首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyphenols from persimmon (Diospyros kaki) have demonstrated radical-scavenging and antiinflammatory activities; however, little is known about the effects of persimmon phenolics on inflammatory bowel diseases (IBD) and colorectal cancer (CRC). Therefore, we aimed in this work to characterize the antiinflammatory and antiproliferative effects of a persimmon phenolic extract (80% acetone in water), using an in vivo model of experimental colitis and a model of cancer cell invasion. Our results show, for the first time, a beneficial effect of a persimmon phenolic extract in the attenuation of experimental colitis and a potential antiproliferative effect on cultured colon cancer cells. Administration of persimmon phenolic extract to mice with TNBS-induced colitis led to a reduction in several functional and histological markers of colon inflammation, namely: attenuation of colon length decrease, reduction of the extent of visible injury (ulcer formation), decrease in diarrhea severity, reduced mortality rate, reduction of mucosal hemorrhage and reduction of general histological features of colon inflammation. In vitro studies also showed that persimmon phenolic extract successfully impaired cell proliferation and invasion in HT-29 cells. Further investigation showed a decreased expression of COX-2 and iNOS in the colonic tissue of colitis mice, two important mediators of intestinal inflammation, but there was no inhibition of the gelatinase MMP-9 and MMP-2 activities. Given the role of inflammatory processes in the progression of CRC and the important link between inflammation and cancer, our results highlight the potential of persimmon polyphenols as a pharmacological tool in the treatment of patients with IBD.  相似文献   

2.
There have been suggestions that endothelins (ET-1, ET-2, ET-3) are involved in the pathogenesis of human inflammatory bowel disease (IBD). Furthermore, the non-selective endothelin receptor antagonist, bosentan, ameliorates colonic inflammation in TNBS colitis in rats. However, no studies have measured the tissue expression and release of endothelins in human IBD in direct comparison to experimental TNBS colitis. Mucosal biopsies were obtained from 114 patients (42 Crohn's colitis, 35 ulcerative colitis and 37 normal) and compared to whole colonic segments from rats with TNBS colitis. ET-1/2 levels were reduced in human IBD but greatly increased in experimental TNBS colitis. RT-PCR indicated ET-2 was the predominant endothelin isoform in human IBD whereas ET-1 prevailed in the TNBS model. No associations were found between human IBD and tissue expression, content or release of ET-1/2. Our study shows, therefore, that unlike TNBS colitis in rats, in which ET-1/2 levels are greatly elevated and ET receptor antagonists are efficacious, there is no significant link between endothelins and human IBD.  相似文献   

3.
炎症性肠病(inflammatory bowel disease,IBD)病因虽未明确,但目前认为,肠道细菌和肠黏膜免疫功能紊乱与IBD的发病密切相关。将40只SD大鼠分为健康对照组、模型组、粪便微生物系移植组(fecal microbiota transplantation,FMT)和柳氮磺胺吡啶组,后3组用2,4,6-三硝基苯磺酸(2,4,6-trinitrobenzene sulfonic acid, TNBS)灌肠造模,造模2 d后分别用粪便悬液和柳氮磺胺吡啶治疗1 w。末次给药后禁食1 d,对大鼠粪便进行菌群成分分析,股动脉取血,对K+ 、Na+ 、血清白蛋白(ALB)、白细胞计数(WBC)、中性粒细胞百分率(N%)、C-反应蛋白(CRP)、IL-1β、IL-10、IL-12和IL-17 水平进行检测,取结肠行病理学检查。结果发现,通过TNBS灌肠成功建立大鼠实验性结肠炎模型。与模型组比较,FMT组的K+和ALB明显升高(P<0.05),WBC、N%和CRP明显降低(P<0.05),IL-1β和IL-17明显降低(P<0.05),IL-10和IL-10/IL-12含量升高(P<0.05)。FMT能显著改善TNBS引起的肠道菌群变化,促进双歧杆菌的增殖而抑制脆弱拟杆菌和大肠杆菌的生长。上述结果证明,FMT可有效治疗炎症性肠病,其机制与其影响血清炎症因子水平和改善肠道菌群有关。  相似文献   

