of the amino acid labelling patterns observed in these studies are not consistent with these glial-like cells behaving as models for the small compartment of amino acid metabolism in brain. Enzyme measurements corroborated the metabolic studies. Glutamate decarboxylase activity was 3–10% of the level found in whole brain. GABA transaminase was also low compared to brain as was glutamine synthetase. Glutamate dehydrogenase was present at levels equal to or higher than those of whole brain.  相似文献   

12.
The dynamics of amino acid consumption from the medium by Escherichia coli 1864, a strain producing recombinant protein was studied. It was shown that the strain actively used glutamate and aspartate from the medium, which was determined by the leading role of the amino acids in nitrogen metabolism. The strain also consumed threonine, glycine and alanine capable of effectively providing the culture with metabolic energy.  相似文献   

13.
The incorporation of [15N]glutamic acid into glutathione was studied in primary cultures of astrocytes. Turnover of the intracellular glutathione pool was rapid, attaining a steady state value of 30.0 atom% excess in 180 min. The intracellular glutathione concentration was high (20-40 nmol/mg protein) and the tripeptide was released rapidly into the incubation medium. Although labeling of glutathione (atom% excess) with [15N]glutamate occurred rapidly, little accumulation of 15N in glutathione was noted during the incubation compared with 15N in aspartate, glutamine, and alanine. Glutathione turnover was stimulated by incubating the astrocytes with diethylmaleate, an electrophile that caused a partial depletion of the glutathione pool(s). Diethylmaleate treatment also was associated with significant reductions of intraastrocytic glutamate, glycine, and cysteine, i.e., the constituents of glutathione. Glutathione synthesis could be stimulated by supplementing the steady-state incubation medium with 0.05 mM L-cysteine, such treatment again partially depleting intraastrocytic glutamate and causing significant reductions of 15N labeling of both alanine and glutamine, suggesting that glutamate had been diverted from the synthesis of these amino acids and toward the formation of glutathione. The current study underscores both the intensity of glutathione turnover in astrocytes and the relationship of this turnover to the metabolism of glutamate and other amino acids.  相似文献   

14.
Hindquarters from starved rats were perfused without substrates but in the presence of an O2- and CO2-carrying perfluorocarbon emulsion to evaluate principally the metabolism of individual endogenous and protein-derived amino acids by this muscle preparation. This experimental model was shown, by a battery of metabolite measurements, to maintain cellular homoeostasis for at least 2h. The net appearance of most amino acids closely approximated their frequency of occurrence in muscle proteins, showing that they are not significantly metabolized. Exceptions were the branched-chain amino acids, methionine and those amino acids that are interconvertible with intermediates of the citrate cycle and pyruvate through coupled transaminations. The evidence indicates that only valine, isoleucine, aspartate and probably methionine can be catabolized by skeletal muscle to provide carbon precursors for glutamate/glutamine and alanine that are formed de novo by protein-catabolic muscle. The protein-sparing effects of insulin and leucine were confirmed. Although each decreased proteolysis and the net appearance of free amino acids, they were generally without effect on the ratios of amino acids formed. 2-Chloro-4-methylvalerate selectively stimulated the removal rate for the branched-chain amino acids, confirming the idea that the branched-chain oxo acid dehydrogenase normally limits the rate of their oxidation by muscle. It is also concluded that, since alanine was not formed in excess of that found in muscle proteins when no glucose was added as substrate, the excess of alanine (carbon) released from muscles in other studies is derived to a large extent, but not exclusively, from preformed carbohydrate.  相似文献   

15.
The yields of energy from oxidation of fatty acids, glucose, and glutamine were compared in cultures of chick embryo heart muscle (heart) and HeLa cells. Aerobic energy production, as measured by oxygen utilization, was comparable in the two cell types. In media containing dialyzed sera, the rates of incorporation of fatty acids directly into lipids were similar in both cells and accounted for > 97% of fatty acid metabolism in HeLa cells. However, in heart cells only 45% ended in lipid, 42% in protein, and 13% was released as CO2; the latter two products probably reflect the oxidation of fatty acids to acetyl-coenzyme A (-CoA) and its subsequent metabolism in the citrate cycle. Increased serum concentration in the medium did not affect fatty acid metabolism in HeLa cultures, but resulted in greater oxidation by heart cells (> 100 times that by HeLa cells). The metabolisms of both glucose and glutamine were similar in heart and HeLa cells with ? 60% of glucose carbon ending as medium lactate and only 3–5% converted to acetyl-CoA. About 25% of glutamine carbon ended as CO2 and increased utilizations with increasing serum concentrations was accountable in both cells by increased lactate from glucose and glutamate from glutamine. CO2 production (and energy) from glutamine was independent of glutamine concentration within a tenfold range of physiological concentrations. The yields of energy have been calculated. In 10% dialyzed calf serum, oxidation of glutamine carbon provided about half of the total energy in heart cells, glucose about 35–45%, with most coming from glycolysis; oxidation of fatty acid carbon provided only 5–10%. That > 90% of the aerobic energy comes from glutamine in both cells can account for the comparable rates of oxygen utilization. HeLa cells derived little or no energy from fatty acids.  相似文献   

