首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic mechanism of myofibril ATPase.   总被引:18,自引:5,他引:13       下载免费PDF全文
The kinetic mechanism of myofibril ATPase was investigated using psoas and mixed back muscle over a range of ionic strengths. Myofibrils were labeled with pyrene iodoacetamide to measure the rate constants for the binding of ATP and formation of the weakly attached state. The velocity of shortening was measured by stopping the contraction at various times by mixing with pH 4.5 buffer. The transient and steady-state rates of ATP hydrolysis were measured by the quench flow method. The results fitted the kinetic scheme [formula: see text] The rate constants (or equilibrium constants for steps 1 and 6) were obtained for the six steps. k5 was calculated from the KM for shortening velocity, K1, and k2. The rate constants were essentially equal for myofibrils and acto-S-1 at low ionic strength. Increasing the ionic strength up to 100 mM in NaCl increased the rate of the hydrolysis step and the size of the phosphate burst and the effective rate of product release became the rate-limiting step. The step calculated from the velocity of shortening, k5, and k2 is 15 nm, based on a model in which step 4 is the force-generating step.  相似文献   

2.
3.
The kinetic mechanism of homogeneous human glutamic-gamma-semialdehyde dehydrogenase (EC 1.5.1.12) with glutamic gamma-semialdehyde as substrate was determined by initial-velocity, product-inhibition and dead-end-inhibition studies to be compulsory ordered with rapid interconversion of the ternary complexes (Theorell-Chance). Product-inhibition studies with NADH gave a competitive pattern versus varied NAD+ concentrations and a non-competitive pattern versus varied glutamic gamma-semialdehyde concentrations, whereas those with glutamate gave a competitive pattern versus varied glutamic gamma-semialdehyde concentrations and a non-competitive pattern versus varied NAD+ concentrations. The order of substrate binding and release was determined by dead-end-inhibition studies with ADP-ribose and L-proline as the inhibitors and shown to be: NAD+ binds to the enzyme first, followed by glutamic gamma-semialdehyde, with glutamic acid being released before NADH. The Kia and Kib values were 15 +/- 7 microM and 12.5 microM respectively, and the Ka and Kb values were 374 +/- 40 microM and 316 +/- 36 microM respectively; the maximal velocity V was 70 +/- 5 mumol of NADH/min per mg of enzyme. Both NADH and glutamate were product inhibitors, with Ki values of 63 microM and 15,200 microM respectively. NADH release from the enzyme may be the rate-limiting step for the overall reaction.  相似文献   

4.
5.
An IgG1 monoclonal antibody, Sulph I, reacting with sulphatide (3'-sulphogalactosylceramide), was produced by immunizing Balb/c mice with that glycolipid coated on Salmonella minnesota bacterial membrane. Radioimmunodetection of the binding of the monoclonal antibody to structurally related glycolipids adsorbed to microtitre plates or chromatographed on thin-layer plates was used to determine its binding epitope. The antibody showed similar binding avidity to three sulphated glycolipids: sulphatide, sulpholactosylceramide and seminolipid. Lysosulphatide did bind the antibody, but, compared with sulphatide, 30 times more antigen was needed for half-maximal binding. Bis(sulphogangliotriosyl)ceramide and bis-sulphogangliotetraosylceramide did not bind the antibody. These results suggest that terminal galactose-3-O-sulphate and part of the hydrophobic region of the glycolipid are recognized by the Sulph I antibody.  相似文献   

