首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential of N-hydroxyurea to induce gene mutations in V79 Chinese hamster cells was investigated. Upon metabolic activation by liver microsomes from phenobarbital-treated rats or by isolated rat hepatocytes co-cultured with the V79 cells, hydroxyurea caused a concentration-dependent increase in the frequency of HGPRT-deficient mutants. Hydroxyurea was not mutagenic in the absence of metabolic activation. Addition of catalase inhibited microsome-mediated mutagenicity, indicating that hydrogen peroxide was involved in the formation of the mutagenic DNA lesion. Acetohydroxamic acid and N-hydroxyurethane also induced hepatocyte-mediated mutagenicity, suggesting that the potential to elicit metabolism-dependent mutagenicity may be a common property of aliphatic hydroxamic acids.  相似文献   

2.
6-Thioguanine-resistant mutants can be efficiently recovered from Chinese hamster V79 cells incubated at high cell densities in microtiter plates (103 – 104 cells/0.2 ml growth medium/0.4 cm2) when selected with 30 μM 6-thioguanine and 0.1 μg/ml phorbol-12-myristate-13-acetate, an inhibitor of metabolic cooperation among V79 cells. Mutant frequencies in the microtiter plates were calculated from a direct count of mutant colonies. After treatment of the V79 cells with the carcinogen benzo[a]pyrene in a fibroblast-mediated assay, the mutation frequencies determined with the microtiter assay system were quantitatively similar to those obtained with a conventional procedure in which selection with 6-thioguanine was performed in petri dishes. The mutagenic activities of 3 polycyclic aromatic hydrocarbons (activated in the cell-mediated assay) were assessed with the microtiter plate selection procedure. The active carcinogen benzo[a]pyrene at 1 μg/ml yielded about 100 mutants per 105 colony-forming cells. The same dose of a less active carcinogen, cyclopenta-[c,d]pyrene, yielded about 20 mutants per 105 colony-forming cells, and benz[a]anthracene, not an active carcinogen, was inactive as a mutagen at all doses tested. Because of the small requirements for growth medium and tissue culture vessels compared with other assays, this microtiter plate assay can serve as an inexpensive system for detecting the mutagenic activity of environmental chemicals in mammalian cells.  相似文献   

3.
Chinese hamster V79 cells were treated with the anti- and syn-diastereomers of the bay- or fjord-region diol-epoxides of four polycyclic aromatic hydrocarbons, namely benzo[a]pyrene (BP), benzo[c]chrysene (BcC), benzo[g]chrysene (BgC) and benzo[c]phenanthrene (BcPh). The frequency of induction of 6-thioguanine-resistant mutations was determined, and the extent of formation of DNA adducts was measured by 32P-postlabelling. When expressed as mutation frequency per nanomoles compound per millilitre incubation medium, this group of chemicals expressed a 160-fold range in potency. In agreement with previous experimental studies, the anti-diol-epoxide of BcC was highly mutagenic, inducing in excess of 3 x 10(4) mutations/10(6) cells per nmol compound/ml. The mutagenic activities of the anti- and syn-diol-epoxides of BP were 10- and 100-fold lower, respectively. Both diol-epoxides of BgC, the syn-BcC and the anti-BcPh derivatives were also highly mutagenic, and only the syn-BcPh diol-epoxide was less mutagenic than the anti-diol-epoxide of BP. Determination of the levels of DNA adducts formed by the diol-epoxides indicated that the most mutagenic compounds were the most DNA reactive, although the fjord-region diol-epoxides gave rise to more complex patterns of adducts than those of the BP diol-epoxides. When the mutagenicity results were expressed as mutations per femtomoles total adducts formed, all compounds showed similar activities. Thus the potent mutagenicity of the fjord region diol-epoxides appears to be due to the high frequency with which they form DNA adducts in V79 cells, rather than to formation of adducts with greater mutagenic potential.  相似文献   

