首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of certain nutrients on the growth and production of the Bacillus intermedius subtilisin-like serine proteinase by the recombinant strain Bacillus subtilis AJ73(pCS9) was studied. Glucose was found to inhibit the synthesis of proteinase in the early (28 h of growth) but not in the late stationary phase (48 h of growth). The inhibitory effect of the other mono-and disaccharides studied was less pronounced. Casamino acids added to the medium at concentrations of 0.1–1% as an additional carbon and nitrogen source stimulated enzyme biosynthesis. Individual amino acids (cysteine, asparagine, glutamine, tryptophan, histidine, and glutamate) also stimulated enzyme biosynthesis in the early stationary phase by 25–30%, whereas other amino acids (valine, leucine, alanine, and aspartate) were ineffective or even slightly inhibitory to enzyme production. The stimulatory effect of the first group of amino acids on the synthesis of proteinase in the late stationary phase was negligible. In contrast, the bivalent ions Ca2+, Mg2+, and Mn2+ stimulated biosynthesis of proteinase in the late stationary phase (by 20–60%) and not in the early stationary phase. The data indicate that there are differences in the biosyntheses of proteinase by the recombinant B. subtilis strain during the early and late periods of the stationary phases.  相似文献   

2.
《Experimental mycology》1986,10(2):144-149
Cultures ofAspergillus parasiticus produce the polyketide versicolorin A in response to elevation of the Zn2+ content of the growth medium. With suboptimal Zn2+ (0.8 μM) mycelial growth is about half maximal, and versicolorin synthesis is essentially zero. Inclusion of Cd2+ (1–100 μM) in the Zn2+-limiting growth medium allows optimal growth and stimulates full versicolorin synthesis. Cd2+, like Zn2+, will stimulate versicolorin sysnthesis only when added within the first 30 h after conidial inoculation. The transport system for Cd2+ uptake may be the same as that for Zn2+, as judged byin vivo competition studies. Cd2+ is a competitive inhibitor of Zn2+ uptake, with Ki = 20 μM.  相似文献   

3.
We studied the biosynthesis of bacillus intermedius glutamyl endopeptidase in the recombinant bacillus subtilis strain AJ73 58.21 during the stationary growth phase. We optimized the composition of the culture medium to favor effective enzyme production during the stationary growth phase and found that the nutritional requirements for glutamyl endopeptidase synthesis were different in the stationary phase and the growth retardation phase. Proteinase accumulation was activated by complex organic substrates (casein and gelatin). During the final stages of the culture growth, the enzyme production was stimulated by Ca2+, Mn2+, and Co2+ and inhibited by Zn2+, Fe2+, and Cu2+. The synthesis of glutamyl endopeptidase in the late stationary phase was not inhibited by glucose, unlike that in the trophophase during proliferation. We conclude that the regulatory mechanisms of proteinase synthesis during vegetative growth and sporulation are different.Translated from Mikrobiologiya, Vol. 74, No. 1, 2005, pp. 39–47.Original Russian Text Copyright © 2005 by Chastukhina, Sharipova, Gabdrakhmanova, Balaban, Kostrov, Rudenskaya, Leshchinskaya.  相似文献   

4.
《Experimental mycology》1991,15(3):181-192
The plant pathogenic fungus imperfectusSclerotium rolfsii ATCC 15025 requires Zn2+ for both growth and biosynthesis of an extracellular, branched β-1,3-β-1,6-glucan in a completely defined mineral medium. Upon rising the external zinc concentration an increased yield of glucan inversely proportional to the yield of biomass was found in the cultivations with the bioreactor, but not in those with shake flasks. The complete carbon balance presented includes oxalic acid as an additional metabolite, secreted in rather high amounts due to the reduced oxygen supply in the viscous culture suspension. Only low amounts of zinc were accumulated. The successful development of an assay for the uptake of65Zn2+ by homogeneous suspensions of zinc-depleted cultures ofS. rolfsii is reported. An energy-dependent highly specific Zn2+ uptake system, sufficient for growth and glucan synthesis, but no efflux system was demonstrated inS. rolfsii.  相似文献   