4.
Reproducibility in animal research is crucial for its reliance and translational relevance. The 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced model of inflammatory bowel disease (IBD) is widely used but inconsistently and incompletely characterized throughout the literature. This hinders comparisons between studies and influences the low rate of translation of effective preclinical molecules. The purpose of this study was to categorize TNBS-induced colitis, based on macroscopic and microscopic scoring systems, and to identify basic routine parameters that could anticipate those categories. We retrospectively analysed male Wistar Rattus norvegicus (n=28 for the control group and n=87 for the TNBS group) and categorized TNBS-induced colitis in three phenotypes: Mild, Moderate and Severe colitis, as for human IBD. Also, we showed that the time course of food intake and fecal excretion (but not body weight, fluid intake or welfare scores) could foresee those categories. So, routine evaluation of food intake and fecal excretion may guide researchers in planning their experiments, selecting the animals with the severity of colitis that better matches their aims, or applying early humane endpoints to animals that will not be used in the experiments. In conclusion, categorizing TNBS-induced colitis enhances the reproducibility of data gathered with this experimental model and strengths its translational relevance.  相似文献   

5.
目的:通过单次灌肠和皮肤致敏联合灌肠,构建2,4,6-三硝基苯磺酸(TNBS)诱导的炎症性肠病小鼠模型,探讨最佳造模方法,并分析影响模型构建的因素。方法:55只SPF雄性BALB/c小鼠随机分为7组,包括对照组、不同剂量TNBS(100、150、175、200、225 mg/kg)单次灌肠组及皮肤致敏联合灌肠组。于造模后5 d处死各组小鼠,观察结肠大体形态并评分;取病变处进行石蜡包埋切片,HE染色,并进行病理组织学评分。结果:100、150 mg/kg TNBS单次灌肠组动物未见明显的溃疡形成;其余剂量组动物均有不同程度的溃疡形成,成模率与剂量成正比,其中225 mg/kg剂量组动物成模率为100%,但病变较重、病变不均一且偶有小鼠眼睛失明的副作用出现。皮肤致敏联合灌肠组动物均有溃疡形成,成模率100%,病变适中且未发现小鼠眼睛失明的副作用。结论:175-225 mg/kg TNBS单次灌肠及皮肤致敏联合TNBS灌肠均可制备小鼠炎症性肠病模型,但皮肤致敏联合TNBS灌肠制备的炎症性肠病模型成模率高,病变适中,模型稳定,适合用作科学研究模型。  相似文献   

6.
2,4,6-三硝基苯磺酸(TNBS)诱导的小鼠结肠炎模型是研究人类炎性肠病(inflammatory bowl disease,IBD)的主要手段之一,但在实际应用中,常用的C57/BL品系小鼠却对TNBS有较高耐受性,不易建模。本文主要介绍一种可以有效诱导C57/BL6小鼠TNBS结肠炎的方法,并对疾病评价指标进行了具体的描述。对基因工程小鼠IBD模型的研究具有重要意义。  相似文献   

7.
Dysregulation of immune responses to environmental antigens by the intestine leads to the chronic inflammatory disease, inflammatory bowel disease (IBD). Recent studies have thus sought to identify a dietary component that can inhibit lipopolysaccharide (LPS)-induced nuclear factor-kappa beta (NF-κB) signaling to ameliorate IBD. This study assessed if the lactic acid bacteria (LAB) from kimchi, suppresses the expression of tumor necrosis factor-alpha (TNF-α) in peritoneal macrophages induced by LPS. Leuconostoc lactis EJ-1, an isolate from LAB, reduced the expression of interleukin-6 (IL-6) and IL-1β in peritoneal macrophages induced by LPS. The study further tested whether EJ-1 alleviates colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in mice. TNBS significantly increased myeloperoxidase (MPO) expression, macroscopic colitis scores, and colon shortening. Oral administration of L. lactis EJ-1 resulted in an inhibited in TNBS-induced loss in body weight, colon shortening, MPO activity, and NF-κB and inducible nitric oxide synthase expression; it also led to a marked reduction in cyclooxygenase-2 expression. L. lactis EJ-1 also inhibited the TNBS-induced expression of TNF-α, IL-1β, and IL-6; however, it induced the expression of IL-10. The M2 macrophage markers arginase I, IL-10, and CD206 were elevated by EJ-1. Collectively, these results suggest that EJ-1 inhibits the NF-κB signaling and polarizes M1- to M2-macrophage transition, which help in ameliorating colitis.  相似文献   

