首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The three homeotic genes of the bithorax complex (BX-C), Ubx, abd-A and Abd-B control the identity of the posterior thorax and all abdominal segments. Large segment-specific cis-regulatory regions control the expression of Ubx, abd-A or Abd-B in each of the segments. These segment-specific cis-regulatory regions span the whole 300 kb of the BX-C and are arranged on the chromosome in the same order as the segments they specify. Experiments with lacZ reporter constructs revealed the existence of several types of regulatory elements in each of the cis-regulatory regions. These include initiation elements, maintenance elements, cell type- or tissue-specific enhancers, chromatin insulators and the promoter targeting sequence. In this paper, we extend the analysis of regulatory elements within the BX-C by describing a series of internal deficiencies that affect the Abd-B regulatory region. Many of the elements uncovered by these deficiencies are further verified in transgenic reporter assays. Our results highlight four key features of the iab-5, iab-6 and iab-7 cis-regulatory region of Abd-B. First, the whole Abd-B region is modular by nature and can be divided into discrete functional domains. Second, each domain seems to control specifically the level of Abd-B expression in only one parasegment. Third, each domain is itself modular and made up of a similar set of definable regulatory elements. And finally, the activity of each domain is absolutely dependent on the presence of an initiator element.  相似文献   

2.
J. W. Little  C. A. Byrd    D. L. Brower 《Genetics》1990,124(4):899-908
We have examined the patterns of expression of the homeotic gene Ubx in imaginal discs of Drosophila larvae carrying mutations in the abx, bx and pbx regulatory domains. In haltere discs, all five bx insertion mutations examined led to a general reduction in Ubx expression in the anterior compartment; for a given allele, the strength of the adult cuticle phenotype correlated with the degree of Ubx reduction. Deletions mapping near or overlapping the sites of bx insertions, including three abx alleles and the bx34e-prv(bx-prv) allele, showed greatly reduced Ubx expression in parts of the anterior compartment of the haltere disc; however, anterior patches of strong Ubx expression often remained, in highly variable patterns. As expected, the pbx1 mutation led to reduced Ubx expression in the posterior compartment of the haltere disc; surprisingly, pbx1 also led to altered expression of the en protein near the compartment border in the central region of the disc. In the metathoracic leg, all the bx alleles caused extreme reduction in Ubx expression in the anterior regions, with no allele-specific differences. In contrast, abx and bx-prv alleles resulted in patchy anterior reductions in third leg discs. In the larval central nervous system, abx but not bx alleles affected Ubx expression; the bx-prv deletion gave a wild-type phenotype, but it could not fully complement abx mutations. In the posterior wing disc, the bx-prv allele, and to a much lesser extent the bx34e chromosome from which it arose, led to ectopic expression of Ubx. Unlike other grain-of-function mutations in the BX-C, this phenotype appeared to be partially recessive to wild type. Finally, we asked whether the ppx transformation, which results from early lack of Ubx+ function in the mesothorax and is seen in abx animals, is due to ectopic Scr expression. Some mesothoracic leg and wing discs from abx2 larvae displayed ectopic expression of Scr, which was variable in extent but always confined to the posterior compartment.  相似文献   

3.
4.
S Qian  M Capovilla    V Pirrotta 《The EMBO journal》1991,10(6):1415-1425
The Drosophila homeotic gene Ultrabithorax (Ubx) is regulated by complex mechanisms that specify the spatial domain, the timing and the activity of the gene in individual tissues and in individual cells. In early embryonic development, Ubx expression is controlled by segmentation genes turned on earlier in the developmental hierarchy. Correct Ubx expression depends on multiple regulatory sequences located outside the basal promoter. Here we report that a 500 bp DNA fragment from the bx region of the Ubx unit, approximately 30 kb away from the promoter, contains one of the distant regulatory elements (bx region enhancer, BRE). During early embryogenesis, this enhancer element activates the Ubx promoter in parasegments (PS) 6, 8, 10, and 12 and represses it in the anterior half of the embryo. The repressor of the anterior Ubx expression is the gap gene hunchback (hb). We show that the hb protein binds to the BRE element and that such binding is essential for hb repression in vivo, hb protein also binds to DNA fragments from abx and bxd, two other regulatory regions of the Ubx gene. We conclude that hb represses Ubx expression directly by binding to BRE and probably other Ubx regulatory elements. In addition, the BRE pattern requires input from other segmentation genes, among them tailless and fushi tarazu but not Krüppel and knirps.  相似文献   

