首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Greve  J Blok 《Biopolymers》1973,12(11):2607-2622
Measurements of the electric birefringence of suspensions of T4B in the absence of tryptophan and of fiberless T4 particles show that both kinds of particles are hydrodynamically equivalent. Their rotational diffusion coefficients corrected to 25°C and water viscosity (D25,w) are 280 ± 9 sec?1 and 295 ± 10 sec?1, respectively. These corrected rotational diffusion coefficients are almost independent of buffer concentration and temperature. The sedimentation coefficient (s20,w) of T4 B is equal to 1023 ± 12 S, a value which is likewise independent of buffer concentration. By analysis of the field strength dependence of the steady-state birefringence and by reversing pulse experiments it could be shown that the orientation in an electric field is largely due to a permanent dipole moment. This dipole moment is somewhat dependent on buffer concentration and amounts to about 24,000 debye for T4B and 95,000 debye for fiberless T4. An approximate calculation shows that the difference in dipole moment may be ascribed to positive charges on the fiber tip (at least ten per fiber), to negative charges along the fiber or (and) positive charges on the fiberless particle at those places where the fibers are attached in normal particles.  相似文献   

2.
Electric birefringence measurements of suspensions of T3 and T7 bacteriophages in 10?2 M phosphate buffer, pH 6.9, show that there is a difference in their rotational diffusion coefficient. The values corrected to 25°C and water viscosity are D25,w = 4630 ± 130 sec?1 and D25,w = 5290 ± 260 sec?1 for T3 and T7, respectively. The value obtained from shell model calculations (according to Filson and Bloomfield) is D25,w = 4500 ± 600 sec?1. The apparent permanent dipole moments are 4.5 × 10?26 C·m and 1.7 × 10?26 C·m for T3 and T7, respectively. For both phage particles the intrinsic optical anisotropy is +7.2 × 10?3. It is shown that this anisotropy is mainly due to the DNA molecule inside the head of the phage. Its positive value means that there exists an excess orientation of the DNA helix perpendicular to the symmetry axis of the particle. For T7 an unexpectedly large increase of Δns and Ksp occurs at a glycerol concentration of about 30% (v/v). This increase is interpreted as being caused by a change of the shape of the particle and/or a change in the secondary structure of the DNA inside the head of the bacteriophage.  相似文献   

3.
M F Maestre 《Biopolymers》1968,6(3):415-430
The transient electric birefringence behavior of bacteriophage T2 and the T2 ghost or protein coal was studied. The field free relaxation measurements show both the intact virus and its ghost to have two rotary diffusion coefficients. These coefficients have values of 555 ± 54 and 111 ± 22 sec.?1 for the intact virus and 688 ± 89 and 161 ± 29 sec.?l for the ghost. The equivalent ellipsoids for the fast and slow relaxation coefficients were obtained by use of Perrin's equation and were related to the bacteriophage structure in terms of a possible extension of the tail fibers or an enlargement of the head structure. The saturation of the specific birefringence of the phage and the ghost when compared with the specific birefringence of the free nucleic acid gave an average optical orientation of 10 to 18% of the nucleic acid parallel to the main axis of the phage. The analysis of the birefringence versus applied field strength in the Kerr region gave the following values for the anisotropy of the polarixability. αe,33 – αe,11 and intrinsic dipole, μ, of both phage and ghost : for T2 phage αe,33 – αe,11 = 5.0 × 10?14 cm.3 and μ = 64,400 Debyes; for T2 ghost αe,33 – αe,11 = 7.9 × 10?14cm.3 and μ = 57,200 Debyes. The high intrinsic dipole for phage and ghost is interpreted as to be associated with the mechanisms of the virus for attachment, to the host cell wall.  相似文献   

4.
W. Boontje  J. Greve  Joh. Blok 《Biopolymers》1978,17(11):2689-2702
Transient electric birefringence measurements of the bacteriophages T2L0 and T6 were performed under such conditions that the tail fibers are extended. The data obtained are compared to previously reported data for T4B. For all T-even phages the degree of extension of the tail fibers is a function of pH, ionic strength, and temperature. For T4B, much higher ionic strengths are needed than for T2L0 and T6 to accomplish complete tail-fiber extension. The rotational diffusion coefficients of the phages with fully extended fibers are equal to 120 ± 3 sec?1, 132 ± 5 sec?1, 157 ± 4 sec?1 for T2L0, T4B, and T6, respectively. The respective optical anistropies are ? (2.66 ± 0.05) × 10?4, and ? (3.07 ± 0.15) × 10?4. The differences in the rotational diffusion coefficient and optical anisotropy arise because the conformation of the fully extended tail fibers is different for the three phages. The tail fibers of T2L0 project further into the solution (away from the head) than do those of T4B and T6. The apparent permanent dipole moments of T2L0 and T6 decrease with increasing ionic strength. This decrease is caused by the screening of the surface charges on the phage body by the counter-ions in the solution. The biological relevance of this decrease is illustrated by the fact that the adsorption rate of T6 phages to E. coli B bacteria shows a similar dependence of ionic strength. Evidence is pressented that the tail fibers may move more or less independently of the phage body when an electric field is applied to the suspension.  相似文献   