5.
Yuan Li 《Experimental cell research》2009,315(14):2463-11343
Zinc is essential for cell proliferation, differentiation, and viability. When zinc becomes limited for cultured cells, DNA synthesis ceases and the cell cycle is arrested. The molecular mechanisms of actions of zinc are believed to involve changes in the availability of zinc(II) ions (Zn2+). By employing a fluorescent Zn2+ probe, FluoZin-3 acetoxymethyl ester, intracellular Zn2+ concentrations were measured in undifferentiated and in nerve growth factor (NGF)-differentiated rat pheochromocytoma (PC12) cells. Intracellular Zn2+ concentrations are pico- to nanomolar in PC12 cells and are higher in the differentiated than in the undifferentiated cells. When following cellular Zn2+ concentrations for 48 h after the removal of serum, a condition that is known to cause cell cycle arrest, Zn2+ concentrations decrease after 30 min but, remarkably, increase after 1 h, and then decrease again to about one half of the initial concentration. Cell proliferation, measured by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, decreases after both serum starvation and zinc chelation. Two peaks of Zn2+ concentrations occur within one cell cycle: one early in the G1 phase and the other in the late G1/S phase. Thus, fluctuations of intracellular Zn2+ concentrations and established modulation of phosphorylation signaling, via an inhibition of protein tyrosine phosphatases at commensurately low Zn2+ concentrations, suggest a role for Zn2+ in the control of the cell cycle. Interventions targeted at these picomolar Zn2+ fluctuations may be a way of controlling cell growth in hyperplasia, neoplasia, and diseases associated with aberrant differentiation.  相似文献   

6.
Zinc (Zn) is an essential element for plants but limited information is currently available on the molecular basis for Zn2+ transport in crop species. To expand the knowledge on Zn2+ transport in barley (Hordeum vulgare L.), a cDNA library prepared from barley roots was expressed in the yeast (Saccharomyces cerevisiae) mutant strain Δzrt1/Δzrt2, defective in Zn2+ uptake. This strategy resulted in isolation and identification of three new Zn2+ transporters from barley. All of the predicted proteins have a high similarity to the ZIP protein family, and are designated HvZIP3, HvZIP5 and HvZIP8, respectively. Complementation studies in Δzrt1/Δzrt2 showed restored growth of the yeast cells transformed with the different HvZIPs, although with different efficiency. Transformation into Fe2+ and Mn2+ uptake defective yeast mutants showed that the HvZIPs were unable to restore the growth on Fe2+ and Mn2+ limited media, respectively, indicating a specific role in Zn2+ transport. In intact barley roots, HvZIP8 was constitutively expressed whereas HvZIP3 and HvZIP5 were mainly expressed in ?Zn plants. These results suggest that HvZIP3, HvZIP5 and HvZIP8 are Zn2+ transporters involved in Zn2+ homeostasis in barley roots. The new transporters may facilitate breeding of barley genotypes with improved Zn efficiency and Zn content.  相似文献   