4.
The cytotoxic effects of sodium fluoride (NaF) on hamster V79 cells and human EUE cells were studied by measuring the cloning efficiency and DNA, RNA and protein synthesis in cells cultured in the presence of NaF. Potential mutagenicity of NaF was followed on the basis of induced 6-thioguanine-resistant mutants in treated Chinese hamster V79 cells. The results showed that the addition of 10-150 micrograms of NaF per ml of culture medium induced 10-75% cytotoxic effect on hamster V79 cells but had no toxic effect on human EUE cells. NaF was cytotoxic to human EUE cells at considerably higher concentrations (200-600 micrograms/ml). Growth of both cell types with 100 and 200 micrograms of NaF per ml caused inhibition of 14C-thymidine, 14C-uridine and 14C-L-leucine incorporation. This means that NaF inhibits macromolecular synthesis whereby damaging effects were less drastic in human EUE cells. The results of detailed mutagenicity testing on hamster V79 cells showed that NaF did not show any mutagenic effect after long-term (24-h) incubation of hamster cells in the presence of 10-400 micrograms of NaF per ml of culture medium.  相似文献   

5.
Inducibility of 6-thioguanine-resistant (6TGr) mutants and single-strand scission of DNA by cadmium chloride (CdCl2) was investigated in cultured Chinese hamster V79 cells. Frequency of 6TGr mutants increased concentration dependently by 24-h treatment with CdCl2 up to 3 X 10(-6) M but decreased beyond 3 X 10(-6) M. Mutagenic potency of cadmium in the absence of S9 was about half that of benzo[a]pyrene in the presence of S9 at equitoxic concentrations. Treatment of the cultured cells with cadmium after benzo[a]pyrene treatment was not synergistic but additive to the mutagenicity of benzo[a]pyrene. Single-strand scission of DNA by alkaline elution techniques was observed in the cells treated with CdCl2 for 2 h in a concentration-dependent manner. The single-strand scission by cadmium was detected only in combination with proteinase K digestion of the cell lysates, indicating formation of DNA--protein cross-linking by the metal. These biological and biochemical findings indicate that cadmium is mutagenic in mammalian cells, and its mutagenic effect seems to be accompanied by single-strand scission of DNA.  相似文献   

6.
The mutagenicity of the epoxides 4-vinyl-1,2-epoxycyclohexane, 4-epoxy-ethyl-1,2-epoxycyclohexane, 4-epoxyethyl-1,2-dihydroxycyclohexane, 1,2-epoxycyclohexane and styrene oxide was assayed on the TA100 strain of S. typhimurium and V79 Chinese hamster cells. In the latter cell system, both point mutation (6-thioguanine resistance) and chromosomal damage (anaphase bridges and micronuclei) were scored. Genetic effects were related to the alkylating properties of the epoxides. For this purpose, alkylation of 4-(p-nitrobenzyl)pyridine (NPB) and sodium-p-nitrothiophenolate (NTP) was measured and values for the substrate constant (s) were calculated. 4-Epoxyethyl-1,2-epoxycyclohexane, 1,2-epoxycyclohexane and styrene oxide, characterized by the highest reactivity toward NBP and by an s value in the vicinity of 1, were mutagenic in all test systems. 4-Vinyl-1,2-epoxycyclohexane and 4-epoxyethyl-1,2-dihydroxycyclohexane, characterized by lower NBP reactivity and higher s values (1.30–1.38), did not induce reversion in S. typhimurium or 6-thioguanine-resistant mutants in V79 cells, but were as effective as the 3 other compounds in the induction of chromosomal damage.  相似文献   

7.
The metabolic activation of benzo[a]pyrene and 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene was studied in V79 Chinese hamster fibroblasts after supplementations with arachidonic acid or treatments with linoleic acid hydroperoxide. The extent of metabolic activation was estimated using cytotoxicity and mutagenesis as endpoints. Pretreatment of cells with arachidonic acid for 24 h resulted in significant elevations in the content of this fatty acid in cell phospholipids and increased prostaglandin synthesis. Arachidonic acid and linoleic acid hydroperoxide facilitated 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene cytotoxicity and mutagenesis, and to a lesser extent increased the cytotoxicity and mutagenicity of benzo[a]pyrene. No other compounds tested were mutagenic under these conditions, however, linoleic acid hydroperoxide markedly increased their cytotoxicity. Arachidonic acid-facilitated toxicity and mutagenesis was inhibited by indomethacin, whereas no inhibition was seen when linoleic acid hydroperoxide was used. Nordihyroquairaretic acid abolished the cytotoxicity and mutagenesis facilitated by arachidonic acid and linoleic acid hydroperoxide. Our findings demonstrate that induction of cytotoxicity and mutagenesis following treatment of V79 cells with carcinogens may be limited by low levels of arachidonic acid in these cells. A peroxidatic mechanism is proposed, with limited substrate specificity, for the metabolic activation of chemicals in V79 cells.  相似文献   

