首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Van Hooser AA  Yuh P  Heald R 《Chromosoma》2005,114(6):377-388
In addition to genetic information, mitotic chromosomes transmit essential components for nuclear assembly and function in a new cell cycle. A specialized chromosome domain, called the perichromosomal layer, perichromosomal sheath, chromosomal coat, or chromosome surface domain, contains proteins required for a variety of cellular processes, including the synthesis of messenger RNA, assembly of ribosomes, repair of DNA double-strand breaks, telomere maintenance, and apoptosis regulation. The layer also contains many proteins of unknown function and is a major target in autoimmune disease. Perichromosomal proteins are found along the entire length of chromosomes, excluding centromeres, where sister chromatids are paired and spindle microtubules attach. Targeting of proteins to the perichromosomal layer occurs primarily during prophase, and they generally remain associated until telophase. During interphase, perichromosomal proteins localize to nucleoli, the nuclear envelope, nucleoplasm, heterochromatin, centromeres, telomeres, and/or the cytoplasm. It has been suggested that the perichromosomal layer may contribute to chromosome structure, as several of the associated proteins have functions in chromatin remodeling during interphase. We review the identified proteins associated with this chromosome domain and briefly discuss their known functions during interphase and mitosis.  相似文献   

2.
A complex structure, visible by electron microscopy, surrounds each chromosome during mitosis. The organization of this structure is distinct from that of the chromosomes and the cytoplasm. It forms a perichromosomal layer that can be isolated together with the chromosomes. This layer covers the chromosomes except in centromeric regions. The perichromosomal layer includes nuclear and nucleolar proteins as well as ribonucleoproteins (RNPs). The list of proteins and RNAs identified includes nuclear matrix proteins (perichromin, peripherin), nucleolar proteins (perichro-monucleolin, Ki-67 antigen, B23 protein, fibrillarin, p103, p52), ribosomal proteins (S1) and snRNAs (U3 RNAs). Only limited information is available about how and when the perichromosomal layer is formed. During early prophase, the proteins extend from the nucleoli towards the periphery of the nucleus. Thin cordon-like structures reach the nuclear envelope delimiting areas in which chromosomes condense. At telophase, the proteins are associated with the part of the chromosomes remaining condensed and accumulate in newly formed nucleoli in regions where chromatin is already decondensed. The perichromosomal layer contains several different classes of proteins and RNPs and it has been attributed various roles: (1) in chromosome organization, (2) as a barrier around the chromosomes, (3) involvement in compartmentation of the cells in prophase and telophase and (4) a binding site for chromosomal passenger proteins necessary to the early process of nuclear assembly.  相似文献   

3.
In somatic tissues, the mouse Ki-67 protein (pKi-67) is expressed in proliferating cells only. Depending on the stage of the cell cycle, pKi-67 is associated with different nuclear domains: with euchromatin as part of the perichromosomal layer, with centromeric heterochromatin, and with the nucleolus. In gametes, sex-specific expression is evident. Mature MII oocytes contain pKi-67, whereas pKi-67 is not detectable in mature sperm. We investigated the re-establishment of the cell cycle-dependent distribution of pKi-67 during early mouse development. After fertilization, male and female pronuclei exhibited very little or no pKi-67, while polar bodies were pKi-67 positive. Towards the end of the first cell cycle, prophase chromosomes of male and female pronuclei simultaneously got decorated with pKi-67. In 2-cell embryos, the distribution pattern changed, presumably depending on the progress of development of the embryo, from a distribution all over the nucleus to a preferential location in the nucleolus precursor bodies (NPBs). From the 4-cell stage onwards, pKi-67 showed the regular nuclear relocations known from somatic tissues: during mitosis the protein was found covering the chromosome arms as a constituent of the perichromosomal layer, in early G1 it was distributed in the whole nucleus, and for the rest of the cell cycle it was associated with NPBs or with the nucleolus.  相似文献   