7.
Previous work in our laboratory led to the isolation of a cadmium (Cd)-resistant variant (Cdr2C10) of the line CHO Chinese Hamster cell having a 10-fold greater resistance to the cytotoxic action of Cd2+ compared with the CHO cell. This resistance was attributed to an increased capacity of the Cd2+-resistant Cdr2C10 subline to induce synthesis of the Cd2+- and Zn2+-binding protein(s), metallothionein(s) (MT). Evidence that Cd2+ behaves as an analog of the essential trace metal, Zn2+, especially as an inducer of MT synthesis, suggested that the Cdr and CHO cell types could be employed to investigate cellular Zn2+ metabolism. In the present study, measurements were made to compare CHO and Cdr cell types for (a) growth as a function of the level of ZnCl2 added to the culture medium, (b) uptake and subcellular distribution of Zn2+, and (c) capacity to induce MT synthesis. The results of these measurements indicated that (a) both CHO and Cdr cell types grew normally (T d≊16–18 h) during exposures to Zn2+ at levels up to 100 μM added to the growth medium, but displayed abrupt growth inhibition at higher Zn2+ levels, (b) Cdr cells incorporate fourfold more Zn2+ during a 24-h exposure to the maximal subtoxic level of Zn2+ and (c) the CHO cell lacks the capacity to induce MT synethesis while the Cdr cell is proficient in this response during exposure to the maximal subtoxic Zn2+ level. These findings suggest that (a) the CHO and Cdr cell systems will be useful in further studies of cellular Zn2+ metabolism, especially in comparisons of Zn2+ metabolism in the presence and absence of induction of the Zn2+-sequestering MT and (b) a relationship exists between cellular capacity to induce MT synthesis and capacity for cellular Zn2+ uptake.  相似文献   

8.
The affinity of a number of bivalent and tervalent cations for the yeastCandida utilis was shown to decrease from Zn2+ to Ca2+. Ferric ions inhibited the uptake of Zn2+ but not vice versa. Inhibition of Zn2+ uptake in a synthetic medium with Fe3+ does not decrease the content of crude protein in cells.  相似文献   

9.
The growth of the recombinant Bacillus subtilis strain AJ73 carrying the Bacillus intermedius 3-19 glutamyl endopeptidase gene on a multicopy plasmid and the effect of some nutrients on the efficiency of extracellular glutamyl endopeptidase production in the stationary growth phase were studied. In this phase, the concentration of glutamyl endopeptidase in the culture liquid peaked at the 48th and 78th hours of cultivation and depended on the composition of the cultivation medium. Unlike the synthesis of glutamyl endopeptidase in the trophophase (i.e., during vegetative growth), which was suppressed by glucose, the synthesis of this enzyme during sporulation was resistant to glucose present in the cultivation medium. A multifactorial experimental design allowed optimal proportions between the concentrations of major nutrients (peptone and inorganic phosphate) to be determined. Inorganic phosphate and ammonium ions augmented the production of glutamyl endopeptidase by 30–150%, and complex organic substrates, such as casein and gelatin, enhanced the production of glutamyl endopeptidase by 50–100%. During sporulation, the production of glutamyl endopeptidase was stimulated by some bivalent cations (Ca2+, Mg2+, and Co2+) and inhibited by others (Zn2+, Fe2+, and Cu2+). The inference is drawn that the regulatory mechanisms of glutamyl endopeptidase synthesis during vegetative growth and sporulation are different.  相似文献   