8.
Eight procarcinogens including three nitrosamines, three polycyclic hydrocarbons, and two aromatic amines were tested for mutagenic potential at the thymidine kinase (TK) locus in L5178Y mouse lymphoma cells co-cultivated with viable hamster hepatocytes. All eight chemicals produced substantial mutagenic activity as indicated by increased trifluorothymidine resistance in L5178Y cells treated in the presence of hepatocytes. Mutagenic responses to benzo[a]pyrene, 3-methyl-cholanthrene, N-nitrosodiethylamine, and N-nitrosodipropylamine first increased, then plateaued within the range of mutagen concentrations tested, while consistent dose-dependent increases in mutant frequencies were observed following 2-aminoanthracene, 2-aminofluorene, or N-nitrosodimethylamine treatments. The relatively flat portions of the mutant frequency curves for benzo[a]pyrene and 3-methylcholanthrene coincided with maximum chemical solubility as obvious from visible or microscopically detectable precipitate. These hamster cells readily facilitated the metabolism of 1,2-benzanthracene to a detectable mutagen and were especially competent in the activation of the two aromatic amines. Thus, cultured hamster hepatocytes can activate a variety of chemical carcinogens including polycyclic hydrocarbons to mutagens in a whole cell-mediated in vitro assay using L5178Y/TK+/? cells as the target organism.  相似文献   

9.
H Glatt  F Oesch 《Mutation research》1985,149(2):265-269
N-Acetoxy-2-acetylaminofluorene (AAAF) and N-hydroxy-2-acetylaminofluorene (OH-AAF) are mutagenic to V79 cells, causing the induction of 6-thioguanine-resistant clones, and are cytotoxic. The presence of the deacetylase inhibitor, paraoxon, drastically reduces both the mutagenic and cytotoxic effects. This strongly suggests that deacetylated metabolites are the major active species. Furthermore, when Salmonella typhimurium TA98 is used as target organism, addition of homogenate of V79 cells strongly potentiates the mutagenicity of OH-AAF. To our knowledge, this is the first report demonstrating a significant biological effect due to the metabolism of a mutagen by V79 cells.  相似文献   

10.
The effect of theophylline, a specific inhibitor of phosphodiesterase, on gap junction-mediated intercellular communication between Chinese hamster V79 cells was examined. It was found that addition of theophylline to coculture of 6-thioguanine-resistant (TGr) and 6-thioguanine-sensitive (TGs) V79 cells significantly increased the recovery of TGr cells. This finding indicates an inhibition of metabolic cooperation of V79 cells by theophylline. Theophylline was tested at concentrations <0.3 mg/ml, which were neither cytotoxic (after short or continuous exposure) nor inhibited the synthesis of DNA, RNA, and proteins. At the tested concentrations, no change was found in the membrane permeability of cells. Theophylline did not increase the incorporation of glucose into the cells.Abbreviations TG 6, thioguanine  相似文献   