5.
We have constructed an apparatus for the simultaneous measurement of electrophoretic mobility, μ, and diffusion coefficient, D, of macromolecules and cells. It combines band electrophoresis in a vertical, sucrose-gradient stabilized column, with quasielastic laser light-scattering determination of the diffusion coefficient of the species within the band. The entire electrophoresis cell is scanned through the laser beam of the quasielastic laser light-scattering apparatus by a vertical translation stage. Total intensity light-scattering measurement at each point in the cell gives the macromolecular concentration at that point. Solvent viscosity and electrical potential are measured at each point in the cell. Application of this apparatus to resealed red blood cell ghosts and to bovine hemoglobin indicates that measurements of field, viscosity, and migration distance are reliable, and that electroosmosis is insignificant. Application to T4D bacteriophage gives μ20,w = (?1.05 ± 0.05) × 10?4 cm2/V sec and D20,w = (3.35 ± 0.10) × 10?8 cm2/sec for fiberless particles, and μ20,w = ?(0.59 ± 0.03) × 10?4 cm2/V sec and D20,w = (2.86 ± 0.09) × 10?8 cm2/sec for whole phage with 6 fibers. Approximate analysis of these results with the Henry electrophoresis theory for spheres in dicates that each fiber contributes about 193 positive charges to the phage particle, compared with 327 from amino-acid analysis. The advantages and disadvantages of this apparatus, relative to conventional electrophoresis and to electrophoretic light scattering, are discussed.  相似文献   

6.
Using dynamic light scattering, the translational diffusion coefficient (DT) and the distance between the hydrodynamic centre and the centre of the head (r0) of the bacteriophage T4B have been determined. For a particle with retracted tail fibres we found DT20.w =2.88 (2.88 ± 0.02) × 10?8cm2s?1 and r0 = 52 ± 1 nm. For a phage with fully extended tail fibres DT20w = (.210 ± 0.02) × 10?8cm2s?1 and r0 = 112 ± nm. These data were obtained by interpreting the correlation function using a theory which takes into account the influence of the lollipop shape of the phage. In the literature this influence has not been taken into account, which has led to erroneous values of diffusion coefficients for T4B and other phages. The sedimentation coefficient of T4B phage is 1040 ± 5 S (fibres retracted) or 829 ± 4 S (fibres extended). With the above mentioned diffusion coefficients, these values correspond to a molecular weight of 236 × 106 ± 3 × 106. Finally, the theory used in this study is applied to other bacterial viruses, to correct reported values of the translational diffusion coefficients and of the corresponding molecular weights of these viruses.  相似文献   

7.
Donald B. Siano 《Biopolymers》1978,17(12):2897-2908
Light-scattering studies on buffered aqueous solutions of the triple-stranded polyribonucleic acid poly(A)·2poly(U) were carried out at neutral pH and during titration. At pH 7.1 and 22°C, a sample of commercially available polymer in 0.005M phosphate buffer gave a Zimm plot which yielded values for the weight-average molecular weight, M w, of 874,000 ± 1800 g/mol, a root-mean-square radius, ρ of 930 ± 22 Å, and a second viral coefficient of 0.51 ± 0.05 × 10 ?3 cm3g?1 mol. The light-scattering data were also analyzed by serval linear and nonlinear least-squares programs which were devised to determine the model (e.g., rod, coil, or zigzag) which could best describe the shape of the molecule. It was found that a rodlike model, perhaps with a few bends, was in best overall agreement with the data. The assumption that the molecule is a thin rod leads to a value for the linear density of 206 g mol?1 Å?1 and a translation of 3.3 Å per residue. These values are also in close agreement with those expected for a triple-stranded, thin, base-stacked molecule. During titration from neutral pH with 0.1M HCl, the observed apparent molecular weight slowly increased until at about pH 3.5 a sudden, large increase (about 30-fold) occurred. The root-mean-square radius, on the other hand, after an initial small decrease (of about 25%), also exhibited a large increase (about 4-fold). Upon back titration with 0.1M NaOH, the molecular parameters did not retrace the original path, but instead exhibited hysteresis—the M w and ρ z are both larger on the basic branch than on the acid branch at a corresponding pH. A plot of long ρ z against log(M w) during the interval in which the high-moelcular-weight form was present (below pH 3.5 on the acid branch, and on the basic branch) gave a straight line with a slope of ?. This suggests that the aggregates were composed of some tens of rather open radom coils, presumably of poly(A)·poly(A), and that the hysteresis may be caused under conditions by the metastability of the entangled coils.  相似文献   