4.
A cytological comparative analysis of male meiocytes was performed for Arabidopsis wild type and the ahp2 (hop2) mutant with emphasis on ahp2’s largely uncharacterized prophase I. Leptotene progression appeared normal in ahp2 meiocytes; chromosomes exhibited regular axis formation and assumed a typical polarized nuclear organization. In contrast, 4′,6′-diamidino-2-phenylindole-stained ahp2 pachytene chromosome spreads demonstrated a severe reduction in stabilized pairing. However, transmission electron microscopy (TEM) analysis of sections from meiocytes revealed that ahp2 chromosome axes underwent significant amounts of close alignment (44% of total axis). This apparent paradox strongly suggests that the Ahp2 protein is involved in the stabilization of homologous chromosome close alignment. Fluorescent in situ hybridization in combination with Zyp1 immunostaining revealed that ahp2 mutants undergo homologous synapsis of the nucleolus-organizer-region-bearing short arms of chromosomes 2 and 4, despite the otherwise “nucleus-wide” lack of stabilized pairing. The duration of ahp2 zygotene was significantly prolonged and is most likely due to difficulties in chromosome alignment stabilization and subsequent synaptonemal complex formation. Ahp2 and Mnd1 proteins have previously been shown, “in vitro,” to form a heterodimer. Here we show, “in situ,” that the Ahp2 and Mnd1 proteins are synchronous in their appearance and disappearance from meiotic chromosomes. Both the Ahp2 and Mnd1 proteins localize along the chromosomal axis. However, localization of the Ahp2 protein was entirely foci-based whereas Mnd1 protein exhibited an immunostaining pattern with some foci along the axis and a diffuse staining for the rest of the chromosome.  相似文献   

5.
Traut W  Endl E  Scholzen T  Gerdes J  Winking H 《Chromosoma》2002,111(3):156-164
We used immunolocalization in tissue sections and cytogenetic preparations of female and male gonads to study the distribution of the proliferation marker pKi-67 during meiotic cell cycles of the house mouse, Mus musculus. During male meiosis, pKi-67 was continuously present in nuclei of all stages from the spermatogonium through spermatocytes I and II up to the earliest spermatid stage (early round spermatids) when it appeared to fade out. It was not detected in later spermatid stages or sperm. During female meiosis, pKi-67 was present in prophase I oocytes of fetal ovaries. It was absent in oocytes from newborn mice and most oocytes of primordial follicles from adults. The Ki-67 protein reappeared in oocytes of growing follicles and was continuously present up to metaphase II. Thus, pKi-67 was present in all stages of cell growth and cell division while it was absent from resting oocytes and during the main stages of spermiocytogenesis. Progression through the meiotic cell cycle was associated with extensive intranuclear relocation of pKi-67. In the zygotene and pachytene stages, most of the pKi-67 colocalized with centromeric (centric and pericentric) heterochromatin and adjacent nucleoli; the heterochromatic XY body in male pachytene, however, was free of pKi-67. At early diplotene, pKi-67 was mainly associated with nucleoli. At late diplotene, diakinesis, metaphase I and metaphase II of meiosis, pKi-67 preferentially bound to the perichromosomal layer and was almost absent from the heterochromatic centromeric regions of the chromosomes. After the second division of male meiosis, the protein reappeared at the centromeric heterochromatin and an adjacent region in the earliest spermatid stage and then faded out. The general patterns of pKi-67 distribution were comparable to those in mitotic cell cycles. With respect to the timing, it is interesting to note that relocation from the nucleolus to the perichromosomal layer takes place at the G2/M-phase transition in the mitotic cell cycle but at late diplotene of prophase I in meiosis, suggesting physiological similarity of these stages.  相似文献   