11.
The mutagenicity of fenitrothion was determined in strains of Salmonella typhimurium and Escherichia coli. Fenitrothion was found to be non-mutagenic in Salmonella typhimurium strains of TA98, TA1535 and TA1537 and in Escherichia coli WP2uvrA both with and without S9 mix, while weak mutagenicity was observed only in Salmonella typhimurium TA100 and enhanced by the addition of S9 mix. The mutagenicity observed in the TA100 strain was not expressed in a nitroreductase-deficient strain, TA100 NR, and decreased in a transacetylase-deficient strain, TA100 1,8-DNP6. The mutagenicity of fenitrothion was also examined by a gene mutation assay using the gene for hypoxanthine-guanine phosphoribosyltransferase (hgprt) in V79 Chinese hamster lung cells. Fenitrothion did not induce any increment of 6-thioguanine-resistant mutant cells at doses ranging from 0.01 to 0.3 mM regardless of the presence or absence of S9 mix. These results suggest that reduction of fenitrothion by a bacterial nitroreductase of TA100 to an active form is essential for the expression of the mutagenicity of fenitrothion in TA100 and that a bacterial transacetylase of TA100 also has an important role in the process of mutagenic activation.  相似文献   

12.
The role of the target cell in determining the structures and the amounts of hydrocarbon-DNA adducts formed after hydrocarbon activation by an exogenous metabolic ativation system was investigated by exposing intact cells of the Chinese hamster lung cell line V79, V79 cell nuclei and calf thymus DNA to benzo[a]pyrene (B[a]P) in the presenceof a rat liver homogenate activation system (S9). The DNA was isolated, enzymatically degraded to deoxyribonucleosides and the B[a]P-deoxyribonucleoside adducts analyzed by high-performance liquid chromatography. Two major adducts were present in all samples; one formed by reaction of r-7, t-8-dihydroxy-t-9, 10-epoxy-7, 8, 9, 10-tetrahydro-B[a]P (anti-B[a]PDE) with the 2-amino group of deoxyguanosine, the other formed by reaction of a metabolite of 9-hydroxybenzo[a]pyrene (9-OH-B[a]P) with an unidentified deoxyribonucleoside. The ratios of the anti-B[a]PDE-DNA adduct to the 9-OH-B[a]P-DNA adduct were: calf thymus DNA, 3 to 1: DNA from V79 nuclei, 8 to 1; DNA from intact V79 cells, 11 to 1. Similar several-fold increases in the proportion of anti-B[a]PDE-DNA adducts in V79 cells over those in calf thymus DNA were observed for a dose range of 1–10 μg B[a]P per ml. The relative extent of binding of the activated metabolite of 9-OH-B[a]P to DNA was also much lower in intact V79 cells than in calf thymus DNA after exposure to 9-OH-B[a]P in the presence of the S9 activation system.These results demonstrate that the relative abilities of various reactive bbenzo[a]pyrene metabolites formed by an exogenous activation system to reach DNA differ substantially. Therefore, assessment of the biological activity of hydrocarbons in mutation assays using exogenous activation systems must take into account not only the amounts of different reactive hydrocarbon metabolites formed but also the relative abilities of these metabolites to reach the DNA of the target cell.  相似文献   

13.
The effect of phorbol myristate acetate, phorbol dibutyrate, ethanol, dimethylsulfoxide, phenol, and seven metabolites of phenol on metabolic cooperation were assessed as a function of mutant cell recovery from populations of cocultivated hypoxanthine-guanine phosphoribosyl transferase-deficient mutant (HGPRT–) and wild-type (HGPRT+) Chinese hamster V79 lung fibroblasts. Phorbol myristate acetate and phorbol diputyrate, two established tumor promoters, were potent inhibitors of metabolic cooperation. Ethanol and dimethylsulfoxide, solvents commonly used to prepare chemicals for testing, weakly inhibited metabolic cooperation. Phenol and phenylglucuronide had no effect on metabolic cooperation. Four oxidative metabolites (1,4-benzoquinone, catechol, hydroxyquinol and quinol) inhibited metabolic cooperation. Phenylsulfate weakly inhibited metabolic cooperation. Conversely, 2-methoxyphenol, a methylated derivative of catechol, appeared to enhance metabolic cooperation. These results generallyAbbreviations CAS Chemical Abstracts Service - DMSO dimethylsulfoxide - ETOH ethanol - HGPRT hypoxanthine-guanine phosphoribosyl transferase - HGPRT+ HGPRT-competent - HGPRT– HGPRT-te]deficient - MC metabolic cooperation - MC+ metabolic cooperation-competent - MC– metabolic cooperation-deficient - MEM minimum essential medium - PDBu phorbol dibutyrate - PMA phorbol myristate acetate - 6TG 6-thioguanine - 6TGr 6-thioguanine-resistant - 6TGs 6-thioguanine-sensitive - V79/MC assay Chinese hamster V79 lung fibroblast assay for metabolic cooperation  相似文献   

