首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many diseases that manifest throughout the lifetime are influenced by factors affecting fetal development. Fetal exposure to xenobiotics, in particular, may influence the development of adult diseases. Established animal models provide systems for characterizing both developmental biology and developmental toxicology. However, animal model systems do not allow researchers to assess the mechanistic effects of toxicants on developing human tissue. Human fetal tissue xenotransplantation models have recently been implemented to provide human‐relevant mechanistic data on the many tissue‐level functions that may be affected by fetal exposure to toxicants. This review describes the development of human fetal tissue xenotransplant models for testis, prostate, lung, liver, and adipose tissue, aimed at studying the effects of xenobiotics on tissue development, including implications for testicular dysgenesis, prostate disease, lung disease, and metabolic syndrome. The mechanistic data obtained from these models can complement data from epidemiology, traditional animal models, and in vitro studies to quantify the risks of toxicant exposures during human development  相似文献   

2.
The objective of occupational health and safety programs in the chemical industry is to protect human health and the environment. Through studies in laboratory animals, bacteria, insects, and cultured cells, toxicologists collect data which allow them to predict which chemicals are likely to be hazardous to humans. The effects of acute (single high level exposures), subchronic (up to 6 months duration to sublethal levels), and chronic (lifetime to low level) exposures are studied. Toxicity involving all organ systems is evaluated. Specific end points such as skin sensitization, birth defects, mutations, accumulation in tissues, carcinogenesis, and other toxic effects are evaluated. The data collected are used to provide information for forming guidelines regarding the safe manufacture, handling, use, and disposal of agricultural and other chemicals. The results of toxicology studies are also used to support the registration of products with government agencies in Canada and other countries.  相似文献   

3.
Metabonomics has been applied in many bio-related scientific fields. Nevertheless, some animal research works are shown to fail when they are extended to humans. Therefore, it is essential to figure out suitable animal modeling to mimic human metabolism so that animal findings can serve humans. In this study, two kinds of commonly selected body fluids, serum and urine, from humans and various experimental animals were characterized by integration of nuclear magnetic resonance (NMR) spectroscopy with multivariate statistical analysis to identify the interspecies metabolic differences and similarities at a baseline physiological status. Our results highlight that the dairy cow and pig may be an optimal choice for transportation and biodistribution studies of drugs and that the Kunming (KM) mouse model may be the most effective for excretion studies of drugs, whereas the Sprague–Dawley (SD) rat could be the most suitable candidate for animal modeling under overall considerations. The biochemical pathways analyses further provide an interconnection between genetic evolution and metabolic variations, where species evolution most strongly affects microbial biodiversity and, consequently, has effects on the species-specific biological substances of biosynthesis and corresponding biological activities. Knowledge of the metabolic effects from species difference will enable the construction of better models for disease diagnosis, drug metabolism, and toxicology research.  相似文献   

4.
Epidemiologic studies have been effective in identifying human environmental and occupational hazards. However, most epidemiologic data has been difficult to use in quantitative risk assessments because of the vague specification of exposure and dose. Toxicologic animal studies have used applied doses (quantities administered, or exposures with fixed duration) and well characterized end points to determine effects. However, direct use of animal data in human risk assessment has been limited by uncertainties in the extrapolation. The applied dose paradigm of toxicology is not suited for cross species extrapolation, nor for use in epidemiology as a dose metric because of the complexity of human exposures. Physiologically based pharmacokinetic (PBPK) modeling can estimate the time course of tissue concentrations in humans, given an exposure-time profile, and it has been used for extrapolating findings from animals to humans. It is proposed that human PBPK modeling can be used in appropriately designed epidemiologic studies to estimate tissue concentrations. Secondly, tissue time courses can be used to form dose metrics based on the type and time course of adverse effects. These dose metrics will strengthen the determination of epidemiologic dose-response relationships by reducing misclassification. Findings from this approach can be readily integrated into quantitative risk assessment.  相似文献   