6.
The technique of freeze-drying was applied to examine the submicroscopic organisation of metaphase chromosomes from Chinese hamster after removal of bivalent cations with EDTA and removal of histone HI with 0,6 M NaCl. Treated chromosomes increased in size, and nucleosomal filaments appeared at the periphery of the chromosomes. Removal of bivalent cations is accompanied with the appearance of regularly organized structures of the beads-on-a-string type. The regular organization of the fibers is damaged as soon as histone H1 is removed. After decondensation in a 0,6 M NaCl solution the metaphase chromosomes were treated with staphylococcal nuclease in situ on EM grids and the residual structures analysed using electron microscopy. Nucleohistone fibers were visible at the periphery of the chromosomes at the beginning of digestion. After complete elimination of the nucleohistone fibers in the course of digestion the remaining proteinaceous material was represented by aggregates of irregular shape and of varying size. These were either concentrated along the central axis of the chromatids or, at the final step of digestion, scattered evenly over the entire area that had been occupied by the chromosome. Presumably, in the chromosome prior to digestion, the material did not form an integral protein structure similar to a scaffold in dehistonised and spread chromosomes. An alternative interpretation for the fragmentation of protein material in the chromosome considers possible degradation of the protein scaffold in the course of digestion.  相似文献   

7.
Residual protein structures were prepared from isolated chromosomes and interphase nuclei of in vitro cultured bovine liver cells and the protein compositions were analysed. Chromosomes with minimal cytoplasmic contamination were obtained by a simple procedure using a pH 8 isolation medium containing Triton X-100 and polyamines, and residual protein-DNA complexes were prepared by extraction with 2 M NaCl. Residual protein structures were also obtained by digesting isolated chromosomes with staphylococcal nuclease. Protein compositions of both structures as obtained by SDS-polyacrylamide gel electrophoresis were essentially the same. Residual protein structures were prepared from isolated nuclei by the same procedures. The major nuclear matrix proteins, i.e., the lamins A, B, and C, were not found in the chromosomes and chromosome scaffolds. On the other hand, the residual chromosome structures contained two major polypeptides of 37 and 83 kilodalton relative molecular weights that were absent from the nuclear matrix preparations. A few polypeptides with the same or very similar electrophoretic mobilities were found in the residual structures of both the nuclei and the chromosomes.  相似文献   

8.
To determine what effect maturation promoting factor (MPF, p34 cdc2 kinase/cyclin B) phosphorylation has on nucleolin’s distribution during mitotic nucleolar disassembly and reassembly, we altered Chinese hamster ovary (CHO) nucleolin (the N protein) such that it cannot be phosphorylated by p34 cdc2 . As expected, the transiently expressed epitope-tagged N protein showed no apparent defect in nucleolar localization in interphase CHO cells, even after hypotonic shock and recovery to quickly disassemble and then reassemble interphase nucleoli. In mitotic CHO cells, the N protein localized to the perichromosomal sheath and the cytoplasm, as is typical for nucleolin. Similar to epitope-tagged wild-type nucleolin, the N protein also maintained its association with persistent nucleoli characteristic of mitotic Chinese hamster lung (Dede) cells. In synchronized HeLa cells, the N protein again localized to the perichromosomal sheath and the cytoplasm as nucleoli disassembled during prophase. In HeLa cell telophase, the N protein localized normally to nucleolus-derived foci within the cytoplasm and prenucleolar bodies within reforming nuclei. The observations indicate that MPF phosphorylation is not essential for nucleolin’s localizations to the perichromosomal sheath and the cytoplasm during prophase and metaphase, and that functional MPF phosphorylation sites are not essential for nucleolin’s localizations during nucleologenesis. Accepted: 15 April 1999  相似文献   

9.
The localization of nucleolar proteins (fibrillarin and B-23), and of the protein of interphase nuclear matrix (NMP-65) was studied in the perichromosomal material (CM) after of short hypotonic treatment (15% solution of Henks medium) on cultured pig embryonic kidney cells, followed by restoration of isotonic conditions. It is shown that during hypotonic shock the mitotic chromosomes demonstrate reversible swelling, but their periphery is bounded with a rim of PCM, containing antibodies to fibrillarin and NMP-65, but not to B-23. After returning the cells to the initial isotonic medium, all the three proteins can be detected again on the periphery of chromosomes. It suggests the existence of different stability in the association of free proteins with chromosome bodies. Besides, B-23 and fibrillarin could be visualized in residual nucleoli after a complete extraction of histones and DNA from nuclei.  相似文献   

