首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fundamental possibility of interaction between non-histone chromatin protein HMGB1 and linker histone H1 was studied in the solutions with different ionic strength by intrinsic UV-fluorescence, far and near-UV CD and spectrophotometry. The obtained data allow us to assume that the increase of histone H1 content in the HMGB1 solutions in a low ionic strength is accompanied by the destruction of HMGB1 associates. The interaction between proteins of HMGB1 and H1 causes the increase in the number of ordered regions in the protein molecules and the minor changes in their tertiary structure.  相似文献   

2.
The fundamental possibility of interactions between non-histone chromatin protein HMGB1 and linker histone H1 in solutions with different ionic strengths was studied by intrinsic UV fluorescence, far and near UV CD, and spectrophotometry. The data we obtained allow us to assume that the increase in the histone H1 content in HMGB1 solutions with low ionic strengths is accompanied by the destruction of HMGB1 associates. The interactions between HMGB1 and H1 proteins increase the number of ordered regions in the protein molecules and causes slight changes in the tertiary structure of the protein.  相似文献   

3.
Chromatin-remodeling complexes have been a central area of focus for research dealing with accessing cellular DNA sequestered in chromatin. Although the linker histone H1 plays a major role in promoting and maintaining higher-order chromatin structure, it has been noticeably absent from assays utilizing chromatin-remodeling enzymes. This review focuses on two ATP-dependent chromatin-remodeling complexes, Drosophila ISWI and mammalian SWI/SNF, that have been assayed using chromatin templates containing histone H1.  相似文献   

4.
5.
After removal of histone H1 about 40% of DNA in chromatin acquires the sensitivity of naked DNA to DNAse I. Digestion of H1-depleted chromatin with DNAse I leads to a qualitative change in the digestion pattern, generating DNA fragments of approx. 200 b.p. and multiples, similar to those obtained with micrococcal nuclease. Both effects are reversed upon reconstitution of purified H1 to H1-depleted chromatin.  相似文献   

6.
The basic and intrinsically disordered C-terminal domain (CTD) of the linker histone (LH) is essential for chromatin compaction. However, its conformation upon nucleosome binding and its impact on chromatin organization remain unknown. Our mesoscale chromatin model with a flexible LH CTD captures a dynamic, salt-dependent condensation mechanism driven by charge neutralization between the LH and linker DNA. Namely, at low salt concentration, CTD condenses, but LH only interacts with the nucleosome and one linker DNA, resulting in a semi-open nucleosome configuration; at higher salt, LH interacts with the nucleosome and two linker DNAs, promoting stem formation and chromatin compaction. CTD charge reduction unfolds the domain and decondenses chromatin, a mechanism in consonance with reduced counterion screening in vitro and phosphorylated LH in vivo. Divalent ions counteract this decondensation effect by maintaining nucleosome stems and expelling the CTDs to the fiber exterior. Additionally, we explain that the CTD folding depends on the chromatin fiber size, and we show that the asymmetric structure of the LH globular head is responsible for the uneven interaction observed between the LH and the linker DNAs. All these mechanisms may impact epigenetic regulation and higher levels of chromatin folding.  相似文献   

7.
Linker histone H1 is the major factor that stabilizes higher order chromatin structure and modulates the action of chromatin-remodeling enzymes. We have previously shown that parathymosin, an acidic, nuclear protein binds to histone H1 in vitro and in vivo. Confocal laser scanning microscopy reveals a nuclear punctuate staining of the endogenous protein in interphase cells, which is excluded from dense heterochromatic regions. Using an in vitro chromatin reconstitution system under physiological conditions, we show here that parathymosin (ParaT) inhibits the binding of H1 to chromatin in a dose-dependent manner. Consistent with these findings, H1-containing chromatin assembled in the presence of ParaT has reduced nucleosome spacing. These observations suggest that interaction of the two proteins might result in a conformational change of H1. Fluorescence spectroscopy and circular dichroism-based measurements on mixtures of H1 and ParaT confirm this hypothesis. Human sperm nuclei challenged with ParaT become highly decondensed, whereas overexpression of green fluorescent protein- or FLAG-tagged protein in HeLa cells induces global chromatin decondensation and increases the accessibility of chromatin to micrococcal nuclease digestion. Our data suggest a role of parathymosin in the remodeling of higher order chromatin structure through modulation of H1 interaction with nucleosomes and point to its involvement in chromatin-dependent functions.  相似文献   