5.
6.
We have examined the developmental consequences for larval and imaginal segmental cuticular structure of a chromosomal translocation involving a breakpoint in the abdominal region of the bithorax complex (BX-C). This complex makes an essential contribution to the development of metameric differences in part of the thorax and in all abdominal segments. The breakpoint is proximal to the most distal (iab-7) homeobox, and results in the translocation to the Y chromosome of the Ultrabithorax (Ubx) and abdominal-A (abd-A) domains. The genotype deficient for the distal part of the complex shows normal function for Ubx and abd-A but has a phenotype typical for severe Abd-B mutations. Conversely, the distal fragment retains a segment identity function which must represent a contribution from Abd-B in parasegments 13 and 14; the latter metamere is wild type, indicating that it does not require the contribution of Ubx or abd-A. We also constructed a genotype comprising the proximal fragment of this translocation together with an overlapping distal fragment of the BX-C derived from Df(3R)Ubx109. It therefore contained all sequences of the BX-C though in the abdominal region the abd-A and Abd-B domains were not adjacent to each other in the chromosome. This genotype was phenotypically normal and demonstrates that DNA sequences in the abd-A and Abd-B regions do not require cis-arrangement for their activity.  相似文献   

7.
8.
We have constructed double and triple mutant combinations for the Ubx, abd-A and Abd-B genes of the bithorax complex and have examined the homeotic transformations they produce in the larval and adult patterns. Embryos hemizygous for the triple combination exhibit a metameric pattern consisting of parasegments 5-12 being transformed into parasegment 4. In addition, parasegment 13 develops like a mixture of parasegment 3 and 4, and parasegment 14 is abnormal. The same phenotype is displayed by embryos homozygous for DfP9, lacking all the BX-C DNA, >300 kb. This result strongly supports the notion that the BX-C contains only three genes which account for all the developmental functions of the complex. The phenotypes of the different double combinations also support the same view; the Ubx abd-a comthoracic and several abdominal functions. The abd-A Abd-B combination exhibits the same phenotype of DpP10 DfP9, lacking all the abdominal functions except those specific for A1. Our results also indicate that each BX-C gene becomes active autonomously regardless of the presence or functional state of the other BX-C genes.  相似文献   

9.
Separation of the imaginal and larval developmental pathways in Drosophila occurs early in embryogenesis, resulting in the formation of imaginal discs and abdominal histoblast nests along the larval body wall. The dorsal and ventral histoblast nests within the first abdominal (A1) segment are shown not to be segmentally homologous with the metathoracic (T3) haltere and leg discs, respectively, since they occur at distinct dorso-ventral locations during normal development and can be found together within the same segment in mutants of the Bithorax complex (BX-C) where T3 is transformed towards A2-A4 or A1 towards T3. Several patterning abnormalities are also observed in BX-C mutants. A ventral shift in the A1 ventral nest occurs in partially transformed larvae harboring weak bithoraxoid (bxd) mutations; in more fully transformed larvae (Ubx1/Df) both the anterior dorsal and ventral nests are lost and instead a dorsal and ventral disc bud are formed. Dorso-ventral inversions in the pattern of the ventral nest occur in a random fashion throughout A1-A7 in response to an increase or decrease in the gene dosage of the BX-C. In gain-of-function mutants anterior dorsal histoblast cells form in the homologous anterior as well as the nonhomologous posterior portion of T3. Based on these and other findings it appears that the Ultrabithorax (Ubx) locus (and possibly abdominal-A and Abdominal-B) is required to steer ectodermal cells toward an imaginal histoblast rather than a larval cell fate at specific regions within the first abdominal segment.  相似文献   

10.
The distributions of the products of the homeotic genes Sex combs reduced (Scr) and Ultrabithorax (Ubx) and of the segmentation genes, fushi tarazu (ftz), even skipped (eve) and engrailed (en) have been monitored in polyhomeotic (ph) mutant embryos. None of the genes monitored show abnormal expression at the blastoderm stage in the absence of zygotic ph expression. Both Scr and Ubx are ectopically expressed in the epidermis of ph embryos, confirming the earlier proposal, based on genetic analysis, that ph+ acts as a negative regulator of Antennapedia (ANT-C) and bithorax (BX-C) complex genes. At the shortened germ band stage, en is also ectopically expressed, mainly in the anterior region of each segment. In contrast to these effects in the epidermis, the expression of en, Ubx, Scr and ftz is largely or completely suppressed in the central nervous system, whereas eve becomes ectopically expressed in most neurones.  相似文献   

