共查询到20条相似文献,搜索用时 15 毫秒
1.
Kunz J Schneider U Howald I Schmidt A Hall MN 《The Journal of biological chemistry》2000,275(47):37011-37020
The subcellular distribution of Tor1p and Tor2p, two phosphatidylinositol kinase homologs and targets of the immunosuppressive drug rapamycin in Saccharomyces cerevisiae, was analyzed. We found that Tor protein is peripherally associated with membranes. Subcellular fractionation and immunofluorescence studies showed that Tor1p and Tor2p associate with the plasma membrane and a second fraction that is distinct from Golgi, vacuoles, mitochondria, and nucleus and may represent vesicular structures. Pulse-chase experiments showed that association of Tor protein with plasma membrane and the second compartment is fast, does not appear to involve components of endocytic, secretory, or Golgi to vacuole transport pathways, and is not affected by the immunosuppressive drug rapamycin. Deletion analysis reveals that two domains within Tor2p independently mediate localization to both compartments. These domains are composed of HEAT repeats that are thought to act as protein-protein interaction surfaces. Our studies therefore place Tor proteins at the site of action of their known downstream effectors and suggest that they may be part of a multiprotein complex. 相似文献
2.
白色念珠菌逆转座子长末端重复序列α,β,γ,κ用作探针,对25株白色念珠菌进行Southern杂交分析,测定了α,β,γ,κ在染色体中的分布,在SC5314菌株中,Northern杂交能检测到α,β,γ,的转录产物,而且,它们的转录与培养条件相关,κ则没有转录活性。我们的结果表明白色念珠菌中存在多种逆转座子,不同菌株之间这些逆转座子的数量与分布不同,这些逆转座子可用作分子标记物对白色念珠菌进行分析鉴定。 相似文献
3.
4.
【目的】鉴定白念珠菌肌醇多磷酸激酶Kcs1蛋白,并探索Kcs1在该病原菌细胞自噬、菌丝发育及致病过程中的功能。【方法】采用二步PCR介导的同源重组方法,构建白念珠菌KCS1基因缺失菌株kcs1Δ/Δ及回补菌株KCS1c;采用氮饥饿敏感性测定及GFP-Atg8自噬报告系统,测定KCS1缺失对白念珠菌自噬过程的影响;采用菌丝诱导培养,测定KCS1缺失对白念珠菌菌丝发育能力的影响;采用巨噬细胞模型及小鼠系统性感染模型,分析KCS1缺失对白念珠菌感染宿主能力的影响。【结果】KCS1缺失造成白念珠菌氮饥饿耐受能力降低,氮饥饿条件下自噬相关蛋白Atg8的降解及转运水平下降,菌丝发育变缓,对巨噬细胞耐受及损伤能力减弱,但不影响菌株的小鼠系统性感染能力。【结论】白念珠菌肌醇多磷酸激酶Kcs1在细胞自噬、菌丝发育、与巨噬细胞相互作用等方面发挥重要作用。 相似文献
5.
6.
Umeyama T Kaneko A Nagai Y Hanaoka N Tanabe K Takano Y Niimi M Uehara Y 《Molecular microbiology》2005,55(2):381-395
Saccharomyces cerevisiae Hsl1p is a Ser/Thr protein kinase that regulates cell morphology. We identified Candida albicans CaHSL1 and analysed its function in C. albicans. Cells lacking CaHsl1p exhibited filamentous growth under yeast growth conditions with the filaments elongating more quickly than did those of the wild type under hyphal growth conditions, suggesting that it plays a role in the suppression of cell elongation. Green fluorescent protein-tagged CaHsl1p colocalized with a septin complex to the bud neck during yeast growth or to a potent septation site during hyphal growth, as expected from the localization in S. cerevisiae. However, the localization of the septin complex did not change in DeltaCahsl1, suggesting that CaHsl1p does not participate in septin organization. CaHsl1p was expressed in a cell cycle-dependent manner and, except for the G1 phase, phosphorylated throughout the cell cycle. In DeltaCahsl1 cells, the phosphorylation of a possible CaHsl1p target CaSwe1p decreased, while that of CaCdc28p at tyrosine18 increased. Either an extra copy of the tyrosine18-mutated CaCdc28p or deletion of CaSWE1 suppressed the cell elongation phenotype caused by CaHSL1 deletion. Furthermore, DeltaCahsl1 exhibited reduced virulence in the mouse systemic candidiasis model. Thus, the CaHsl1p-CaSwe1p-CaCdc28p pathway appears important in the cell elongation of both the yeast and hyphal forms and to the virulence of C. albicans. 相似文献
7.