8.
Two key components of mammalian heterochromatin that play a structural role in higher order chromatin organization are the heterochromatin protein 1alpha (HP1alpha) and the linker histone H1. Here, we show that these proteins interact in vivo and in vitro through their hinge and C-terminal domains, respectively. The phosphorylation of H1 by CDK2, which is required for efficient cell cycle progression, disrupts this interaction. We propose that phosphorylation of H1 provides a signal for the disassembly of higher order chromatin structures during interphase, independent of histone H3-lysine 9 (H3-K9) methylation, by reducing the affinity of HP1alpha for heterochromatin.  相似文献   

9.
10.
11.
Linker histone H1 plays an essential role in chromatin organization. Proper deposition of linker histone H1 as well as its removal is essential for chromatin dynamics and function. Linker histone chaperones perform this important task during chromatin assembly and other DNA-templated phenomena in the cell. Our in vitro data show that the multifunctional histone chaperone NPM1 interacts with linker histone H1 through its first acidic stretch (residues 120-132). Association of NPM1 with linker histone H1 was also observed in cells in culture. NPM1 exhibited remarkable linker histone H1 chaperone activity, as it was able to efficiently deposit histone H1 onto dinucleosomal templates. Overexpression of NPM1 reduced the histone H1 occupancy on the chromatinized template of HIV-1 LTR in TZM-bl cells, which led to enhanced Tat-mediated transactivation. These data identify NPM1 as an important member of the linker histone chaperone family in humans.  相似文献   

12.
13.
Protamine-like proteins constitute a group of sperm nuclear basic proteins that have been shown to be related to somatic linker histones (histone H1 family). Like protamines, they usually replace the chromatin somatic histone complement during spermiogenesis; hence their name. Several of these proteins have been characterized to date in invertebrate organisms, but information about their occurrence and characterization in vertebrates is still lacking. In this sense, the genus Mullus is unique, as it is the only known vertebrate that has its sperm chromatin organized by virtually only protamine-like proteins. We show that the sperm chromatin of this organism is organized by two type I protamine-like proteins (PL-I), and we characterize the major protamine-like component of the fish Mullus surmuletus (striped red mullet). The native chromatin structure resulting from the association of these proteins with DNA was studied by micrococcal nuclease digestion as well as electron microscopy and X-ray diffraction. It is shown that the PL-I proteins organize chromatin in parallel DNA bundles of different thickness in a quite distinct arrangement that is reminiscent of the chromatin organization of those organisms that contain protamines (but not histones) in their sperm.  相似文献   

14.
The mechanism by which chromatin is decondensed to permit access to DNA is largely unknown. Here, using a model nucleosome array reconstituted from recombinant histone octamers, we have defined the relative contribution of the individual histone octamer N-terminal tails as well as the effect of a targeted histone tail acetylation on the compaction state of the 30 nm chromatin fiber. This study goes beyond previous studies as it is based on a nucleosome array that is very long (61 nucleosomes) and contains a stoichiometric concentration of bound linker histone, which is essential for the formation of the 30 nm chromatin fiber. We find that compaction is regulated in two steps: Introduction of H4 acetylated to 30% on K16 inhibits compaction to a greater degree than deletion of the H4 N-terminal tail. Further decompaction is achieved by removal of the linker histone.  相似文献   

15.
《Molecular cell》2022,82(1):106-122.e9
  1. Download : Download high-res image (174KB)
  2. Download : Download full-size image
  相似文献   