5.
Study of P450 function using gene knockout and transgenic mice   总被引:11,自引:0,他引:11  
The xenobiotic-metabolizing P450s have been extensively studied for their ability to metabolize endogenous and exogenous chemicals. The latter include drugs and dietary and environmentally derived toxicants and carcinogens. These enzymes also metabolize endogenous steroids and fatty acids. P450s are thought to be required for efficient removal of most xenobiotics from the body and to be responsible for the hazardous effects of toxicants and carcinogens based on their ability to convert chemicals to electrophilic metabolites that can cause cellular damage and gene mutations. P450 catalytic activities have been extensively studied in vitro and in cell culture, yielding considerable information on their mechanisms of catalysis, substrate specificities, and metabolic products. Targeted gene disruption has been used to determine the roles of P450s in intact animals and their contributions to the mechanisms of toxicity and carcinogenesis. The P450s chosen for study, CYP1A1, CYP1B1, CYP1A2, and CYP2E1, are conserved in mammals and are known to metabolize most toxicants and chemical carcinogens. Mice lacking expression of these enzymes do not differ from wild-type mice, indicating that these P450s are not required for development and physiological homeostasis. However, the P450 null mice have altered responses to the toxic and carcinogenic effects of chemicals as compared with wild-type mice. These studies establish that P450s mediate the adverse effects of drugs and dietary, environmental, and industrial chemicals and serve to validate molecular epidemiology studies that seek to determine links between P450 polymorphisms and susceptibility to chemically associated diseases. More recently, P450 humanized mice have been produced.  相似文献   

6.
Seely JC 《Lab animal》2008,37(5):206-209
Although exposure to drugs or toxicants can affect children and adults very differently, many compounds lack specific safety information for children. Studies in juvenile animals can help researchers assess pediatric patients' potential response to certain chemicals. Juvenile studies are highly sensitive to animal age, sex and species and must be planned with care to prevent misinterpretation of experimental data. The author reviews considerations for the design of these studies, focusing on toxicological and pathological aspects.  相似文献   

7.
Haematopoietic tissues are the targets of numerous xenobiotics. The purpose of in vitro haematotoxicology is the prediction of adverse haematological effects from toxicants on human haematopoietic targets under controlled experimental conditions in the laboratory. Building on its foundations in experimental haematology and the wealth of haematotoxicological data found in experimental oncology, this field of alternative toxicology has developed rapidly during the past decade. Preclinical and clinical drug development for anti-cancer drugs differs from that for other pharmaceuticals, because of the life-threatening nature of the disease. Treatment with anti-cancer drugs at clinically efficacious doses usually induces serious side-effects. The design of preclinical toxicology studies for anti-cancer drugs is intended to identify a safe clinical starting dose, characterise toxicities that could be encountered in human clinical trials, and determine whether these toxicities are reversible, manageable, and predictable. Although the myeloid colony-forming unit (CFU-GM) progenitor is most frequently evaluated, other defined progenitors and stem cells, as well as cell types found in the marrow stroma, can now be evaluated in vitro. Genetic damage to haematopoietic cells can occur in the absence of any overt haematological signs. The development of tissue-specific screening systems that are able to give information about the toxic effects of chemicals, drugs and environmental hazards on target genes is needed, in order to make preliminary decisions or to set priorities for selection among large groups of chemicals and possible drugs.  相似文献   

8.
It has sometimes been assumed that children are more sensitive than adults to the effects of radiofrequency (RF) fields associated with cellular wireless telephones. However, relatively few in vitro or animal models have examined this possibility.In vitro studies have used several cell types, from both humans and rodents, including primary cells, embryonic cell lines, undifferentiated cancer cell lines, and stem cells. Overall, the balance of evidence does not suggest that field-related effects occur in any cell type: gene and protein expression were not significantly changed by exposure in nine out of 15 studies; genotoxicity was evaluated in 13 papers and in most, of these studies, no damage to DNA was detected; eight studies failed to demonstrate induction of apoptosis; and three studies reported lack of oxidative stress induction by RF-exposures. Five of eight studies investigating the effects of combined exposures to RF fields and chemical or physical agents reported a lack of field-related effects.In addition, few papers have been published on the effects of low level exposure of immature animals. The available results are very limited, both in terms of signals used and biological endpoints investigated, but the evidence does not indicate that prenatal or early postnatal exposures are associated with acute adverse responses or the development of detrimental changes in the long-term. Overall, this suggests that young animals may not be significantly more sensitive than adults, but there is clearly a need for further studies to be carried out.  相似文献   