10.
Robinson RW  Snyder JA 《Protoplasma》2005,225(1-2):113-122
Summary. The enzymes of importance in moving chromosomes are called motor proteins and include dynein, kinesin, and possibly myosin II. These three molecules are all included in the category of ATPases, in that they have the ability to convert chemical energy into mechanical energy. Both dynein and kinesin have been documented as molecules that “walk” along microtubules in the mitotic spindle, carrying cargo such as chromosomes. Myosin II, analogous to the muscle contraction system, transiently interacts along actin filaments and associates with kinetochore microtubules. In this paper we present evidence that a third ATPase, myosin II, may act as a “thruster” to propel chromosomes during the mitotic process. Double-label immunocytochemistry to actin and myosin II shows that myosin II is localized on chromosome arms at the beginning of mitosis and remains localized to the chromosomes throughout mitosis. Specific staining of myosin II is relegated to the outside of chromosomes with the highest density of staining occurring between the spindle poles and the chromosomes. This specific localization could account for the movement of chromosomes during mitosis, since they segregate towards the spindle poles, along kinetochore microtubules containing actin filaments, after aligning at the equatorial region of the cell at metaphase. We conclude from this study that there is an actomyosin system present in the mitotic spindle and that myosin is attached to chromosome arms and may act as a thruster in moving chromosomes during the mitotic process. Correspondence and reprints: Department of Biological Sciences, University of Denver, 2190 E Iliff Avenue, Denver, CO 80208, U.S.A.  相似文献   

11.
Summary The observation that the nuclear envelope outer mem brane contains ion channels raises the question of whether these conductances communicate between the cytosol and the nuclear envelope cisternae or between the cytosol and the cytoplasm. Failure to detect large, nonselective holes using the patch-clamp technique has led to the speculation that ion channels and nuclear pores are in fact the same. In this paper we present evidence that the ionic channel, recorded in isolated liver nuclei with the patch-clamp configura tion of “nucleus-attached,” spans the double membrane of the envelope, providing a direct contact between nucleoplasm and cytoplasm.  相似文献   

12.
A fundamental issue in biotechnology is how to breed useful strains of microorganisms for efficient production of valuable biomaterials. On-going and more recent developments in gene manipulation technologies and chromosomal and genomic modifications in particular have facilitated important contributions in this area. “Chromosome manipulation technology” as an outgrowth of “gene manipulation technology” may provide opportunities for creating novel strains of organisms with a variety of genomic constitutions. A simple and rapid chromosome splitting technology called “PCR-mediated chromosome splitting” (PCS) that we recently developed has made it possible to manipulate chromosomes and genomes on a large scale in an industrially important microorganism, Saccharomyces cerevisiae. This paper focuses on recent advances in molecular methods for altering chromosomes and genome in S. cerevisiae featuring chromosome splitting technology. These advances in introducing large-scale genomic modifications are expected to accelerate the breeding of novel strains for biotechnological purposes, and to reveal functions of presently uncharacterized chromosomal regions in S. cerevisiae and other organisms.  相似文献   