8.
In this study, we investigated the therapeutic potential of lentinan in mouse models of inflammatory bowel disease (IBD) and colitis‐associated cancer (CAC). Lentinan decreased the disease activity index and macroscopic and microscopic colon tissue damage in dextran sulphate sodium (DSS)‐induced or TNBS‐induced models of colitis. High‐dose lentinan was more effective than salicylazosulfapyridine in the mouse models of colitis. Lentinan decreased the number of tumours, inflammatory cell infiltration, atypical hyperplasia and nuclear atypia in azoxymethane/DSS‐induced CAC model. It also decreased the expression of pro‐inflammatory cytokines, such as IL‐13 and CD30L, in IBD and CAC model mice possibly by inhibiting Toll‐like receptor 4 (TLR4)/NF‐κB signalling and the expression of colon cancer markers, such as carcinoembryonic antigen, cytokeratin 8, CK18 and p53, in CAC model mice. In addition, lentinan restored the intestinal bacterial microbiotal community structure in IBD model mice. Thus, it shows therapeutic potential in IBD and CAC model mice possibly by inhibiting TLR4/NF‐κB signalling‐mediated inflammatory responses and disruption of the intestinal microbiotal structure.  相似文献   

9.
Tumour necrosis factor-α (TNF-α) is a pro-inflammatory cytokine which is shed in its soluble form by a disintegrin and metalloproteinase (ADAM) called TNF-α convertase (TACE; ADAM17). TNF-α plays a role in inflammatory bowel disease (IBD) and is involved in the expression of inducible nitric oxide synthase (iNOS) which has also been implicated in IBD. The study was designed to investigate whether colitis induced by trinitrobenzene sulphonic acid (TNBS) in rats produces an increase in TACE activity and/or expression and whether its pharmacological inhibition reduces TNF-α levels, iNOS expression and colonic damage in this model. TNBS (30 mg in 0.4 ml of 50% ethanol) was instilled into the colon of female Wistar rats. Saline or TACE inhibitor BB1101 (10 mg/kg/day) was administered intraperitoneally 5 days after TNBS instillation. On day 10, colons were removed and assessed for pathological score, myeloperoxidase (MPO), NO synthase (NOS), TACE enzymatic activity and protein levels, colonic TNF-α and NO−x levels. Instillation of TNBS caused an increase in TACE activity and expression and the release of TNF-α. TNBS also resulted in iNOS expression and colonic damage. BB1101 blocked TNBS-induced increase in TACE activity, TNF-α release and iNOS expression. Concomitantly, BB1101 ameliorated TNBS-induced colonic damage and inflammation. TNBS causes TNF-α release by an increase in TACE activity and expression and this results in the expression of iNOS and subsequent inflammation, suggesting that TACE inhibition may prove useful as a therapeutic means in IBD.  相似文献   

10.

Background

Caveolin-1 (Cav-1) is a multifunctional scaffolding protein serving as a platform for the cell’s signal-transduction and playing an important role in inflammation. However, its role in inflammatory bowel disease is not clear. A recent study showed that Cav-1 is increased and mediates angiogenesis in dextran sodium sulphate-induced colitis, which are contradictory to our pilot findings in 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis. In the present study, we further clarified the role of Cav-1 in TNBS-induced colitis.

Methods

In BALB/c mice, acute colitis was induced by intra-rectal administration of one dose TNBS, while chronic colitis was induced by administration of TNBS once a week for 7 weeks. To assess the effects of complete loss of Cav-1, Cav-1 knockout (Cav-1−/−) and control wild-type C57 mice received one TNBS administration. Body weight and clinical scores were monitored. Colon Cav-1 and pro-inflammatory cytokine levels were quantified through ELISAs. Inflammation was evaluated through histological analysis.

Results

Colon Cav-1 levels were significantly decreased in TNBS-induced colitis mice when compared to normal mice and also inversely correlated with colon inflammation scores and proinflammatory cytokine levels (IL-17, IFN-γ and TNF) significantly. Furthermore, after administration of TNBS, Cav-1−/− mice showed significantly increased clinical and colon inflammatory scores and body weight loss when compared with control mice.