10.
The ability of the filamentous fungus Verticillium marquandii for Zn2+ and Pb2+ uptake from aqueous solution was studied. The 24-h-old living mycelium bound Zn2+ and Pb2+ (206.2 and 324.5 mg/g dry weight, respectively) effectively, in contrast to a very low Zn2+ uptake by autoclaved mycelium (20.2 mg/g). The most effective results were noted when the metals were introduced as acetates and incubated with mycelium for 24 h in case of Zn2+ while Pb2+ achieved the maximum level of metal binding after as early as 3 h. The cell wall was the main site of effective Zn2+ and Pb2+ binding by V. marquandii mycelium (91.0–93.6% of metals were located in cell wall after 24 h of exposure). The metabolic inhibitors: antimycin A and sodium azide had a strong limitation effect on Zn2+ uptake by a 24-h-old living mycelium, whereas Pb2+ binding did not decrease to a large extent. The freshly obtained protoplasts accumulated Zn2+ and Pb2+ on a low level in comparison with cells at different stages of cell wall regeneration. The use of regenerating protoplasts showed that resynthesis of cell wall was necessary for high binding of Zn2+, whereas Pb2+ uptake on the significant level took place during cell wall regeneration. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The effect of certain nutrients on the growth and production of the Bacillus intermedius subtilisin-like serine proteinase by the recombinant strain Bacillus subtilis AJ73(pCS9) was studied. Glucose was found to inhibit the synthesis of proteinase in the early (28 h of growth) but not in the late stationary phase (48 h of growth). The inhibitory effect of the other mono- and disaccharides studied was less pronounced. Casamino acids added to the medium at concentrations of 0.1-1% as an additional carbon and nitrogen source stimulated enzyme biosynthesis. Individual amino acids (cysteine, asparagine, glutamine, tryptophan, histidine, and glutamate) also stimulated enzyme biosynthesis in the early stationary phase by 25-30%, whereas other amino acids (valine, leucine, alanine, and aspartate) were ineffective or even slightly inhibitory to enzyme production. The stimulatory effect of the first group of amino acids on the synthesis of proteinase in the late stationary phase was negligible. In contrast, the bivalent ions Ca2+, Mg2+, and Mn2+ stimulated biosynthesis of proteinase in the late stationary phase (by 20-60%) and not in the early stationary phase. The data indicate that there are differences in the biosyntheses of proteinase by the recombinant B. subtilis strain during the early and late periods of the stationary phases.  相似文献   

12.
The growth of bacteriophage MB78, a virulent phage of Salmonella typhimurium is extremely sensitive to the chelating agent EDTA. Other chelating agents like EGTA, a specific chelator for Ca2+ and orthophenanthroline which chelates Zn2+ and Fe2+ have no effect. EDTA stops phage MB78 DNA synthesis while synthesis of host DNA and other Salmonella phage DNA are not affected in presence of such low concentrations of EDTA. The present report indicates that some early phage function(s) and most probably the phage DNA synthesis are sensitive to EDTA which is probably due to chelation of Mg2+.  相似文献   

13.
14.
In the first step of this investigation the toxicity of Ni2+, Cu2+, and Zn2+ ions to the emulsifier producing strain of Curvularia lunata was assessed. Among all the heavy metals studied, Ni2+ ions were found to be the most toxic to C. lunata, whereas Zn2+ ions exhibited the lowest toxicity. Moreover, only Ni2+, when used at sublethal concentration (5 mM) caused lysis of some hyphal tip cells after a short-term exposure (5 h). In the next step, emulsifier production, accumulation of heavy metals by mycelia and emulsifier as well as saturation of cellular fatty acids were examined in 48-h-old cultures where fungal growth intensity was not inhibited by heavy metals (in the presence of Ni2+, Cu2+, and Zn2+ ions at the initial concentration of 1, 5, and 15 mM, respectively) and in cultures where approximately 50% biomass inhibition occurred (in the presence of Ni2+, Cu2+, and Zn2+ ions at the initial concentrations of 3, 10, and 17.5 mM, respectively). Among all the heavy metals studied only Ni2+ ions did not induce emulsifier production. As compared with the control, only biomass treated with Ni2+ ions displayed an increase in total lipid saturation. This effect resulted mainly from the decrease in linoleic acid (18:2) content correlated with the increase in the amount of stearic acid (18:0). The possible mechanisms by which Ni2+ ions could alter the fatty acid profile of C. lunata and the protective role of the emulsifier were also discussed.  相似文献   