9.
The approaches to quantitatively assessing the health risks of chemical exposure have not changed appreciably in the past 50 to 80 years, the focus remaining on high-dose studies that measure adverse outcomes in homogeneous animal populations. This expensive, low-throughput approach relies on conservative extrapolations to relate animal studies to much lower-dose human exposures and is of questionable relevance to predicting risks to humans at their typical low exposures. It makes little use of a mechanistic understanding of the mode of action by which chemicals perturb biological processes in human cells and tissues. An alternative vision, proposed by the U.S. National Research Council (NRC) report Toxicity Testing in the 21(st) Century: A Vision and a Strategy, called for moving away from traditional high-dose animal studies to an approach based on perturbation of cellular responses using well-designed in vitro assays. Central to this vision are (a) "toxicity pathways" (the innate cellular pathways that may be perturbed by chemicals) and (b) the determination of chemical concentration ranges where those perturbations are likely to be excessive, thereby leading to adverse health effects if present for a prolonged duration in an intact organism. In this paper we briefly review the original NRC report and responses to that report over the past 3 years, and discuss how the change in testing might be achieved in the U.S. and in the European Union (EU). EU initiatives in developing alternatives to animal testing of cosmetic ingredients have run very much in parallel with the NRC report. Moving from current practice to the NRC vision would require using prototype toxicity pathways to develop case studies showing the new vision in action. In this vein, we also discuss how the proposed strategy for toxicity testing might be applied to the toxicity pathways associated with DNA damage and repair.  相似文献   

10.
The impact of new technologies on human population studies   总被引:4,自引:0,他引:4  
Human population studies involve clinical or epidemiological observations that associate environmental exposures with health endpoints and disease. Clearly, these are the most sought after data to support assessments of human health risk from environmental exposures. However, the foundations of many health risk assessments rest on experimental studies in rodents performed at high doses that elicit adverse outcomes, such as organ toxicity or tumors. Using the results of human studies and animal data, risk assessors define the levels of environmental exposures that may lead to disease in a portion of the population. These decisions on potential health risks are frequently based on the use of default assumptions that reflect limitations in our scientific knowledge. An important immediate goal of toxicogenomics, including proteomics and metabonomics, is to offer the possibility of making decisions affecting public health and public based on detailed toxicity, mechanistic, and exposure data in which many of the uncertainties have been eliminated. Ultimately, these global technologies will dramatically impact the practice of public health and risk assessment as applied to environmental health protection. The impact is already being felt in the practice of toxicology where animal experimentation using highly controlled dose-time parameters is possible. It is also being seen in human population studies where understanding human genetic variation and genomic reactions to specific environmental exposures is enhancing our ability to uncover the causes of variations in human response to environmental exposures. These new disciplines hold the promise of reducing the costs and time lines associated with animal and human studies designed to assess both the toxicity of environmental pollutants and efficacy of therapeutic drugs. However, as with any new science, experience must be gained before the promise can be fulfilled. Given the numbers and diversity of drugs, chemicals and environmental agents; the various species in which they are studied and the time and dose factors that are critical to the induction of beneficial and adverse effects, it is only through the development of a profound knowledge base that toxicology and environmental health can rapidly advance. The National Institute of Environmental Health Sciences (NIEHS), National Center for Toxicogenomics and its university-based Toxicogenomics Research Consortium (TRC), and resource contracts, are engaged in the development, application and standardization of the science upon which to the build such a knowledge base on Chemical Effects in Biological Systems (CEBS). In addition, the NIEHS Environmental Genome Project (EGP) is working to systematically identify and characterize common sequence polymorphisms in many genes with suspected roles in determining chemical sensitivity. The rationale of the EGP is that certain genes have a greater than average influence over human susceptibility to environmental agents. If we identify and characterize the polymorphism in those genes, we will increase our understanding of human disease susceptibility. This knowledge can be used to protect susceptible individuals from disease and to reduce adverse exposure and environmentally induced disease.  相似文献   