6.
The linear noncompetitive inhibition of the pepsin-catalyzed hydrolysis of Ac-Phe-Phe-Gly at pH 2.1 by L-Ac-Phe, L-Ac-Phe-NH2, and L-Ac-Phe-OEt has been claimed to substantiate the ordered release of products specified by the amino-enzyme mechanism for pepsin action. According to this interpretation, the binding of inhibitor to free enzyme and the amino-enzyme intermediate (Scheme I) generates the observed inhibition pattern. The proposition is valid only if a simple alternative explanation for the kinetic data, Scheme II, can be disproved. Scheme II attributes the inhibition pattern to the binding of inhibitor to free enzyme and the enzyme-substrate (Michaelis) complex. The experiments reported here have enabled us to distinguish between the two mechanisms. The pepsin-catalyzed hydrolyses of Ac-Phe-Trp, Z-H'IS-Phe-Trp, Z-Gly-His-Phe-Trp, and Z-Ala-His-Phe-Trp at pH 1.8 occur exclusively at the Phe-Trp bond and must yield the same amino-enzyme, E-Trp, if it is implicated. Under these circumstances, Scheme I requires that a plot of 1/kc vs. (I)o for the four substrates and a given noncompetitive inhibitor provide a set of four parallel lines. Scheme II predicts that the four lines generally will not be parallel. L-Ac-Phe, L-Ac-Phe-NH2, L-Ac-Phe-OMe, and D-Ac-Phe act as linear noncompetitive inhibitors for the pepsin-catalyzed hydrolysis of the four Trp-containing substrates. The plot of 1/kc vs. (I)o for each inhibitor results in a set of four nonparallel lines. Therefore Scheme II must be correct and the detection of noncompetitive inhibition accompanying the pepsin-catalyzed hydrolysis of peptides offers no insight into the merits of the amino-enzyme hypothesis.  相似文献   

7.
The kinetic mechanism of the rod outer segment (ROS) isoprenylated protein methyltransferase was investigated. This S-adenosyl-L-methionine (AdoMet)-linked enzyme transfers methyl groups to carboxyl-terminal isoprenylated cysteine residues of proteins, generating methyl esters. The enzyme also processes simple substrates such as N-acetyl-S-farnesyl-L-cysteine (L-AFC). Initial studies showed that a ping-pong Bi Bi mechanism could be eliminated. In a ping-pong Bi Bi mechanism plots of 1/v versus 1/[substrate A] at different fixed substrate B concentrations are expected to yield a family of parallel lines whose slopes equal Km/Vmax. In fact, converging curves were found, which suggested a sequential mechanism. Dead-end inhibitors were used in order to further investigate the kinetic mechanism. S-Farnesylthioacetic acid is shown to be a dead-end competitive inhibitor with respect to the prenylated substrate L-AFC. On the other hand, S-farnesylthioacetic acid proved to be uncompetitive with respect to AdoMet, suggesting an ordered mechanism with AdoMet binding first. Further evidence for this mechanism came from product inhibition studies using the methyl ester of L-AFC (L-AFCMe) and S-adenosyl-L-homocysteine (AdoHcy). Since AdoMet binds first to the enzyme, one of the products (L-AFCMe or AdoHcy) should be a competitive inhibitor with respect to it. It could be shown that AdoHcy is a competitive inhibitor with respect to AdoMet, but L-AFCMe is a mixed-type inhibitor both with respect to AdoMet and to L-AFC. Therefore, AdoHcy combines with the same enzyme form as does AdoMet, and must be released from the enzyme last. Moreover, L-AFC and L-AFCMe must bind to different forms of the enzyme.  相似文献   

8.
9.
Studies on sucrose synthetase. Kinetic mechanism   总被引:2,自引:0,他引:2  
The kinetic properties of Helianthus tuberosus sucrose synthetase, which catalyzes the reaction UDP-glucose + fructose = UDP + sucrose, have been studied. A plot of the reciprocal initial velocity versus reciprocal substrate concentration gave a series of intersecting lines indicating a sequential mechanism. Product inhibition studies showed that UDP-glucose was competitive with UDP, whereas fructose was competitive with sucrose and uncompetitive with UDP. On the other hand, a dead-end inhibitor, salicine, was competitive with sucrose and uncompetitive with UDP. The results of initial velocity, product, and dead-end inhibition studies suggested that the addition of substrates to the enzyme follows an ordered mechanism.  相似文献   