15.
Mycobacterium tuberculosis (Mtb) has complex and dynamic interactions with the human host, and subpopulations of Mtb that emerge during infection can influence disease outcomes. This study implicates zinc ion (Zn2+) availability as a likely driver of bacterial phenotypic heterogeneity in vivo. Zn2+ sequestration is part of “nutritional immunity”, where the immune system limits micronutrients to control pathogen growth, but this defense mechanism seems to be ineffective in controlling Mtb infection. Nonetheless, Zn2+-limitation is an environmental cue sensed by Mtb, as calprotectin triggers the zinc uptake regulator (Zur) regulon response in vitro and co-localizes with Zn2+-limited Mtb in vivo. Prolonged Zn2+ limitation leads to numerous physiological changes in vitro, including differential expression of certain antigens, alterations in lipid metabolism and distinct cell surface morphology. Furthermore, Mtb enduring limited Zn2+ employ defensive measures to fight oxidative stress, by increasing expression of proteins involved in DNA repair and antioxidant activity, including well described virulence factors KatG and AhpC, along with altered utilization of redox cofactors. Here, we propose a model in which prolonged Zn2+ limitation defines a population of Mtb with anticipatory adaptations against impending immune attack, based on the evidence that Zn2+-limited Mtb are more resistant to oxidative stress and exhibit increased survival and induce more severe pulmonary granulomas in mice. Considering that extracellular Mtb may transit through the Zn2+-limited caseum before infecting naïve immune cells or upon host-to-host transmission, the resulting phenotypic heterogeneity driven by varied Zn2+ availability likely plays a key role during early interactions with host cells.  相似文献   

16.
Effects of trace elements on aspergiolide A biosynthesis by marine-derived filamentous fungus Aspergillus glaucus HB 1–19 were investigated. Cobalt (Co2+) and nickel (Ni2+) stimulated aspergiolide A biosynthesis while zinc (Zn2+) inhibited it. Equal cobalt (Co2+) addition at 48, 72 and 96 h with total amount of 0.052 mM most effectively enhanced aspergiolide A production. The time courses indicated that mycelia growth, sugar utilization and aspergiolide A biosynthesis were enhanced by Co2+. Finally, feeding 0.052 mM Co2+ increased mycelia growth, sugar utilization and aspergiolide A production by 12.2%, 13.7% and 46.7%, respectively. The results of organic acids analysis indicated that extracellular pyruvate increased while fumarate decreased in Co2+ addition cultures. Moreover, feeding vitamin B12, which combined cobalt to be a cofactor form, increased aspergiolide A production by 59.1%. This indicated Co2+ functioned by facilitating pyruvate accumulation and increasing vitamin B12 formation that were beneficial to aspergiolide A biosynthesis that is via polyketide pathway.  相似文献   

17.
We investigated the impact of low zinc (Zn) concentrations in the substare on the onset of flowering in Arabidopsis arenosa (Brassicaceae). Experiments were carried out in controlled conditions using plants from four different populations. The research was aimed to verify experimentally the following hypotheses: (1) Zn content in the growth medium promote the onset of flowering in A. arenosa, (2) Changes in the onset of flowering induced by Zn depend on Zn concentration employed; (3) Zn-induced early onset of flowering is an universal plant response present within the species and is not an effect of stress or physiological adaptation to high Zn content in the environment. Investigated plants were subjected to four different Zn concentrations: 0.4 (control), 155, 775 and 1,550???M Zn2+. To asses stress level in investigated plants we calculated biomass accumulation and employed fluorometric methods. Zn content was estimated in shoots using atomic absorption spectroscopy. Differences in the onset of flowering were assessed using Kaplan?CMeier curves. Our results showed that Zn was transported form growth medium to roots and shoots of investigated plants and that the content of Zn increased with the increase of Zn concentration in the growth medium. We evidenced that apart from one (1,550???M Zn2+) applied Zn concentrations did not caused stress in investigated plants what was confirmed by two independent experimental approaches: measurement of biomass accumulation and chlorophyll a fluorescence. Flowering curves obtained on the basis of calculation of Kaplan?CMeier estimator showed that: (1) control plants originating from four different populations did not differ in terms of the onset of flowering, (2) plants from each population tested tends to enter flowering phase earlier in response to applied Zn concentrations than control plants, (3) plants treated with the lowest tested Zn concentration (155???M Zn2+) tend to flower earlier than plants treated with the higher concentration (775???M Zn2+), (4) the impact of Zn on the onset of flowering did not depend on the origin on the plant material used (Zn-rich or Zn-poor soils). Our results indicate that Zn ions present in the growth medium promote early flowering in A.arenosa and that this effect may depend on Zn concentration used. Zn-induced early flowering in A. arenosa seems to be an universal plant response present within the species and is not an effect of stress or physiological adaptation to high Zn content in the environment.  相似文献   