11.
环境污染物对水生生物产生氧化压力的分子生物标志物   总被引:12,自引:0,他引:12  
王丽平  郑丙辉  孟伟 《生态学报》2007,27(1):380-388
为了能够建立一种简单、快速、准确的环境污染监测预警体系,人们进行了广泛的研究,其中有关环境污染物对分子生物标志物的影响已成为研究热点。生物体内的氧自由基和其它活性氧分子(ROS)对组织和细胞成分造成的伤害,称之为氧化压力,环境中的有毒物质能够对生物体产生不同程度的氧化压力。生物体内的强氧化剂或体外因素(如环境污染物)引起的强氧化物与抗氧化防御系统之间的平衡能够用于评估环境压力对生物体产生影响的程度,尤其适合于评估不同种化学物质引起氧化损伤的程度。这些抗氧化防御系统及其对氧化压力的敏感性在环境毒物学研究中占有非常重要的地位,大量研究结果表明:过渡金属、多环芳烃、有机氯和有机磷农药、多氯联苯、二氧芑和其它异型物质都能够对生物体产生氧化压力。这些有毒物质能够引起各种有害影响,如对膜脂、DNA和蛋白产生损伤;改变抗氧化酶的活性等。总结了这种氧化压力的研究进展情况,并讨论了这些分子生物标志物在水生生物中的应用。  相似文献   

12.
In 2014, the American Society for the Prevention of Cruelty toAnimals Animal Poison Control Center fielded more than 167,000cases of potential nonhuman animal toxicosis. Concomitantly, thereremain limited free and reputable veterinary toxicology resourcesavailable for companion-animal (pet) caregivers (owners) seekingassistance and advice about potentially harmful exposures inanimals. The objective of this study was to assess pet toxicantknowledge among a representative sample of Americans andgauge the need for additional toxicology resources. The studyinvolved a survey designed to capture participants’ ability to identifypotential animal toxicants and what resource they would use ifan accidental toxic ingestion occurred. Participants were ableto correctly identify 52% of potential pet toxins. Women, olderparticipants and participants from the South expressed moreconcern about each potential pet poison. Approximately halfof participants indicated they would consult a veterinarian andwhereas most others indicated they would search the Internet formore information about pet toxicology. The findings suggest moreveterinary poisoning education is needed for pet owners to be ableto accurately distinguish potential pet toxicants from nontoxicants.  相似文献   

13.
The prevalence of obesity has increased rapidly during recent years and has reached epidemic proportions. As a result, the scientific community is interested in active biomolecules which are naturally present in plants and foodstuffs and may be useful in body weight management. In recent years, polyphenols have made up one of the most frequently studied groups among these molecules. Numerous studies have been carried out on animals to analyse the potential anti-obesity effects of resveratrol, a non-flavonoid polyphenol, and a general consensus concerning the body-fat-lowering effect of this compound exists. By contrast, studies in humans have been few so far. Moreover, in these studies, the effectiveness of resveratrol is low. The aims of the present review are to summarize the results reported so far on this topic and to justify the differences observed between animals and humans. It seems that the reduced response to resveratrol in humans cannot be attributed to the use of lower doses in humans because the doses that induce body-fat-lowering effects in rodents are in the same range as those used in human studies. With regard to the experimental period length, treatments were longer in animal studies than in human studies. This can be one of the reasons contributing to the reduced responses observed in humans. Moreover, animals used in the reported studies are young while volunteers participating in human studies are adults, suggesting that resveratrol may be more efficient in young individuals. In addition to differences in the experimental designs, metabolic differences between animals and human cannot be discarded.  相似文献   

14.
Summary A major goal of our laboratory has been the development of primary culture systems that retain differentiated fucntions and responses characteristic of intact tissues in vivo. Specifically, we have developed cellular models of primary cultures of rat heart, liver, and kidney cells to explore the mechanisms by which drugs or chemicals may be toxic to key organs of the body and to develop new techniques by which xenobiotics may be evaluated or identified as potential toxicants to living systems. The purpose of this paper is to describe our rationale and approach to the study of target organ toxicology with in vitro cellular systems.  相似文献   