Conclusions and Significance

Cav-1 may play a protective role in the development of TNBS-induced colitis. Our findings raise an important issue in the evaluation of specific molecules in animal models that different models may exhibit opposite results because of the different mechanisms involved.  相似文献   

11.
Pro-inflammatory cytokines like macrophage migration inhibitory factor (MIF), IL-1β and TNF-α predominate in inflammatory bowel diseases (IBD) and TNBS colitis. Increased levels of serine proteases activating protease-activated receptor 2 (PAR-2) are found in the lumen and colonic tissue of IBD patients. PAR-2 activity and pro-inflammatory cytokines impair epithelial barrier, facilitating the uptake of luminal aggressors that perpetuate inflammation and visceral pain. Soy extracts contain phytoestrogens (isoflavones) and serine protease inhibitors namely Bowman-Birk Inhibitors (BBI). Since estrogens exhibit anti-inflammatory and epithelial barrier enhancing properties, and that a BBI concentrate improves ulcerative colitis, we aimed to evaluate if a fermented soy germ extract (FSG) with standardized isoflavone profile and stable BBI content exert cumulative or synergistic protection based on protease inhibition and estrogen receptor (ER)-ligand activity in colitic rats. Female rats received orally for 15 d either vehicle or FSG with or without an ER antagonist ICI 182.780 before TNBS intracolonic instillation. Macroscopic and microscopic damages, myeloperoxidase activity, cytokine levels, intestinal paracellular permeability, visceral sensitivity, faecal proteolytic activity and PAR-2 expression were assessed 24 h, 3 d and 5 d post-TNBS. FSG treatment improved the severity of colitis, by decreasing the TNBS-induced rise in gut permeability, visceral sensitivity, faecal proteolytic activity and PAR-2 expression at all post-TNBS points. All FSG effects were reversed by the ICI 182.780 except the decrease in faecal proteolytic activity and PAR-2 expression. In conclusion, the anti-inflammatory properties of FSG treatment result from two distinct but synergic pathways i.e an ER-ligand and a PAR-2 mediated pathway, providing rationale for potential use as adjuvant therapy in IBD.  相似文献   

12.
13.
Dysregulated immune responses to gut microbes are central to inflammatory bowel disease (IBD), and gut microbial activity can fuel chronic inflammation. Examining how IBD-directed therapies influence gut microbiomes may identify microbial community features integral to mitigating disease and maintaining health. However, IBD patients often receive multiple treatments during disease flares, confounding such analyses. Preclinical models of IBD with well-defined disease courses and opportunities for controlled treatment exposures provide a valuable solution. Here, we surveyed the gut microbiome of the T-bet−/− Rag2−/− mouse model of colitis during active disease and treatment-induced remission. Microbial features modified among these conditions included altered potential for carbohydrate and energy metabolism and bacterial pathogenesis, specifically cell motility and signal transduction pathways. We also observed an increased capacity for xenobiotics metabolism, including benzoate degradation, a pathway linking host adrenergic stress with enhanced bacterial virulence, and found decreased levels of fecal dopamine in active colitis. When transferred to gnotobiotic mice, gut microbiomes from mice with active disease versus treatment-induced remission elicited varying degrees of colitis. Thus, our study provides insight into specific microbial clades and pathways associated with health, active disease and treatment interventions in a mouse model of colitis.  相似文献   