The opportunistic pathogen Candida albicans expresses on its surface Als (Agglutinin like sequence) proteins, which play an important role in the adhesion to host cells and in the development of candidiasis. The binding specificity of these proteins is broad, as they can bind to various mammalian proteins, such as extracellular matrix proteins, and N- and E-cadherins. The N-terminal part of Als proteins constitutes the substrate-specific binding domain and is responsible for attachment to epithelial and endothelial cells. We have used glycan array screening to identify possible glycan receptors for the binding domain of Als1p-N. Under those conditions, Als1p-N binds specifically to fucose-containing glycans, which adds a lectin function to the functional diversity of the Als1 protein. The binding between Als1p-N and BSA-fucose glycoconjugate was quantitatively characterized using surface plasmon resonance, which demonstrated a weak millimolar affinity between Als1p-N and fucose. Furthermore, we have also quantified the affinity of Als1p-N to the extracellular matrix proteins proteins fibronectin and laminin, which is situated in the micromolar range. Surface plasmon resonance characterization of Als1p-N-Als1p-N interaction was in the micromolar affinity range. 相似文献
8.
MAPKKK-independent regulation of the Hog1 stress-activated protein kinase in Candida albicans 总被引:1,自引:0,他引:1
Cheetham J MacCallum DM Doris KS da Silva Dantas A Scorfield S Odds F Smith DA Quinn J 《The Journal of biological chemistry》2011,286(49):42002-42016
The Hog1 stress-activated protein kinase regulates both stress responses and morphogenesis in Candida albicans and is essential for the virulence of this major human pathogen. Stress-induced Hog1 phosphorylation is regulated by the upstream MAPKK, Pbs2, which in turn is regulated by the MAPKKK, Ssk2. Here, we have investigated the role of phosphorylation of Hog1 and Pbs2 in Hog1-mediated processes in C. albicans. Mutation of the consensus regulatory phosphorylation sites of Hog1 (Thr-174/Tyr-176) and Pbs2 (Ser-355/Thr-359), to nonphosphorylatable residues, resulted in strains that phenocopied hog1Δ and pbs2Δ cells. Consistent with this, stress-induced phosphorylation of Hog1 was abolished in cells expressing nonphosphorylatable Pbs2 (Pbs2(AA)). However, mutation of the consensus sites of Pbs2 to phosphomimetic residues (Pbs2(DD)) failed to constitutively activate Hog1. Furthermore, Ssk2-independent stress-induced Hog1 activation was observed in Pbs2(DD) cells. Collectively, these data reveal a previously uncharacterized MAPKKK-independent mechanism of Hog1 activation in response to stress. Although Pbs2(DD) cells did not exhibit high basal levels of Hog1 phosphorylation, overexpression of an N-terminal truncated form of Ssk2 did result in constitutive Hog1 activation, which was further increased upon stress. Significantly, both Pbs2(AA) and Pbs2(DD) cells displayed impaired stress resistance and attenuated virulence in a mouse model of disease, whereas only Pbs2(AA) cells exhibited the morphological defects associated with loss of Hog1 function. This indicates that Hog1 mediates C. albicans virulence by conferring stress resistance rather than regulating morphogenesis. 相似文献
9.
Pugliese A Torre D Baccino FM Di Perri G Cantamessa C Gerbaudo L Saini A Vidotto V 《Cell biochemistry and function》2000,18(4):235-241
Candida albicans virulence is in part mediated by fibronectin (FN) interaction. We compared the adherence level to FN (using Becton Dickinson FN-coated plates) of several strains of yeast isolated from HIV-1 infected or uninfected subjects affected by candidiasis (30 strains from HIV+ subjects and 18 from HIV- subjects). More adhesive strains were found in HIV+ patients than in HIV- subjects. In particular a mean increase of 120 per cent as regards the total number of adhesive cells and 230 per cent as regards the adhesive cells producing germ tubes was detected in the former group of strains as compared to the latter ( p < 0.001 in both cases). The enhancement of FN expression induced by HIV-1 infection, as we have previously demonstrated, can increase interest in the adherence to FN of C. albicans strains isolated from AIDS-affected patients. Moreover, we also underline the important role played by HIV Nef protein in increasing the C. albicans aggressiveness. In fact a significant inhibitory effect of Nef on the phagocytosis of this yeast by macrophages has been demonstrated and the oxidative processes of these cells seem to be down-regulated by this protein. 相似文献
10.
Candida albicans is a polymorphic fungus that has the ability to rapidly switch between yeast and filamentous forms. The morphological transition appears to be a critical virulence factor of this fungus. Recent studies have elucidated the signal transduction pathways and quorum sensing molecules that affect the morphological transition of C. albicans. The metabolic mechanisms that recognize, and respond to, such signaling molecules and promote the morphological changes at a system level, however, remain unknown. Here we review the metabolic basis of C. albicans morphogenesis and we discuss the role of primary metabolic pathways and quorum sensing molecules in the morphogenetic process. We have reconstructed, in silico, the central carbon metabolism and sterol biosynthesis of C. albicans based on its genome sequence, highlighting the metabolic pathways associated with the dimorphic transition and virulence as well as pathways involved in the biosynthesis of important quorum sensing molecules. 相似文献
11.