10.
The kinetic constants for hydrolysis and transfer (with hydroxylamine as the alternate acceptor) of the aliphatic amidase (acylamide amidohydrolase, EC 3.5.1.4) from Pseudomonas aeruginosa were determined for a variety of acetyl and propionyl derivatives. The results obtained were consistent with a ping-pong or substitution mechanism. Product inhibition, which was pH dependent, implicated an acyl-enzyme compound as a compulsory intermediate and indicated that ammonia combined additionally with the free enzyme in a dead-end manner. The uncompetitive activation of acetamide hydrolysis by hydroxylamine and the observation that the partitioning of products between acetic acid and acetohydroxamate was linearly dependent on the hydroxylamine concentration substantiated these conclusions and indicated that deacylation was at least partially rate limiting. With propionamide as the acyl donor apparently anomalous results, which included inequalities in certain kinetic constants and a hyperbolic dependence of the partition ratio on the hydroxylamine concentration, could be explained by postulating a compulsory isomerisation of the acyl-enzyme intermediate prior to the transfer reaction.  相似文献   

11.
beta-Lactamase I catalyses the hydrolysis of penicillins by an acyl-enzyme mechanism. A procedure was developed for determining the rate constants for the acylation and deacylation steps for the good substrates benzylpenicillin and phenoxymethylpenicillin; this depends on determining the fraction of enzyme that is present as acyl-enzyme in the steady state.  相似文献   

12.
13.
Human inter-alpha-trypsin inhibitor (I alpha I) is a plasma proteinase inhibitor active against cathepsin G, leucocyte elastase, trypsin and chymotrypsin. It owes its broad inhibitory specificity to tandem Kunitz-type inhibitory domains within an N-terminal region. Sequence studies suggest that the reactive-centre residues critical for inhibition are methionine and arginine. Reaction of I alpha I with the arginine-modifying reagent butane-2,3-dione afforded partial loss of inhibitory activity against both cathepsin G and elastase but complete loss of activity against trypsin and chymotrypsin. Reaction of I alpha I with the methionine-modifying reagent cis-dichlorodiammineplatinum(II) resulted in partial loss of activity against cathepsin G and elastase but did not affect inhibition of either trypsin or chymotrypsin. Employment of both reagents eliminated inhibition of cathepsin G and elastase. These findings suggest that both cathepsin G and elastase are inhibited at either of the reactive centres of I alpha I. Trypsin and chymotrypsin, however, appear to be inhibited exclusively at the arginine reactive centre.  相似文献   

14.
The kinetic mechanism of Escherichia coli carbamoyl-phosphate synthetase has been determined at pH 7.5, 25 degrees C. With ammonia as the nitrogen source, the initial velocity and product inhibition patterns are consistent with the ordered addition of MgATP, HCO3-, and NH3. Phosphate is then released and the second MgATP adds to the enzyme, which is followed by the ordered release of MgADP, carbamoyl phosphate, and MgADP. With glutamine as the ammonia donor, the patterns are consistent with a two-site mechanism in which glutamine binds randomly to the small molecular weight subunit producing glutamate and ammonia. Glutamate is released and the ammonia is transferred to the larger subunit. Carbamoyl-phosphate synthetase has also been shown to require a free divalent cation for full activity.  相似文献   

15.
Formiminotransferase (EC 2.1.2.5) and cyclodeaminase (EC 4.3.1.4) constitute an enzyme complex that catalyses two sequential metabolic reactions. The activity of native formiminotransferase can be measured without interference from cyclodeaminase, and its kinetic mechanism has been investigated. Although initial velocity plots yield families of parallel lines suggesting that the transferase utilizes a ping-pong mechanism, product inhibition and alternate substrate studies with tetrahydropteroic acid clearly show the mechanism to be sequential. Of the possible mechanisms compatible with these observations, several could be ruled out through the effects of various dead-end inhibitors. The data indicate that the transferase mechanism is rapid equilibrium random with formation of a dead-end complex enzyme-tetrahydrofolate-glutamate.  相似文献   