11.
12.
S. M. Smolik-Utlaut 《Genetics》1990,124(2):357-366
The wild-type Ultrabithorax (Ubx) and bithoraxoid (bxd) functions are primarily responsible for establishing the identity of parasegment 6 (PS6) in the Drosophila embryo and thus the identity of the posterior compartment of the third thoracic segment (pT3) and the anterior compartment of the first abdominal segment (aA1) in the adult. The experiments described were designed to test the ability of an increased dosage of Ubx+ and bxd+ to affect the transformation of PS5 toward PS6. The results are consistent with the ideas that (1) multiple copies of Ubx+ and bxd+ cause some cells within PS5 to take on the characteristics of PS6 cells but do not cause an overall parasegmental transformation of PS5 toward PS6, (2) cellular identity depends not only on the activity of Ubx+ but on its concentration as well, and (3) that an interaction between Ubx+ and the wild-type Antennapedia (Antp) gene establishes segmental identity in pT2. In the first instar larvae carrying eight copies of Ubx+ and bxd+ the fine hairs of the T3 setal belt are transformed toward the hook-like structures of the A1 setal belt. Other structures within this segment are unaffected. In the adult, the haltere is reduced in size. The transformation of pT2 cells (wing) toward pT3 cells (haltere) is seen in adults carrying eight doses of wild type Ubx and bxd by decreasing the amount of the bithorax complex (BX-C) regulator Polycomb (Pc). However, the transformation of the T3 setal belt is not enhanced in the larvae of these animals. The interaction between the genes of the Antennapedia complex (ANT-C) and the Ubx+ and bxd+ functions in pT2 is dosage sensitive only when the animals carry one copy of Pc. In these animals, the transformation of wing toward haltere is significantly enhanced.  相似文献   

13.
14.
Using a monoclonal antibody and image-processing procedures, the patterns of expression of the Ultrabithorax (Ubx) gene product have been characterized in Drosophila larvae. As reported previously, the metathoracic imaginal discs stain most intensely with anti-Ubx, with some mesothoracic and no prothoracic expression detectable. In the metathoracic discs, the greatest modulation in anti-Ubx staining is along the proximodistal axis. Ubx is generally expressed at higher levels in the posterior regions of metathoracic discs, although relatively high anterior expression is found in some areas. Expression in the mature wing disc is confined to the squamous peripodial membrane cells; in younger wings, Ubx expression fills the posterior half of the peripodial side of the disc. The mesothoracic leg stains with a pattern that is qualitatively similar (but not identical) to that of the metathoracic leg; Ubx is expressed in some anterior regions of the mesothoracic leg, in parasegment 4. Double staining with anti-Ubx and anti-engrailed reveals that discontinuities in Ubx expression that have been suggested to correspond to compartment borders do not coincide with the compartment boundaries in some cases. In the larval ventral ganglion, Ubx expression is greatest in parasegments 5 and 6, as in the embryonic nervous system.  相似文献   

15.
16.
Mutations in the Drosophila gene extradenticle (exd), a homologue of the human proto-oncogene pbx1, cause homeotic transformations by altering the morphological consequences of homeotic selector gene activity. exd has been proposed to act by contributing to the specificity of selector homeodomain proteins for their downstream targets. Here we show that exd is indeed required for the appropriate regulation of at least some of these target genes. Expression patterns of wingless, teashirt and decapentaplegic (dpp) are altered in the embryonic midgut of embryos lacking exd, while the expression of their respective regulators (abd-A, Antp and Ubx) remains normal. Co-regulation of dpp by exd and Ubx was investigated in greater detail by examining the expression of reporter constructs in exd embryos. These experiments not only define dpp regulatory regions responsive to exd, but also distinguish two functions of exd in the regulation of dpp. exd acts with Ubx to activate dpp expression in parasegment 7 (PS7), via a minimal visceral mesoderm enhancer, and exd represses dpp expression anterior to PS7. We show that even when Ubx is ubiquitously expressed at high levels in exd embryos, Ubx is incapable of activating dpp enhancer expression. Thus, exd is an indispensable component in target gene regulation by the homeotic selector proteins.  相似文献   