13.
Several chromosome types have been recognized in Citrus and related genera by chromomycin A3 (CMA) banding patterns and fluorescent in situ hybridization (FISH). They can be used to characterize cultivars and species or as markers in hybridization and backcrossing experiments. In the present work, characterization of six cultivars of P. trifoliata (“Barnes”, “Fawcett”, “Flying Dragon”, “Pomeroy”, “Rubidoux”, “USDA”) and one P. trifoliata × C. limonia hybrid was performed by sequential analyses of CMA banding and FISH using 5S and 45S rDNA as probes. All six cultivars showed a similar CMA+ banding pattern with the karyotype formula 4B + 8D + 6F. The capital letters indicate chromosomal types: B, a chromosome with one telomeric and one proximal band; D, with only one telomeric band; F, without bands. In situ hybridization labeling was also similar among cultivars. Three chromosome pairs displayed a closely linked set of 5S and 45S rDNA sites, two of them co-located with the proximal band of the B type chromosomes (B/5S-45S) and the third one co-located with the terminal band of a D pair (D/5S-45S). The B/5S-45S chromosome has never been found in any citrus accessions investigated so far. Therefore, this B chromosome can be used as a marker to recognize the intergeneric Poncirus × Citrus hybrids. The intergeneric hybrid analyzed here displayed the karyotype formula 4B + 8D + 6F, with two chromosome types B/5S-45S and two D/5S-45S. The karyotype formula and the presence of two B/5S-45S chromosomes clearly indicate that the plant investigated is a symmetric hybrid. It also demonstrates the suitability of karyotype analyses to differentiate zygotic embryos or somatic cell fusions involving trifoliate orange germplasm. During the submission of this paper, we analyzed 25 other citrus cultivars with the same methodology and we found that the chromosome marker reported here can indeed distinguish Poncirus trifoliata from grapefruits, pummelos, and one variegated access of Citrus, besides the previously reported access of limes, limons, citrons, and sweet-oranges. However, among 14 mandarin cultivars, two of them displayed a single B/5S-45S chromosome, whereas in Citrus hystrix D.C., a far related species belonging to the Papeda subgenus, this chromosome type was found in homozygosis. Since these two mandarin cultivars are probably of hybrid origin, we assume that for almost all commercial cultivars and species of the subgenus Citrus this B type chromosome is a useful genetic marker.  相似文献   

14.
We analyzed the behavior of the nucleolus, nucleolar structures and nucleolus organizer regions (NORs) during meiotic division in four species of phyllostomid bats that have different numbers and locations of NORs. Nucleoli began disassembly at leptotene, and the subcomponents released from the nucleolus were dispersed in the nucleoplasm, associated with perichromosomal regions, or they remained associated with NORs throughout division. In Phyllostomus discolor, a delay in nucleolus disassembly was observed; it disassembled by the end of pachytene. The RNA complexes identified by acridine orange staining were observed dispersed in the nucleoplasm and associated with perichromosomal regions. FISH with rDNA probe revealed the number of NORs of the species: one NOR in Carollia perspicillata, one pair in Platyrrhinus lineatus and P. discolor, and three pairs in Artibeus lituratus. During pachytene, there was a temporary dissociation of the homologous NORs, which returned to pairing at diplotene. The variation in the number (from one to three pairs) and location of NORs (in sex or autosomal chromosomes, at terminal or interstitial regions) did not seem to interfere with the nucleolar behavior of the different species because no variation in nucleolar behavior that could be correlated with the variation in the number and chromosomal location of NORs was detected.  相似文献   

15.
We investigated the perichromosomal architecture established during mitosis. Entry into mitosis brings about a dramatic reorganization of both nuclear and cytoplasmic structures in preparation for cell division. While the nuclear envelope breaks down, nuclear proteins are redistributed during chromosome condensation. Some of these proteins are found around the chromosomes, but little is known concerning their nature and function. Ten autoimmune sera were used to study the microenvironment of chromosomes and, in particular, the chromosome periphery. They were selected for their anti-nucleolar specificity and were found to recognize three nucleolar proteins that coat the chromosomes during mitosis. The distribution of these antigens was followed through the cell cycle by confocal laser scanning microscopy. The antigens dispersed very early during prophase and simultaneously with the chromosome condensation suggesting a correlation between these two processes. The antigens have apparent molecular weights of 53, 66, and 103 kDa on SDS-PAGE migration. Elution of the antibodies and immunopurification showed that they are RNA-associated proteins. The coimmunoprecipitating RNA moiety involved in these RNPs appeared to be U3, but the antigens are not related to the fibrillarin family. Therefore, small nucleolar RNPs follow the same distribution during mitosis as that described for small nuclear RNPs. Possible functions for these antigens are discussed.  相似文献   