15.
A review is presented of the use of developmental toxicity testing in the United States and international regulatory assessment of human health risks associated with exposures to pharmaceuticals (human and veterinary), chemicals (agricultural, industrial, and environmental), food additives, cosmetics, and consumer products. Developmental toxicology data are used for prioritization and screening of pharmaceuticals and chemicals, for evaluating and labeling of pharmaceuticals, and for characterizing hazards and risk of exposures to industrial and environmental chemicals. The in vivo study designs utilized in hazard characterization and dose-response assessment for developmental outcomes have not changed substantially over the past 30 years and have served the process well. Now there are opportunities to incorporate new technologies and approaches to testing into the existing assessment paradigm, or to apply innovative approaches to various aspects of risk assessment. Developmental toxicology testing can be enhanced by the refinement or replacement of traditional in vivo protocols, including through the use of in vitro assays, studies conducted in alternative nonmammalian species, the application of new technologies, and the use of in silico models. Potential benefits to the current regulatory process include the ability to screen large numbers of chemicals quickly, with the commitment of fewer resources than traditional toxicology studies, and to refine the risk assessment process through an enhanced understanding of the mechanisms of developmental toxicity and their relevance to potential human risk. As the testing paradigm evolves, the ability to use developmental toxicology data to meet diverse critical regulatory needs must be retained.  相似文献   

16.
Animal bioassay experiments are frequently conducted to assess the toxicity of chemicals on the developing fetus. Experiments are normally conducted at dosage levels that are much higher than human exposure levels to elicit the toxic reproductive effect of the chemical in a limited number of litters. Recently there has been much discussion on the fact that some chemicals may have beneficial effects at low doses and become toxic at high doses. This concept, known as chemical hormesis, has been the focus of attention in many investigations. Here, we consider the prevalence of hormesis in developmental toxicology and show that current design of developmental toxicity testing does not accommodate the study of hormesis. If it can be proved that some developmental toxicants may have stimulatory low dose effects, then design and analysis of developmental toxicity experiments need to be revised by the scientific community and the regulatory agencies. Using a thorough analysis of an experimental data set, we further demonstrate that in order to establish the possible hormetic effects of a chemical in reproduction, often a multiple replication of the experiment may be necessary to examine such effects. Using a trend test, we illustrate that while it is possible that one replicate of a developmental toxicity experiment with a known teratogen shows strong evidence of hormesis, other replicates may show no sign of beneficial effects at low doses.  相似文献   

17.
Biomarkers are becoming increasingly important in toxicology and human health. Many research groups are carrying out studies to develop biomarkers of exposure to chemicals and apply these for human monitoring. There is considerable interest in the use and application of biomarkers to identify the nature and amounts of chemical exposures in occupational and environmental situations. Major research goals are to develop and validate biomarkers that reflect specific exposures and permit the prediction of the risk of disease in individuals and groups. One important objective is to prevent human cancer. This review presents a commentary and consensus views about the major developments on biomarkers for monitoring human exposure to chemicals. A particular emphasis is on monitoring exposures to carcinogens. Significant developments in the areas of new and existing biomarkers, analytical methodologies, validation studies and field trials together with auditing and quality assessment of data are discussed. New developments in the relatively young field of toxicogenomics possibly leading to the identification of individual susceptibility to both cancer and non-cancer endpoints are also considered. The construction and development of reliable databases that integrate information from genomic and proteomic research programmes should offer a promising future for the application of these technologies in the prediction of risks and prevention of diseases related to chemical exposures. Currently adducts of chemicals with macromolecules are important and useful biomarkers especially for certain individual chemicals where there are incidences of occupational exposure. For monitoring exposure to genotoxic compounds protein adducts, such as those formed with haemoglobin, are considered effective biomarkers for determining individual exposure doses of reactive chemicals. For other organic chemicals, the excreted urinary metabolites can also give a useful and complementary indication of exposure for acute exposures. These methods have revealed ‘backgrounds’ in people not knowingly exposed to chemicals and the sources and significance of these need to be determined, particularly in the context of their contribution to background health risks.  相似文献   