14.
Recent evidence suggests that endoplasmic reticulum (ER) stress plays a vital role in inflammatory bowel disease (IBD). Therefore, the aim of this study was to investigate the mechanism by which ER stress promotes inflammatory response in IBD. The expression of Gro-α, IL-8 and ER stress indicator Grp78 in colon tissues from patients with Crohn’s disease (CD) and colonic carcinoma was analyzed by immunohistochemistry staining. Colitis mouse model was established by the induction of trinitrobenzene sulphonic acid (TNBS), and the mice were treated with ER stress inhibitor tauroursodeoxycholic acid (TUDCA). Then the body weight, colon length and colon inflammation were evaluated, and Grp78 and Gro-α in colon tissues were detected by immunohistochemistry. Epithelial cells of colon cancer HCT116 cells were treated with tunicamycin to induce ER stress. Grp78 was detected by Western blot, and chemokines were measured by PCR and ELISA. The expression levels of Grp78, Gro-α and IL-8 were significantly upregulated in intestinal tissues of CD patients. Mice with TNBS induced colitis had increased expression of Grp78 and Gro-α in colonic epithelia. TUDCA reduced the severity of TNBS-induced colitis. In HCT116 cells, tunicamycin increased the expression of Grp78, Gro-α and IL-8 in a concentration-dependent manner. Furthermore, p38 MAPK inhibitor significantly inhibited the upregulation of Gro-α and IL-8 induced by tunicamycin. In conclusion, ER stress promotes inflammatory response in IBD, and the effects may be mediated by the activation of p38 MAPK signaling pathway.Key words: Inflammatory bowel disease, endoplasmic reticulum stress, IL-8, Gro-α, p38 MAPK  相似文献   

15.
Tumour necrosis factor-alpha (TNF-alpha) is a pro-inflammatory cytokine which is shed in its soluble form by a disintegrin and metalloproteinase (ADAM) called TNF-alpha convertase (TACE; ADAM17). TNF-alpha plays a role in inflammatory bowel disease (IBD) and is involved in the expression of inducible nitric oxide synthase (iNOS) which has also been implicated in IBD. The study was designed to investigate whether colitis induced by trinitrobenzene sulphonic acid (TNBS) in rats produces an increase in TACE activity and/or expression and whether its pharmacological inhibition reduces TNF-alpha levels, iNOS expression and colonic damage in this model. TNBS (30 mg in 0.4 ml of 50% ethanol) was instilled into the colon of female Wistar rats. Saline or TACE inhibitor BB1101 (10 mg/kg/day) was administered intraperitoneally 5 days after TNBS instillation. On day 10, colons were removed and assessed for pathological score, myeloperoxidase (MPO), NO synthase (NOS), TACE enzymatic activity and protein levels, colonic TNF-alpha and NOx- levels. Instillation of TNBS caused an increase in TACE activity and expression and the release of TNF-alpha. TNBS also resulted in iNOS expression and colonic damage. BB1101 blocked TNBS-induced increase in TACE activity, TNF-alpha release and iNOS expression. Concomitantly, BB1101 ameliorated TNBS-induced colonic damage and inflammation. TNBS causes TNF-alpha release by an increase in TACE activity and expression and this results in the expression of iNOS and subsequent inflammation, suggesting that TACE inhibition may prove useful as a therapeutic means in IBD.  相似文献   

16.
17.
Hyperactivation and hyperpermeability of the intestinal epithelium is a hallmark of IBD. AM has been shown to reduce the severity of colitis in the acetic acid and TNBS-induced colitis model, however the mechanism of the therapeutic effect of AM against the colitis has not been clarified. Here, we show that the protective capability of AM is associated with suppression of inflammation and maintenance of the intestinal epithelial barrier function. In the DSS-induced colitis model, intra-rectal AM-treated mice showed a reduction in loss of body weight and severity of colitis. AM-treatment suppressed phosphorylation of STAT1 and STAT3 in the colonic epithelium, and altered the cytokine balance in the intestinal T cells, with lower levels of IFN-γ and TNF-α but higher levels of TGF-β. Expression of the epithelial intercellular junctions such as tight and adherence junctions were sustained in the AM-treated mice. In contrast, the epithelial junctions were down-regulated in the control mice, leading to loss of epithelial barrier integrity and enhanced permeability. Collectively, these data indicate a broad spectrum of AM-induced effects with respect to protection against DSS-induced colitis, and suggest a potential therapeutic value of this treatment for IBD.  相似文献   