16.
关于染色体的研究到目前为止已经过去了一个多世纪,就染色体的高级结构已提出了许多不同的模型,尽管目前尚未达成统一认识,但染色体骨架的研究已引起人们的普遍关注,许多学者都认为在染色体中存在一个由非组蛋白或核糖核蛋白(RNP)组成的骨架结构,进一步研究染色体骨架的组成、结构特点对于认识染色体的高级结构无疑是十分必要的。蔡树涛等在甲藻染色体中观察到骨架结构并证明其主要成分是酸性蛋白,他们认为这些成分在甲藻染色体高级结构的组建和维持上可能起支架作用。本文用RNP优先染色和银染的方法对甲藻染色体中的RNP和银染蛋白进行初步研究,这对于进一步研究甲藻染色体的结构和组成以及真核生物染色体的高级结构具有一定的理论意义。  相似文献   

17.
A protein factor named S-II that stimulates RNA polymerase II was previously purified from Ehrlich ascites tumor cells [1]. In this work using an antibody prepared against purified S-II, the localization of S-II in the cell was investigated by an indirect immunofluorescence technique. In 3T3 cells, specific immunofluorescence was detected only in the nucleoplasm where RNA polymerase II is located, and not in the nucleoli where RNA polymerase I is present. In Ehrlich ascites tumor cells fluorescence was detected mainly in the nucleoplasm, although some fluorescence was also detectable in the cytoplasm, possibly due to leak of S-II from the nuclei during preparation of the immunofluorescent samples. In metaphase cells fluorescent was not found on chromosomes but throughout the cytoplasm. These findings suggest that S-II is a nuclear protein and that it spreads into the cytoplasm without being attached to chromosomes in metaphase, but is reassembled into the nucleoplasm in the interphase. Specific immunofluorescence was also detected in the nuclei of HeLa cells and salivary glands cells of flesh-fly larvae, suggesting that the nucleoplasm of these heterologous cells contains proteins immunologically cross-reactive with the antibody against S-II.  相似文献   

18.
We have investigated the distribution of three heterochromatic proteins [SUppressor of UnderReplication (SUUR), heterochromatin protein 1 (HP1), and SU(VAR)3–9] in chromosomes of nurse cells (NCs) and have compared the data obtained with the distribution of the same proteins in salivary gland (SG) chromosomes. In NC chromosomes, the SU(VAR)3–9 protein was found in pericentric heterochromatin and at 223 sites on euchromatic arms, while in SG chromosomes, it was mainly restricted to the chromocenter. In NC chromosomes, the HP1 and SUUR proteins bind to 331 and 256 sites, respectively, which are almost twice the number of sites in SG chromosomes. The distribution of the HP1 and SU(VAR)3–9 proteins depends on the SuUR gene. A mutation in this gene results in a dramatic decrease in the amount of SU(VAR)3–9 binding sites in autosomes. In the X chromosome, these sites are relocated in comparison to the SuUR +, and their total number only varies slightly. HP1 binding sites are redistributed in chromosomes of SuUR mutants, and their overall number did not change as considerably as SU(VAR)3–9. These data together point to an interaction of these three proteins in Drosophila NC chromosomes.Electronic Supplementary Material Supplementary material is available for this article at.  相似文献   

19.
In interphase cells of the SPEV culture treated with Triton X-100, 2 M NaCl, and DNAse, in the presence of 2 mM CuCl2, we clearly revealed a stabilized nuclear protein material (NPM) composed of a peripheral lamina, residual nucleolus, and internal fibrillar network. This network is formed by thin fibrils 10–20 nm in diameter, which are also revealed in the nonhistone matrix of mitotic chromosomes at all stages of mitosis. In mitotic chromosomes, NPM is represented as a network of the 10–20-nm-thick fibrils without any features of the central-axial structures. Beginning from the middle prophase, it is possible to see approached sister chromatids in contact with each other in certain sites, similar to centromeres. At these sites, the thickness of fibrils increases up to 40–50 nm, whereas the fibrils themselves are disposed more tightly; this structure can be seen in the chromosome until telophase. At the end of telophase, the decondensation of chromosomes and formation of two new nuclei whose NPM is analogous to NPM of usual interphase nucleus are observed. Thus, the NPM elements can perform the role of a skeleton in both the interphase nucleus and mitotic chromosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号