Cora G. Saltarelli Ph. D. 《Mycopathologia》1973,51(1):53-63
Morphological mutants obtained from one strain ofCandida albicans were able to synthesize, from simple inorganic salts, glucose, and biotin a variety of complex organic molecules. The organic substances, detected in culture filtrates, were not identical for all the mutants or for the parental form from which they were derived. The substances were found to inhibit or stimulate cell growth, mycelium production, and also to influence the reductive and enzymatic abilities of other cells. Polysaccharides, proteins, nucleic acids, and DNA were detected in the extracellular medium. 相似文献
12.
The Snf1‐activating kinase Sak1 is a key regulator of metabolic adaptation and in vivo fitness of Candida albicans 下载免费PDF全文
Bernardo Ramírez‐Zavala Austin Mottola Julia Haubenreißer Sabrina Schneider Stefanie Allert Sascha Brunke Knut Ohlsen Bernhard Hube Joachim Morschhäuser 《Molecular microbiology》2017,104(6):989-1007
13.
14.
15.
16.
17.
Actinomyces naeslundii, Actinomyces viscosus and Candida albicans are associated with root cavity. The aim of this study was to determine, in vitro, the effect produced by the metabolic substances elaborated by Actinomyces naeslundii and Actinomyces viscosus on Candida albicans. The strains were isolated of saliva. There were used the double plaque diffusion method (DPDM) and the method of radial diffusion (MRD). The effect of the time of incubation and of different concentrations of metabolic substances elaborated by Actinomyces naeslundii and Actinomyces viscosus on the kinetics of growth of C. albicans were studied. Later, the nature of the substances produced by the two strains of Actinomyces was determined. It was found that there was no inhibition of the growth of C. albicans by A. naeslundii and A. viscosus in the DPDM and the MRD. There was stimulation of the growth of C. albicans by the two strains of Actinomyces when the DPDM was used. In the MRD the results were negative. Metabolic substances produced by both species stimulated the growth of C. albicans in low concentrations but at high concentrations inhibition was observed. The best concentration of the stimulating factor, a protein substance stable to 70 degrees C, corresponds to a dilution of 1/80. The inhibition of the growth of C. albicans was produced by the decrease of the pH, the higher effect being obtained with the dilution 1/5. The metabolic substances produced by A. naeslundii and A. viscosus can have both inhibitory and stimulant effects on C. albicans, according to their concentration. These metabolic interactions would condition the proportion of C. albicans in the oral microbial ecosystems. 相似文献
18.
A 14-mer α-pheromone peptide of Candida albicans was chemically synthesized and used to analyze the role of white-opaque switching in the mating process. The α-pheromone peptide blocked cell multiplication and induced “shmooing” in a/a cells expressing the opaque-phase phenotype but not in a/a cells expressing the white-phase phenotype. The α-pheromone peptide induced these effects at 25°C but not at 37°C. An analysis of mating-associated gene expression revealed several categories of gene regulation, including (i) MTL-homozygous-specific, pheromone stimulated, switching-independent (CAG1 and STE4); (ii) mating type-specific, pheromone-induced, switching-independent (STE2); and (iii) pheromone-induced, switching-dependent (FIG1, KAR4, and HWP1). An analysis of switching-regulated genes revealed an additional category of opaque-phase-specific genes that are downregulated by α-pheromone only in a/a cells (OP4, SAP1, and SAP3). These results demonstrate that α-pheromone causes shmooing, the initial step in the mating process, only in a/a cells expressing the opaque phenotype and only at temperatures below that in the human host. These results further demonstrate that although some mating-associated genes are stimulated by the α-pheromone peptide in both white- and opaque-phase cells, others are stimulated only in opaque-phase cells, revealing a category of gene regulation unique to C. albicans in which α-pheromone induction requires the white-opaque transition. These results demonstrate that in C. albicans, the mating process and associated gene regulation must be examined within the context of white-opaque switching. 相似文献
19.
20.
Crk1, a Cdc2-related protein kinase from the human pathogenic fungus Candida albicans, plays an important role in hyphal development and virulence. To address its regulatory mechanisms, we searched for Crk1 interacting proteins by two-hybrid screening. A CDC37 ortholog (CaCDC37) was cloned from the screening with the Crk1 kinase domain as the bait. The CaCdc37 interacted preferentially with the kinase domain of Crk1 (Crk1N) as shown by two-hybrid and immunoprecipitation experiments. CaCDC37 could complement a cdc37 thermosensitive mutant (cdc37-34) of Saccharomyces cerevisiae. Importantly, Crk1 protein was hardly detectable in the cdc37-34 mutant at restrictive temperature. However, upon expression of CaCdc37 in the cdc37 mutant, Crk1 protein was detected even at restrictive temperature. Our data suggested that CaCdc37 was required for the production of Crk1 kinase. Like Cdc37 proteins of S. cerevisiae and higher eukaryotes, CaCdc37 might function as a molecular chaperone that stabilized Crk1 and other protein kinases in C. albicans. In support of this, CaSTI1 was identified from a two-hybrid screen with the full-length Crk1 as the bait. CaSti1 showed two-hybrid interactions with both Crk1 and the CaCdc37. 相似文献