16.
17.
Dosage compensation equalizes X-linked gene expression between the sexes. This process is achieved in Caenorhabditis elegans by hermaphrodite-specific, dosage compensation complex (DCC)-mediated, 2-fold X chromosome downregulation. How the DCC downregulates gene expression is not known. By analyzing the distribution of histone modifications in nuclei using quantitative fluorescence microscopy, we found that H4K16 acetylation (H4K16ac) is underrepresented and H4K20 monomethylation (H4K20me1) is enriched on hermaphrodite X chromosomes in a DCC-dependent manner. Depletion of H4K16ac also requires the conserved histone deacetylase SIR-2.1, while enrichment of H4K20me1 requires the activities of the histone methyltransferases SET-1 and SET-4. Our data suggest that the mechanism of dosage compensation in C. elegans involves redistribution of chromatin-modifying activities, leading to a depletion of H4K16ac and an enrichment of H4K20me1 on the X chromosomes. These results support conserved roles for histone H4 chromatin modification in worm dosage compensation analogous to those seen in flies, using similar elements and opposing strategies to achieve differential 2-fold changes in X-linked gene expression.  相似文献   

18.
DNA methylation has been implicated in chromatin condensation and nuclear organization, especially at sites of constitutive heterochromatin. How this is mediated has not been clear. In this study, using mutant mouse embryonic stem cells completely lacking in DNA methylation, we show that DNA methylation affects nuclear organization and nucleosome structure but not chromatin compaction. In the absence of DNA methylation, there is increased nuclear clustering of pericentric heterochromatin and extensive changes in primary chromatin structure. Global levels of histone H3 methylation and acetylation are altered, and there is a decrease in the mobility of linker histones. However, the compaction of both bulk chromatin and heterochromatin, as assayed by nuclease digestion and sucrose gradient sedimentation, is unaltered by the loss of DNA methylation. This study shows how the complete loss of a major epigenetic mark can have an impact on unexpected levels of chromatin structure and nuclear organization and provides evidence for a novel link between DNA methylation and linker histones in the regulation of chromatin structure.  相似文献   

19.
Mammalian oocytes contain the histone H1foo, a distinct member with low sequence similarity to other members in the H1 histone family. Oocyte-specific H1foo exists until the second embryonic cell stage. H1foo is essential for oocyte maturation in mice; however, the molecular function of this H1 subtype is unclear. To explore the function of H1foo, we generated embryonic stem (ES) cells ectopically expressing H1foo fused to an EGFP (H1foo-ES). Interestingly, ectopic expression of H1foo prevented normal differentiation into embryoid bodies (EBs). The EB preparations from H1foo-ES cells maintained the expression of pluripotent marker genes, including Nanog, Myc and Klf9, and prevented the shift of the DNA methylation profile. Because the short hairpin RNA-mediated knockdown of H1foo-EGFP recovered the differentiation ability, H1foo was involved in preventing differentiation. Furthermore, ChIP analysis revealed that H1foo-EGFP bound selectively to a set of hypomethylated genomic loci in H1foo-ES, clearly indicating that these loci were targets of H1foo. Finally, nuclease sensitivity assay suggested that H1foo made these target loci decondensed. We concluded that H1foo has an impact on the genome-wide, locus-specific epigenetic status.  相似文献   

20.
《Epigenetics》2013,8(9):1029-1036
Mammalian oocytes contain the histone H1foo, a distinct member with low sequence similarity to other members in the H1 histone family. Oocyte-specific H1foo exists until the second embryonic cell stage. H1foo is essential for oocyte maturation in mice; however, the molecular function of this H1 subtype is unclear. To explore the function of H1foo, we generated embryonic stem (ES) cells ectopically expressing H1foo fused to an EGFP (H1foo-ES). Interestingly, ectopic expression of H1foo prevented normal differentiation into embryoid bodies (EBs). The EB preparations from H1foo-ES cells maintained the expression of pluripotent marker genes, including Nanog, Myc and Klf9, and prevented the shift of the DNA methylation profile. Because the short hairpin RNA-mediated knockdown of H1foo-EGFP recovered the differentiation ability, H1foo was involved in preventing differentiation. Furthermore, ChIP analysis revealed that H1foo-EGFP bound selectively to a set of hypomethylated genomic loci in H1foo-ES, clearly indicating that these loci were targets of H1foo. Finally, nuclease sensitivity assay suggested that H1foo made these target loci decondensed. We concluded that H1foo has an impact on the genome-wide, locus-specific epigenetic status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号