首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
《Trends in microbiology》2023,31(4):405-418
CRISPR-Cas and prokaryotic Argonaute (pAgo) are nucleic acid (NA)-guided defense systems that protect prokaryotes against the invasion of mobile genetic elements. Previous studies established that they are directed by NA fragments (guides) to recognize invading complementary NA (targets), and that they cleave the targets to silence the invaders. Nevertheless, growing evidence indicates that many CRISPR-Cas and pAgo systems exploit the abortive infection (Abi) strategy to confer immunity. The CRISPR-Cas and pAgo Abi systems typically sense invaders using the NA recognition ability and activate various toxic effectors to kill the infected cells to prevent the invaders from spreading. This review summarizes the diverse mechanisms of these CRISPR-Cas and pAgo systems, and highlights their critical roles in the arms race between microbes and invaders.  相似文献   

6.
Abi enhances Abl-mediated Cdc2 phosphorylation and inactivation   总被引:1,自引:1,他引:0  
Abelson tyrosine kinase (Abl) is a non-receptor tyrosine kinase which is frequently coupled with adaptor proteins to interact with its substrates for the regulation of cytoskeleton rearrangement, cell growth and apoptosis in response to a variety of biological stimuli. The Abl interactor (Abi) family members were first identified as adaptor proteins of Abl for regulating Abl transforming and kinase activity. In the present study, we used a yeast two-hybrid screen to identify Cdc2 as a novel Abi-binding protein. This finding led us to investigate the role of Abi in linking Abl and Cdc2. These three proteins formed a trimeric complex inDrosophila and mammalian cells. The expression of Abi in cells greatly enhanced the formation of the Abl-Cdc2 complex, suggesting that Abi functions as an adaptor protein facilitating the binding between Abl and Cdc2. We show that Abi promotes Abl-mediated phosphorylation of Cdc2 at tyrosine 15 and inactivation of Cdc2 kinase activity. Furthermore, coexpression of Abl and Abi inDrosophila S2 cells led to suppression of cell growth. These data suggest that Abl signaling may be involved in the downregulation of Cdc2 kinase in cell cycle control.  相似文献   

7.
Recent studies have suggested that members of the Abl interactor (Abi) protein family negatively regulate cell growth and transformation. To date, however, no specific role in these cellular processes has been identified for the Abi family. Here we describe the inhibition by overexpressed Abi-1 of a mitogenic pathway activated by both growth factors and v-Abl. We have identified the guanine nucleotide exchange factors Sos1 and Sos2 as novel binding partners of Abi-1. A domain that is required for interaction with Sos in vivo has been mapped to the amino terminus of Abi-1. Overexpression of Abi-1 inhibits epidermal growth factor (EGF)-induced activation of extracellular signal-regulated kinases (Erks) but does not affect EGF-induced activation of c-Jun N-terminal kinase or Akt. In addition, overexpression of Abi-1 blocks Erk activation induced by v-Abl. In both cases, the maximal inhibitory effect requires an intact amino-terminal Sos-binding domain in Abi-1. Finally, we demonstrate that tyrosine phosphorylation of endogenous Abi-1 in fibroblasts is induced by both v-Abl and serum stimulation, further suggesting a role for Abi-1 in signal transduction initiated by v-Abl and growth factors. Taken together, these findings suggest that overexpressed Abi proteins negatively regulate cell growth and transformation by specifically targeting the Erk pathway.  相似文献   

8.
Abortive infection (Abi) systems, also called phage exclusion, block phage multiplication and cause premature bacterial cell death upon phage infection. This decreases the number of progeny particles and limits their spread to other cells allowing the bacterial population to survive. Twenty Abi systems have been isolated in Lactococcus lactis, a bacterium used in cheese-making fermentation processes, where phage attacks are of economical importance. Recent insights in their expression and mode of action indicate that, behind diverse phenotypic and molecular effects, lactococcal Abis share common traits with the well-studied Escherichia coli systems Lit and Prr. Abis are widespread in bacteria, and recent analysis indicates that Abis might have additional roles other than conferring phage resistance.  相似文献   

9.
Cell movement is mediated by the protrusion of cytoplasm in the form of sheet- and rod-like extensions, termed lamellipodia and filopodia. Protrusion is driven by actin polymerization, a process that is regulated by signaling complexes that are, as yet, poorly defined. Since actin assembly is controlled at the tips of lamellipodia and filopodia [1], these juxtamembrane sites are likely to harbor the protein complexes that control actin polymerization dynamics underlying cell motility. An understanding of the regulation of protrusion therefore requires the characterization of the molecular components recruited to these sites. The Abl interactor (Abi) proteins, targets of Abl tyrosine kinases [2-4], have been implicated in Rac-dependent cytoskeletal reorganization in response to growth factor stimulation [5]. Here, we describe the unique localization of Abi proteins in living, motile cells. We show that Abi-1 and Abi-2b fused to enhanced yellow fluorescent protein (EYFP) are recruited to the tips of lamellipodia and filopodia. We identify the targeting domain as the homologous N terminus of these two proteins. Our findings are the first to suggest a direct involvement of members of the Abi protein family in the control of actin polymerization in protrusion events, and establish the Abi proteins as potential regulators of motility.  相似文献   