16.
A kinetic analysis of MspI DNA methyltransferase (M.MspI) is presented. The enzyme catalyzes methylation of lambda-DNA, a 50-kilobase pair linear molecule with multiple M.MspI-specific sites, with a specificity constant (kcat/KM) of 0.9 x 10(8) M-1 s-1. But the values of the specificity constants for the smaller DNA substrates (121 and 1459 base pairs (bp)) with single methylation target or with multiple targets (sonicated lambda-DNA) were less by an order of magnitude. Product inhibition of the M.MspI-catalyzed methylation reaction by methylated DNA is competitive with respect to DNA and noncompetitive with respect to S-adenosylmethionine (AdoMet). The S-adenosylhomocysteine inhibition of the methylation reaction is competitive with respect to AdoMet and uncompetitive with respect to DNA. The presteady state kinetic analysis showed a burst of product formation when AdoMet was added to the enzyme preincubated with the substrate DNA. The burst is followed by a constant rate of product formation (0.06 mol per mol of enzyme s-1) which is similar to catalytic constants (kcat = approximately 0.056 s-1) measured under steady state conditions. The isotope exchange in chasing the labeled methyltransferase-DNA complex with unlabeled DNA and AdoMet leads to a reduced burst as compared with the one involving chase with labeled DNA and AdoMet. The enzyme is capable of exchanging tritium at C-5 of target cytosine in the substrate DNA in the absence of cofactor AdoMet. The kinetic data are consistent with an ordered Bi Bi mechanism for the M.MspI-catalyzed DNA methylation where DNA binds first.  相似文献   

17.
Tyrosinase shows kinetic cooperativity in its action on o-diphenols, but not when it acts on monophenols, confirming that the slow step is the hydroxylation of monophenols to o-diphenols. This model can be generalised to a wide range of substrates; for example, type S(A) substrates, which give rise to a stable product as the o-quinone evolves by means of a first or pseudo first order reaction (α-methyl dopa, dopa methyl ester, dopamine, 3,4-dihydroxyphenylpropionic acid, 3,4-dihydroxyphenylacetic acid, α-methyl-tyrosine, tyrosine methyl ester, tyramine, 4-hydroxyphenylpropionic acid and 4-hydroxyphenylacetic acid), type S(B) substrates, which include those whose o-quinone evolves with no clear stoichiometry (catechol, 4-methylcatechol, phenol and p-cresol) and, lastly, type S(C) substrates, which give rise to stable o-quinones (4-tert-butylcatechol/4-tert-butylphenol).  相似文献   

18.
Myosin VI is the only pointed end-directed myosin identified and is likely regulated by heavy chain phosphorylation (HCP) at the actin-binding site in vivo. We undertook a detailed kinetic analysis of the actomyosin VI ATPase cycle to determine whether there are unique adaptations to support reverse directionality and to determine the molecular basis of regulation by HCP. ADP release is the rate-limiting step in the cycle. ATP binds slowly and with low affinity. At physiological nucleotide concentrations, myosin VI is strongly bound to actin and populates the nucleotide-free (rigor) and ADP-bound states. Therefore, myosin VI is a high duty ratio motor adapted for maintaining tension and has potential to be processive. A mutant mimicking HCP increases the rate of P(i) release, which lowers the K(ATPase) but does not affect ADP release. These measurements are the first to directly measure the steps regulated by HCP for any myosin. Measurements with double-headed myosin VI demonstrate that the heads are not independent, and the native dimer hydrolyzes multiple ATPs per diffusional encounter with an actin filament. We propose an alternating site model for the stepping and processivity of two-headed high duty ratio myosins.  相似文献   

19.
20.
The initial velocity pattern has been determined for uridine-cytidine kinase purified from the murine mast cell neoplasm P815. With either uridine or cytidine as phosphate acceptor, and ATP as phosphate donor, the pattern observed was one of intersecting lines, ruling out a ping-pong reaction mechanism, and suggesting that the reaction probably proceeds by the sequential addition of both substrates to the enzyme to form a ternary complex, followed by the sequential release of the two products. This pattern was obtained whether the reaction was run in 0.01 m potassium phosphate buffer, pH 7.5, or in 0.1 m Tris-HCl, pH 7.2. When analyzed by the Sequen computer program, the data indicated an apparent Km of the enzyme for uridine of 1.5 × 10?4m, an apparent Km for cytidine of 4.5 × 10?5m, and a Km for ATP, with uridine or cytidine as phosphate acceptor, of 3.6 × 10?3m or 2.1 × 10?3m, respectively. The V was 1.83 μmol phosphorylated/min/mg enzyme protein for the uridine kinase reaction and 0.91 μmol for the cytidine kinase reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号