14.
Laccaic acid is a red colored natural dye produced by the insect Laccifer lacca or Coccus lacca. It is obtained in large amounts as a by-product of the shellac industry and has been considered for general use as a food coloring agent. Laccaic acid is found to have no mutagenic activity as assessed by two short-term assays: the Salmonella/microsome mutagenicity test, and the ØX fidelity assay. However, laccaic acid did inhibit metabolic cooperation in Chinese hamster V79 cells. These results suggest that laccaic acid should be tested in animals with particular emphasis on in vivo models for tumor promotion.  相似文献   

15.
In the presence of metabolic activation (S9 microsomal fraction of mouse-liver homogenate) the mutagenicity of benzo[a]pyrene (BP) in Chinese hamster V79 cells was inhibited by the phenolic bioantioxidants (BA) Dibunol (2,6-di-tert-butyl-4-methylphenol-D) and 5-methylresorcine(5-MR). The mixture BP + D and BP + 5-MR at molar ratios of 1:1 and 1:85 respectively showed no mutagenic activity compared to the control. One can assume that D and 5-MR inhibited BP-induced mutagenesis by binding the free radicals of BP metabolites with the formation of less active phenolic derivatives and also by linkage with cytochrome P-450, which prevents further metabolic activation of BP.  相似文献   

16.
The genetic and embryotoxic effects of bis(tri-n-butyltin)oxide (TBTO) were evaluated in multiple in vivo and in vitro short-term tests preparatory to its potential wide use as a molluscicide in control of schistosomiasis. When tested in the rec assay in Bacillus subtilis, TBTO was not mutagenic and it did not induce reverse mutations in Klebsiella pneumoniae. Neither in the presence nor in the absecne of rat liver activation system did TBTO produce point mutations in Salmonella typhimurium strains TA1530, TA1535, TA1538, TA97, TA98 or TA100. TBTO was matagenic in strain TA100 in a fluctuation test, but only in the presence of rat liver S9 (Aroclor-induced). TBTO did not induce gene mutations in the yeast Schizosaccharomyces pombe, mitotic gene conversions in the yeast Saccharomyces cerevisiae, nor sister-chromatid exchange in Chinese hamster ovary cells in the presence or absence of rat or mouse liver S9. In the latter cells, structural chromosomal aberrations, endoreduplicated and polyploid cells were induced. TBTO did not induce gene mutations in V79 Chinese hamster cells (to 8-azaguanine-, ouabain- or 6-thioguanine-resistance) in the presence of a rat liver postmitochondrial fraction or in cell (hamster embryo cells and human and mouse epidermal keratinocyte)-mediated assays. In mouse lymphoma cells, TBTO did not induce 6-thioguanine- or BUdR-resistant mutations. As many tumour promoters inhibit metabolic cooperation between V79 Chinese hamster 6-thioguanine-resistant/-sensitive cells, TBTO was tested but showed no such activity. TBTO was examined for the induction of recessive lethal mutations in adult Berlin K male Drosophila melanogaster, either by feeding or by injection. Doses of 0.37 or 0.74 mM did not increase the number of X-linked recessive lethal mutations. An increased number of micronuclei was observed in the polychromatic erythrocytes of male BALB/c mice 48 h after a single oral dose of TBTO (60 mg/kg bw), while a lower dose (30 mg/kg bw) was ineffective. Neither of the two doses had induced micronuclei 30 h after treatment. The reproductive toxicity of TBTO was studied in NMRI mice. In a 10-day toxicity study, the LD50 and LD10 were 74 and 34 mg/kg bw, respectively. An increased frequency of cleft palates was seen in the fetuses of mice (compared with controls, 0.7%) treated orally during pregnancy with 11.7 mg/kg TBTO (7%), 23.4 mg/kg (24%) or 35 mg/kg (48%).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Mutagenicity of hydrogen peroxide in V79 Chinese hamster cells   总被引:3,自引:0,他引:3  
Hydrogen peroxide (H2O2) was investigated for its potential to induce gene mutations in V79 Chinese hamster cells. Exposure of 2-3 X 10(6) cells/100-mm dish to 0.5-4.0 mM H2O2 for 1 h resulted in a concentration-dependent increase in the frequency of 6-thioguanine-resistant clones. At 4 mM H2O2 the mutation frequency was increased about 6-fold above that in controls and survival of the cells was reduced by 50%. Cytotoxicity was markedly increased at lower cell densities. When only 100-200 cells/100-mm dish were exposed to H2O2 for 1 h, 50% were killed at an H2O2 concentration as low as 60 microM. The results show that mutagenicity of H2O2 in mammalian cells in vitro has escaped attention previously because the concentrations tested were too low, presumably because the likely toxicity of H2O2 to V79 cells treated at high cell densities was overestimated.  相似文献   