10.
Neural Wiskott-Aldrich syndrome protein (N-WASP) and WAVE are members of a family of proteins that use the Arp2/3 complex to stimulate actin assembly in actin-based motile processes. By entering into distinct macromolecular complexes, they act as convergent nodes of different signalling pathways. The role of WAVE in generating lamellipodial protrusion during cell migration is well established. Conversely, the precise cellular functions of N-WASP have remained elusive. Here, we report that Abi1, an essential component of the WAVE protein complex, also has a critical role in regulating N-WASP-dependent function. Consistently, Abi1 binds to N-WASP with nanomolar affinity and, cooperating with Cdc42, potently induces N-WASP activity in vitro. Molecular genetic approaches demonstrate that Abi1 and WAVE, but not N-WASP, are essential for Rac-dependent membrane protrusion and macropinocytosis. Conversely, Abi1 and N-WASP, but not WAVE, regulate actin-based vesicular transport, epidermal growth factor receptor (EGFR) endocytosis, and EGFR and transferrin receptor (TfR) cell-surface distribution. Thus, Abi1 is a dual regulator of WAVE and N-WASP activities in specific processes that are dependent on actin dynamics.  相似文献   

11.
12.
The dairy industry uses the mesophilic, Gram-positive, lactic acid bacterium (LAB) Lactococcus lactis to produce an array of fermented milk products. Milk fermentation processes are susceptible to contamination by virulent phages, but a plethora of phage control strategies are available. One of the most efficient is to use LAB strains carrying phage resistance systems such as abortive infection (Abi) mechanisms. Yet, the mode of action of most Abi systems remains poorly documented. Here, we shed further light on the antiviral activity of the lactococcal AbiT system. Twenty-eight AbiT-resistant phage mutants derived from the wild-type AbiT-sensitive lactococcal phages p2, bIL170, and P008 were isolated and characterized. Comparative genomic analyses identified three different genes that were mutated in these virulent AbiT-insensitive phage derivatives: e14 (bIL170 [e14(bIL170)]), orf41 (P008 [orf41(P008)]), and orf6 (p2 [orf6(p2)] and P008 [orf6(P008)]). The genes e14(bIL170) and orf41(P008) are part of the early-expressed genomic region, but bioinformatic analyses did not identify their putative function. orf6 is found in the phage morphogenesis module. Antibodies were raised against purified recombinant ORF6, and immunoelectron microscopy revealed that it is the major capsid protein (MCP). Coexpression in L. lactis of ORF6(p2) and ORF5(p2), a protease, led to the formation of procapsids. To our knowledge, AbiT is the first Abi system involving distinct phage genes.  相似文献   

13.
14.
15.
We have performed a phylogenetic survey of microbial species present in two soils from northern Arizona. Microbial DNA was purified directly from soil samples and subjected to PCR amplification with primers specific for bacterial 16S rRNA gene sequences (rDNAs). Clone libraries from the two soils were constructed, and 60 clone inserts were partially sequenced. Phylogenetic analysis of these sequences revealed extensive diversity. Most of the analyzed sequences (64%) fell into five novel clusters having no known cultured members. Extensive analysis of 10 nearly full-length rDNAs from clones representative of the novel groups indicated that four of the five groups probably cluster into a large "supergroup" which is as distinct from currently recognized bacterial divisions as the latter are from each other. From this we postulate the existence of a major bacterial lineage, previously known only from a single cultured representative, whose diversity and ecology we are only beginning to explore. Analysis of our data and that from other rDNA sequence-based studies of soils from different geographic regions shows considerable overlap of sequence types. Taken together, these groups encompass most of the novel rDNA sequences recovered in each comparable analysis reported to date, despite large differences in soil types and geographic sources. Our results indicate that members of these new groups comprise a phylogenetically diverse, geographically widespread, and perhaps numerically important component of the soil microbiota.  相似文献   

16.
Most aspects of cellular events are regulated by a series of protein phosphorylation and dephosphorylation processes. Abi (Abl interactor protein) functions as a substrate adaptor protein for Abl and a core member of the WAVE complex, relaying signals from Rac to Arp2/3 complex and regulating actin dynamics. It is known that the recruitment of Abi into the lamella promotes polymerization of actin, although how it does this is unclear. In this study, we found PTP61F, a Drosophila homolog of mammalian PTP1B, can reverse the Abl phosphorylation of Abi and colocalizes with Abi in Drosophila S2 cells. Abi can be translocalized from the cytosol to the cell membrane by either increasing Abl or reducing endogenous PTP61F. This reciprocal regulation of Abi phosphorylation is also involved in modulating Abi protein level, which is thought to affect the stability of the WAVE complex. Using mass spectrometry, we identified several important tyrosine phosphorylation sites in Abi. We compared the translocalization and protein half-life of wild type (wt) and phosphomutant Abi and their abilities to restore the lamellipodia structure of the Abi-reduced cells. We found the phosphomutant to have reduced ability to translocalize and to have a protein half-life shorter than that of wt Abi. We also found that although the wt Abi could fully restore the lamellipodia structure, the phosphomutant could not. Together, these findings suggest that the reciprocal regulation of Abi phosphorylation by Abl and PTP61F may regulate the localization and stability of Abi and may regulate the formation of lamella.  相似文献   