17.
R. Hopmann  D. Duncan    I. Duncan 《Genetics》1995,139(2):815-833
The Abdominal-B (Abd-B) gene of the bithorax complex (BX-C) of Drosophila controls the identities of the fifth through seventh abdominal segments and segments in the genitalia (more precisely, parasegments 10-14). Here we focus on iab-5, iab-6 and iab-7, regulatory regions of Abd-B that control expression in the fifth, sixth and seventh abdominal segments (parasegments 10-12). By analysis of partial BX-C deficiencies, we show that these regions are able to promote fifth and sixth abdominal segment identities in the absence of an Abd-B gene in cis. We establish that this ability does not result from cis-regulation of the adjacent abd-A or Ubx genes of the BX-C but rather occurs because the iab-5,6,7 region is able to interact with Abd-B in trans. We demonstrate that this interaction is proximity dependent and is, therefore, a case of what E. B. LEWIS has called transvection. Interactions of this type are presumably facilitated by the synapsis of homologues that occurs in somatic cells of Dipterans. Although transvection has been detected in a number of Drosophila genes, transvection of the iab-5,6,7 region is exceptional in two ways. First, interaction in trans with Abd-B does not require that homologues share homologous sequences within, or for some distance to either side of, the BX-C. This is the first case of transvection shown to be independent of local synapsis. A second unusual feature of iab-5,6,7 transvection is that it is remarkably difficult to disrupt by heterozygosity for chromosome rearrangements. The lack of requirement for local synapsis and the tenacity of trans-interaction argue that the iab-5,6,7 region can locate and interact with Abd-B over considerable distance. This is consistent with the normal role of iab-5,6,7, which must act over some 20-60 kb to influence its regulatory target in cis at the Abd-B promoter. Evidence is presented that trans-action of iab-5,6,7 requires, and may be mediated by, the region between distal iab-7 and Abd-B. Also, we show that iab-5,6,7 transvection is independent of the allelic state of zeste, a gene that influences several other cases of transvection. The long-range nature of interactions in trans between iab-5,6,7 and Abd-B suggests that similar interactions could operate effectively in organisms lacking extensive somatic pairing. Transvection may, therefore, be of more general significance than previously suspected.  相似文献   

18.
19.
In Drosophila, segmentation genes partition the early embryo into reiterative segments along the anterior-posterior axis, while Hox genes assign segments their identities. Each segment is also subdivided into distinct anterior (A) and posterior (P) compartments based on the expression of the engrailed (en) segmentation gene. Differences in Hox expression often correlate with compartmental boundaries, but the genetic basis for these differences is not well understood. In this study, we extend previous results to describe a genetic circuit that controls the differential expression of two Hox genes, Ultrabithorax (Ubx) and abdominal-A (abd-A), within the A and P compartments of the abdominal ectoderm. Consistent with earlier findings, we show that en is essential for high Abd-A levels and low Ubx levels in the P compartment, whereas sloppy-paired (slp) is required for high Ubx levels in the A compartment. Overall, these results demonstrate that the compartmental expression of Ubx and abd-A is established through a repressive regulatory network between en, slp, Ubx and abd-A. We also show that abd-A expression in the P compartment is important for the formation of abdominal-specific cell types, suggesting that en and slp modulation of Hox expression within the A and P compartments is essential for embryonic patterning.  相似文献   

20.
A very large cis-regulatory region of approximately 300 kb is responsible for the complex patterns of expression of the three homeotic genes of the bithorax complex Ubx, abd-A and Abd-B. This region can be subdivided in nine parasegment-specific regulatory subunits. Recent genetic and molecular analysis has revealed the existence of two novel cis-regulatory elements Mcp and Fab-7. Mcp is located between iab-4 and iab-5, the parasegment-specific regulatory subunits which direct Abd-B in parasegments 9 and 10. Similarly, Fab-7 is located between iab-6 and iab-7, the parasegment 11 and 12-specific regulatory units. Mcp and Fab-7 appear to function as domain boundaries that separate adjacent cis-regulatory units. We report the analysis of two new Mcp mutant deletions (McpH27 and McpB116) that allow us to localize sequences essential for boundary function to a approximately 0.4 kb DNA segment. These essential sequences closely coincide to a approximately 0.3 kb nuclease hypersensitive region in chromatin. We also show that sequences contributing to the Fab-7 boundary appear to be spread over a larger stretch of DNA, but like Mcp have an unusual chromatin structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号