18.
Previously, Alternaria extract and metabolite mutagenicities+/-nitrosylation were characterized using Ames Salmonella strains TA98 and TA100, which are both reverted at GC sites. To examine other targets for mutation, the metabolites Altertoxin I (ATX I), Altenuene (ALT), Alternariol (AOH), Alternariol monomethyl ether (AME), Tentoxin (TENT), Tenuazonic acid (TA) and Radicinin (RAD) were reexamined+/-nitrosylation, using Ames Salmonella strain TA97, sensitive to frameshift mutations at a run of C's, as well as strains TA102 and TA104, reverted by base pair mutations at AT sites and more sensitive to oxidative damage. ATX I was also assessed for mammalian mutagenicity at the Hprt gene locus in Chinese hamster V79 lung fibroblasts and rat hepatoma H4IIE cells. When tested from 1 to 100 microg/plate without nitrosylation, ATX I was mutagenic in TA102+/-rat liver S9 for activation and weakly mutagenic in TA104+/-S9, demonstrating direct-acting AT base pair mutagenicity. AOH was also directly mutagenic at AT sites in TA102+/-S9 while AME was weakly mutagenic in TA102+/-S9 and TA104+S9. Nitrosylation of ATX I enhanced mutagenicity at AT sites in TA104+/-S9 but produced little change in TA102+/-S9 compared to native ATX I. However, nitrosylated ATX I generated a potent direct-acting frameshift mutagen at C sites in TA97+/-S9. While ATX I was not mutagenic in either V79 cells or H4IIE cells, 5 and 10 microg/ml nitrosylated ATX I produced a doubling of 6-thioguanine resistant V79 colonies and 0.5 and 1 microg/ml were mutagenic to H4IIE cells, becoming toxic at higher concentrations. These results suggest ATX I, AME and AOH induce mutations at AT sites, possibly through oxidative damage, with nitrosylation enhancing ATX I frameshift mutagenicity at runs of C's. Nitrosylated ATX I was also directly mutagenic in mammalian test systems.  相似文献   

19.
The inhibitory effects of hemin and related compounds on the mutagenicity of benzo[a]pyrene (BP) were investigated in Chinese hamster V79 cells co-cultivated with X-irradiated hamster embryo cells. Mutant V79 cells were selected by their resistance to ouabain. The mutation frequency induced by BP was substantially inhibited dose dependently by hemin. The mutagenicity of BP (1 microgram/ml) on V79 cells was reduced to 6.5% by hemin, 52% by biliverdin, 73% by protoporphyrin and 85% by chlorophyllin at the highest concentration of the compounds tested (15 microM).  相似文献   

20.
The anti-tumor agent cis-platinum(II) diamine dichloride caused dose-dependent toxicity in V79 Chinese hamster cells and in secondary Syrian hamster embryo cells. Chromosome aberrations were induced and positive dose--response relationships were observed for induction of sister-chromatid exchanges and 6-thioguanine-resistant mutations in V79 cells and morphologic transformation of secondary Syrian hamster embryo cells. The findings suggest that this chemical is a potential human carcinogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号