18.
Biomarkers are becoming increasingly important in toxicology and human health. Many research groups are carrying out studies to develop biomarkers of exposure to chemicals and apply these for human monitoring. There is considerable interest in the use and application of biomarkers to identify the nature and amounts of chemical exposures in occupational and environmental situations. Major research goals are to develop and validate biomarkers that reflect specific exposures and permit the prediction of the risk of disease in individuals and groups. One important objective is to prevent human cancer. This review presents a commentary and consensus views about the major developments on biomarkers for monitoring human exposure to chemicals. A particular emphasis is on monitoring exposures to carcinogens. Significant developments in the areas of new and existing biomarkers, analytical methodologies, validation studies and field trials together with auditing and quality assessment of data are discussed. New developments in the relatively young field of toxicogenomics possibly leading to the identification of individual susceptibility to both cancer and non-cancer endpoints are also considered. The construction and development of reliable databases that integrate information from genomic and proteomic research programmes should offer a promising future for the application of these technologies in the prediction of risks and prevention of diseases related to chemical exposures. Currently adducts of chemicals with macromolecules are important and useful biomarkers especially for certain individual chemicals where there are incidences of occupational exposure. For monitoring exposure to genotoxic compounds protein adducts, such as those formed with haemoglobin, are considered effective biomarkers for determining individual exposure doses of reactive chemicals. For other organic chemicals, the excreted urinary metabolites can also give a useful and complementary indication of exposure for acute exposures. These methods have revealed 'backgrounds' in people not knowingly exposed to chemicals and the sources and significance of these need to be determined, particularly in the context of their contribution to background health risks.  相似文献   

19.
Industrialization and indiscriminate use of agrochemicals have increased the human health risk. Recent epidemiological studies raised a concern for male reproduction given their observations of reduced sperm counts and altered semen quality. Interestingly, environmental factors that include various metals, pesticides and their metabolites have been causally linked to such adversities by their presence in the semen at levels that correlate to infertility. The epidemiological observations were further supported by studies in animal models involving various chemicals. Therefore, in this review, we focused on male reproductive toxicity and the adverse effects of different environmental chemicals on male reproduction. However, it is beyond the scope of this review to provide a detailed appraisal of all of the environmental chemicals that have been associated with reproductive toxicity in animals. Here, we provided the evidence for reproductive adversities of some commonly encountered chemicals (pesticides/metals) in the environment. In view of the recent thrust for an alternate to animal models in research, we subsequently discussed the contributions of Drosophila melanogaster as an alternate animal model for quick screening of toxicants for their reproductive toxicity potential. Finally, we emphasized the genetic and molecular tools offered by Drosophila for understanding the mechanisms underlying the male reproductive toxicity.  相似文献   

20.
Because growth and development are processes sensitive to the action of many chemicals, bioassays that screen for developmental toxicants may be more indicative of chronic effects than acute toxicity assays. FETAX is a 96 h whole embryo static renewal test employing the embryos of the frog Xenopus laevis. Endpoints are mortality, malformation and growth. Because of the frog's fecundity, its extensive use in basic research and the ability to obtain embryos year-round, it is an ideal organism to use in screening for developmental toxicants. By validating using known mammalian teratogens and the use of rat liver microsomes to stimulate mammalian metabolism, we have extended the use of the system for the prescreening of human developmental toxicants. In past validation work, we have correctly identified the teratogenicity of 15 to 17 compounds used in validation for a predictive accuracy of approximately 88%. In the present study, the ability of FETAX to detect developmental toxicants in groundwater samples taken from an industrial waste dump was evaluated. FETAX showed that it was sensitive enough to detect developmental toxicants in samples without prior concentration. In some samples, less than half the LC50 concentration was required to cause significant malformation. In some cases, a dose-response curve was not obtainable but the test results nonetheless indicated some developmental toxicity. The results of this study indicate that it is necessary to routinely screen for developmental toxicants when establishing water quality criteria for the preservation of species and for human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号