18.
Intestinal intraepithelial lymphocytes (IEL) bearing TCRgammadelta represent a major T cell population in the murine intestine. However, the role of gammadelta IEL in inflammatory bowel diseases (IBD) remains controversial. In this study, we show that gammadelta IEL is an important protective T cell population against IBD. gammadelta T cell-deficient (Cdelta(-/-)) mice developed spontaneous colitis with age and showed high susceptibility to Th1-type 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis at a young age. Transfer of gammadelta IEL to Cdelta(-/-) mice ameliorated TNBS-induced colitis, which correlated with decrease of IFN-gamma and TNF-alpha production and an increase of TGF-beta production by IEL. Furthermore, a high level of IL-15, which inhibits activation-induced cell death to terminate inflammation, was expressed more in intestinal epithelial cells (EC) from TNBS-treated Cdelta(-/-) mice than in those from wild-type mice. EC from wild-type mice significantly suppressed the IFN-gamma production of IEL from TNBS-treated Cdelta(-/-) mice, whereas EC from TNBS-treated Cdelta(-/-) mice did not. These data indicate that gammadelta IEL play important roles in controlling IBD by regulating mucosal T cell activation cooperated with EC function. Our study suggests that enhancement of regulatory gammadelta T cell activity is a possible new cell therapy for colitis.  相似文献   

19.
Inflammatory bowel diseases (IBD) is the result of dysregulation of mucosal innate and adaptive immune responses. Factors such as genetic, microbial and environmental are involved in the development of these disorders. Accordingly, animal models that mimic human diseases are tools for the understanding the immunological processes of the IBD as well as to evaluate new therapeutic strategies. Crotoxin (CTX) is the main component of Crotalus durissus terrificus snake venom and has an immunomodulatory effect. Thus, we aimed to evaluate the modulatory effect of CTX in a murine model of colitis induced by 2,4,6- trinitrobenzene sulfonic acid (TNBS). The CTX was administered intraperitoneally 18 hours after the TNBS intrarectal instillation in BALB/c mice. The CTX administration resulted in decreased weight loss, disease activity index (DAI), macroscopic tissue damage, histopathological score and myeloperoxidase (MPO) activity analyzed after 4 days of acute TNBS colitis. Furthermore, the levels of TNF-α, IL-1β and IL-6 were lower in colon tissue homogenates of TNBS-mice that received the CTX when compared with untreated TNBS mice. The analysis of distinct cell populations obtained from the intestinal lamina propria showed that CTX reduced the number of group 3 innate lymphoid cells (ILC3) and Th17 population; CTX decreased IL-17 secretion but did not alter the frequency of CD4+Tbet+ T cells induced by TNBS instillation in mice. In contrast, increased CD4+FoxP3+ cell population as well as secretion of TGF-β, prostaglandin E2 (PGE2) and lipoxin A4 (LXA4) was observed in TNBS-colitis mice treated with CTX compared with untreated TNBS-colitis mice. In conclusion, the CTX is able to modulate the intestinal acute inflammatory response induced by TNBS, resulting in the improvement of clinical status of the mice. This effect of CTX is complex and involves the suppression of the pro-inflammatory environment elicited by intrarectal instillation of TNBS due to the induction of a local anti-inflammatory profile in mice.  相似文献   

20.
Inflammatory bowel disease (IBD) is a group of disorders that are characterized by chronic, uncontrolled inflammation in the intestinal mucosa. Although the aetiopathogenesis is poorly understood, it is widely believed that IBD stems from a dysregulated immune response towards otherwise harmless commensal bacteria. Chemokines induce and enhance inflammation through their involvement in cellular trafficking. Reducing or limiting the influx of these proinflammatory cells has previously been demonstrated to attenuate inflammation. CXCR3, a chemokine receptor in the CXC family that binds to CXCL9, CXCL10 and CXCL11, is strongly overexpressed in the intestinal mucosa of IBD patients. We hypothesised that CXCR3 KO mice would have impaired cellular trafficking, thereby reducing the inflammatory insult by proinflammatory cell and attenuating the course of colitis. To investigate the role of CXCR3 in the progression of colitis, the development of dextran sulfate sodium (DSS)-induced colitis was investigated in CXCR3−/− mice over 9 days. This study demonstrated attenuated DSS-induced colitis in CXCR3−/− mice at both the macroscopic and microscopic level. Reduced colitis correlated with lower recruitment of neutrophils (p = 0.0018), as well as decreased production of IL-6 (p<0.0001), TNF (p = 0.0038), and IFN-γ (p = 0.0478). Overall, our results suggest that CXCR3 plays an important role in recruiting proinflammatory cells to the colon during colitis and that CXCR3 may be a therapeutic target to reduce the influx of proinflammatory cells in the inflamed colon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号