16.
The synthesis and release of alanine and glutamine were investigated with an intact rat epitrochlaris muscle preparation. This preparation will maintain on incubation for up to 6 hours, tissue levels of phosphocreatine, ATP, ADP, lactate, and pyruvate closely approximating those values observed in gastrocnemius muscles freeze-clamped in vivo. The epitrochlaris preparation releases amino acids in the same relative proportions and amounts as a perfused rat hindquarter preparation and human skeletal muscle. Since amino acids were released during incubation without observable changes in tissue amino acids levels, rates of alanine and glutamine release closely approximate net amino acid synthesis. Large increases in either glucose uptake or glycolysis in muscle were not accompanied by changes in either alanine or glutamine synthesis. Insulin increased muscle glucose uptake 4-fold, but was without effect on alanine and glutamine release. Inhibition of glycolysis by iodacetate did not decrease the rate of alanine synthesis. The rates of alanine and glutamine synthesis and release from muscle decreased significantly during prolonged incubation despite a constant rate of glucose uptake and pyruvate production. Alanine synthesis and release were decreased by aminooxyacetic acid, an inhibitor of alanine aminotransferase. This inhibition was accompanied by a compensatory increase in the release of other amino acids, such as aspartate, an amino acid which was not otherwise released in appreciable quantities by muscle. The release of alanine, pyruvate, glutamate, and glutamine were observed to be interrelated events, reflecting a probable near-equilibrium state of alanine aminotransferase in skeletal muscle. It is concluded that glucose metabolism and amino acid release are functionally independent processes in skeletal muscle. Alanine release reflects the de novo synthesis of the amino acid and does not arise from the selective proteolysis of an alanine-rich storage protein. It appears that the rate of alanine and glutamine synthesis in skeletal muscle is dependent upon the transformation and metabolism of amino acid precursors.  相似文献   

17.
Compartmentalization of cellular amino acid pools occurs in cultures of cardiac and skeletal muscle cells, but the factors involved in this are not clear. We have further defined this problem by analyzing the intracellular free leucine and the transfer-RNA-(tRNA)-bound leucine pool in cultures of skeletal and cardiac muscle incubated with 3H-leucine in the presence and absence of serum and amino acids. Withdrawal of nitrogen substrates caused substantial changes in leucine pool relationships–in particular, a change in the degree to which intracellular free leucine and tRNA-leucine were derived from the culture medium. In separate experiments, the validity of our tRNA measurements was confirmed by measurements of the specific activity of newly synthesized ferritin after iron induction. We discuss the implications of these findings with regard-to factors involved in the control of amino acid flux through the cell, as well as with regard to design of experiments using isotopic amino acids to measure rates of amino acid utilization.  相似文献   

18.
Histochemical detection of cytochrome oxidase activity in chicken growth plate revealed both positively and negatively stained mitochondria in chondrocytes of all zones, i.e., proliferative, pre-hypertrophic, hypertrophic, and calcifying zones. The proportion of positive to negative cells was lowest in the proliferative zone. As cytodifferentiation progressed, more positively stained cells were present. In positive cells all mitochondria were usually stained, and in negative cells all mitochondria were unstained. A few cells appeared to be in transition and contained both types of mitochondria. The results indicate that chondrocytes utilizing both aerobic and anaerobic metabolism are present in growth plate cartilage and that oxidative metabolism is favored in the more mature cells. The relationship of oxidative metabolism to calcification is discussed.  相似文献   

19.
Some of the reactions of endogenous metabolism ofStaphylococcus aureus were examined and the level of endogenous substrate was found to be related to oxygen consumption. In starved cells, the amount of free amino acids, protein and RNA decreased while that of DNA increased. The cells consumed mainly glutamic and aspartic acids and, to a lesser degree, alanine, glycine and serine, while leucine/isoleucine, methionine, tyrosine and phenylalanine were released into the medium. The degradation of RNA by starved cells was suppressed by Mg2+. Resting cells ofStaphylococcus aureus oxidized adenosine, guanosine, uridine, adenine, guanine and ribose. After 3 h of starvation at 37°C the viability of cells was not affected although 40.6% amino acids, 8.5% protein and 36.5% RNA had been consumed. Presented in part at the XVIIth Meeting of the Polish Society for Microbiology, Warsaw, September 1970.  相似文献   

20.
Rapid clonal growth of primary cultures of human costal chondrocytes in a defined medium has been achieved. The basal nutrient medium used for such growth is MCDB 104. It is prepared without linoleic acid and supplemented with 1 microgram/ml insulin, 100 ng/ml fibroblast growth factor, 1.0 x 10(-7) M dexamethasone, and 5 micrograms/ml mixed lipids, presented to the cells in the form of liposomes. The lipid supplement contains soybean lecithin, cholesterol, sphingomyelin, vitamin E, and vitamin E acetate. No expression of cartilage-like differentiation occurs in the defined medium. However, colonies grown for several days in the defined medium and then grown for an additional period of time in medium F12 supplemented with fetal bovine serum and chicken embryo extract synthesize large amounts of refractile matrix that is stained intensely by acidified alcian green, thus demonstrating that the cells growing in the defined medium are capable of expressing cartilage matrix in a permissive environment. Good clonal growth and expression of differentiation can also be obtained by inoculating primary cultures of human chondrocytes directly into the F12-serum-embryo extract medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号