18.
Exogenous-applied 24-epibrassinolide (EBR) increased the seedling growth of radish (Raphanus sativus L.) in terms of seedling length, fresh weight and dry weight both in zinc (Zn2+)-stressed and unstressed conditions. Moreover, EBR lowered the Zn2+ uptake and bioaccumulation. Increased oxidation of ascorbate (AsA) and glutathione (GSH) pools to dehydroascorbate and glutathione disulfide respectively was observed in Zn2+-stressed seedlings, a clear indication of oxidative stress. However, exogenous application of EBR to stressed seedlings inhibited the oxidation of ascorbate and glutathione, maintaining redox molecules in reduced form. Under Zn2+ stress, enzymatic activities of ascorbate–glutathione cycle such as ascorbate peroxidase, monodehydroascorbate reductase increased but the dehydroascorbate reductase, glutathione reductase decreased. Zn2+ stress induced the gamma-glutamylcysteine synthetase, and glutathione-s-transferase activities in radish seedlings were further enhanced with EBR application. Zn2+ toxicity decreased the thiol content but, EBR supplementation resulted in restoration of thiol pool. The results of present study clearly demonstrated that external application of EBR modulates the AsA and GSH redox status to combat the oxidative stress of Zn2+ in seedlings via the AsA–GSH cycle and glutathione metabolism as an antioxidant defense system.  相似文献   

19.
After propagation of Rhizopus javanicus in defined media containing glucose, urea, and mineral salts in deionized distilled water, the ability of the nonliving biomass to sequester cupric ion was assayed. Growth, uptake capacity (saturation uptake at >1 mM Cu2+ concentration in solution), and biosorptive yield (biomass concentration × uptake capacity) were increased by augmentation of the growth medium with mineral salts once growth was under way. In the stationary phase, the uptake capacity of mycelia, which were normally a poor biosorbent, was improved within 4 h of trace metal addition to the growth medium. Growth of the culture was inhibited by excessive concentrations (0.04 to 40 μM) of metals in the medium in the following order: Cu > Co ≥ Ni > Mn > Mo; zinc was not inhibitory at 40 μM, and chromium was stimulatory at 0.53 μM but slightly inhibitory at higher levels. Iron and potassium phosphate stimulated growth at levels of 0.53 and 40 mM, respectively. When R. javanicus was propagated in a medium with a high salt concentration, exponential growth (0.23 h−1) to a biomass concentration of >3 g/liter and a biosorptive yield of >500 μmol/liter was achieved. It is evident that the powerful biosorbent characteristics of Rhizopus biomass led to depletion of available trace minerals in suspension culture, which in turn limited growth.  相似文献   

20.
We applied the alkaline version of the single-cell gel electrophoresis (comet assay) to seedlings of heterozygous tobacco (Nicotiana tabacum L. var. xanthi) treated with zinc acetate dihydrate (20 to 80 mM Zn2+ for 2 h or 2 to 12 mM Zn2+ for 24 h). A dose dependent increase in DNA damage expressed by the tail moment values were observed in nuclei isolated from the roots after 2 and 24 h Zn2+ treatments. In contrast, Zn2+ did not induce significant DNA damage to leaf nuclei, with the exception of 10 or 12 mM Zn2+ for 24 h. Somatic mutations, identified as dark green, yellow, and dark green/yellow double sectors on the pale green tobacco leaves were not detected after any Zn2+ treatments. The accumulation of Zn in roots and shoots was determined by inductively coupled plasma optical emission spectrometry and the Zn content in roots was about three times higher than in shoots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号