17.
Linkner J  Witte G  Stradal T  Curth U  Faix J 《PloS one》2011,6(6):e21327
The Scar/WAVE-complex links upstream Rho-GTPase signaling to the activation of the conserved Arp2/3-complex. Scar/WAVE-induced and Arp2/3-complex-mediated actin nucleation is crucial for actin assembly in protruding lamellipodia to drive cell migration. The heteropentameric Scar/WAVE-complex is composed of Scar/WAVE, Abi, Nap, Pir and a small polypeptide Brk1/HSPC300, and recent work suggested that free Brk1 serves as a homooligomeric precursor in the assembly of this complex. Here we characterized the Brk1 trimer from Dictyostelium by analytical ultracentrifugation and gelfiltration. We show for the first time its dissociation at concentrations in the nanomolar range as well as an exchange of subunits within different DdBrk1 containing complexes. Moreover, we determined the three-dimensional structure of DdBrk1 at 1.5 Å resolution by X-ray crystallography. Three chains of DdBrk1 are associated with each other forming a parallel triple coiled-coil bundle. Notably, this structure is highly similar to the heterotrimeric α-helical bundle of HSPC300/WAVE1/Abi2 within the human Scar/WAVE-complex. This finding, together with the fact that Brk1 is collectively sandwiched by the remaining subunits and also constitutes the main subunit connecting the triple-coil domain of the HSPC300/WAVE1/Abi2/ heterotrimer to Sra1(Pir1), implies a critical function of this subunit in the assembly process of the entire Scar/WAVE-complex.  相似文献   

18.
19.
Haft DH  Basu MK 《Journal of bacteriology》2011,193(11):2745-2755
Data mining methods in bioinformatics and comparative genomics commonly rely on working definitions of protein families from prior computation. Partial phylogenetic profiling (PPP), by contrast, optimizes family sizes during its searches for the cooccurring protein families that serve different roles in the same biological system. In a large-scale investigation of the incredibly diverse radical S-adenosylmethionine (SAM) enzyme superfamily, PPP aided in building a collection of 68 TIGRFAMs hidden Markov models (HMMs) that define nonoverlapping and functionally distinct subfamilies. Many identify radical SAM enzymes as molecular markers for multicomponent biological systems; HMMs defining their partner proteins also were constructed. Newly found systems include five groupings of protein families in which at least one marker is a radical SAM enzyme while another, encoded by an adjacent gene, is a short peptide predicted to be its substrate for posttranslational modification. The most prevalent, in over 125 genomes, featuring a peptide that we designate SCIFF (six cysteines in forty-five residues), is conserved throughout the class Clostridia, a distribution inconsistent with putative bacteriocin activity. A second novel system features a tandem pair of putative peptide-modifying radical SAM enzymes associated with a highly divergent family of peptides in which the only clearly conserved feature is a run of His-Xaa-Ser repeats. A third system pairs a radical SAM domain peptide maturase with selenocysteine-containing targets, suggesting a new biological role for selenium. These and several additional novel maturases that cooccur with predicted target peptides share a C-terminal additional 4Fe4S-binding domain with PqqE, the subtilosin A maturase AlbA, and the predicted mycofactocin and Nif11-class peptide maturases as well as with activators of anaerobic sulfatases and quinohemoprotein amine dehydrogenases. Radical SAM enzymes with this additional domain, as detected by TIGR04085, significantly outnumber lantibiotic synthases and cyclodehydratases combined in reference genomes while being highly enriched for members whose apparent targets are small peptides. Interpretation of comparative genomics evidence suggests unexpected (nonbacteriocin) roles for natural products from several of these systems.  相似文献   

20.
The superfamily of Solute Carriers (SLCs) has around 384 members in the human genome grouped into at least 48 families. While many of these transporters have been well characterized with established important biological functions, there are few recently identified genes that are not studied regarding tissue distribution or evolutionary origin. Here we study 14 of these recently discovered SLC genes (HIAT1, HIATL1, MFSD1, MFSD5, MFSD6, MFSD9, MFSD10, SLC7A14, SLC7A15, SLC10A6, SLC15A5, SLC16A12, SLC30A10 and SLC21A21) with the purpose to give much better picture over the sequence relationship and tissue expression of the diverse SLC gene family. We used a range of bioinformatic methods to classify each of these genes into the different SLC gene families. We found that 9 of the 14 atypical SLCs are distant members of the Major Facilitator Superfamily (MFS) clan while the others belong to the APC clan, the DMT clan, the CPA_AT clan and the IT clan. We found most of the genes to be highly evolutionary conserved, likely to be present in most bilateral species, except for SLC21A21 that we found only present in mammals. Several of these transporter genes have highly specific tissue expression profile while it is notable that most are expressed in the CNS with the exception of SLC21A21 and SLC15A5. This work provides fundamental information on 14 transporters that previously have not received much attention enabling a more comprehensive view over the SLC superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号