8.
Mixtures of bacteriophage T4D particles with up to six tail fibres attached were seprated and analyzed in a quasielastic light scattering-band electrophoresis apparatus. The electrophoretic mobilities and diffusion coefficients of the seprated bands were determined during the same experiment. Species differing in mobility by 0.05 × 10?4 cm2/V sec were resolved. Henry's electropheresis theory for spheres indicates that each tail fiber contributes about 140 effective positive charges to the phage structure. Estimate of the charge using the permanent dipole moment and the electrophorectic mobility (Bontje et. al. (1977) Biopolymers 16 , 551–572) gives an effective charge of + 230 to ?250 per tail fiber. The charge distribution on the fiberless particles was estimated to be ?3380 on the head and ?290 on the tail if the dipole moment was assumed positive and ?1400 on the head and ?1000 on the tail for a negative dipole. Tail-fiber attachement does not proceed to completion in our invitro system, as substantial distributions as a function of tail-fiber input indicates the reaction is a random, noncooperative process.  相似文献   

9.
A laboratory-made sample of the polysaccharide xylinan (acetan) has been further characterized with respect to (i) purity, (ii) molar mass and polydispersity, and (iii) gross conformation by a combination of hydrodynamic measurements (sedimentation velocity and equilibrium analytical ultracentrifugation, viscometry, and dynamic light scattering) in aqueous NaCl (I = 0.10 mol·L−1). Sedimentation velocity diagrams recorded using Schlieren optics revealed highly pure material sedimenting as a single boundary [so20.w = 9.5 ± 0.7) S; ks = (273 ± 112) mL/g]. The hypersharp nature of these boundaries is symptomatic of a polydisperse and highly nonideal (in the thermodynamic sense) system. Low speed sedimentation equilibrium in the analytical ultracentrifuge using Rayleigh interference optics and two different types of extrapolation procedure (involving point and whole-cell molar masses) gave a weight average molar mass Mw of (2.5 ± 0.5) × 10−6 g·mol−1 and also a second virial coefficient, B = (2.8 ± 0.7) × 10−4 mL·mol·g−2, both values in good agreement with those from light scattering-based procedures (Part II of this series). A dynamic Zimm plot from dynamic light scattering measurements gave a z-average translational diffusion coefficient Do20.w = (3.02 ± 0.05) × 10−8 cm2·s−1 and the concentration-dependence parameter kD = (370 ± 15) mL/g. Combination of so20.w with Do20.w via the Svedberg equation gave another estimate for Mw of ≅ 2.4 × 106 g/mol, again in good agreement. Both the Wales-van Holde ratio (ks/[η]) ≅ 0.4 (with [η] = (760 ± 77) mL/g) and the ρ-parameter (ratio of the radius of gyration from static light scattering to the hydrodynamic radius from dynamic light scattering) as ρ > 2.0 all indicate an extended conformation for the macromolecules in solution. These findings, plus Rinde-type simulations of the sedimentation equilibrium data are all consistent with the interpretation in terms of a unimodal wormlike coil model performed earlier. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
Purified acetylcholinesterase (AChE) of the horn fly was characterized to elucidate the enzymological, inhibitory, and molecular properties of the enzyme. Maximum activity of the AChE against the substrate acetylthiocholine (ATCh) occurred when reactions were conducted at 37°C and pH 7.5. Km and Vmax values were (9.2 ± 0.35) × 10?6 M and 239.8 ± 10.8 units/mg, respectively, for ATCh and (1.5 ± 0.07) × 10?5 M and 138.5 ± 5.5 units/mg, respectively, for butyrylthiocholine (BTCh). The activity of AChE decreased when concentrations of ATCh or BTCh were higher than 1 mM. Studies of the interaction of AChE with different inhibitors revealed pl50 values of 8.88 for eserine, 6.90 for BW284C51, and 4.97 for ethopropazine. Bimolecular reaction constants (kis) for the organophosphorus (OP) anticholinesterases were (2.74 ± 0.14) × 106 M?1 min?1 for coroxon, (7.20 ± 0.28) × 105 M?1 min?1 for paraoxon, and (2.33 ± 0.12) × 105 M?1 min?1 for stirofos. Two major forms of native AChE molecules were found on non-denaturing polyacrylamide gel electrophoresis (PAGE) with Triton X-100, corresponding to bands AChE-2 and AChE-4 found on PAGE without Triton X-100. AChE-2 had an estimated molecular weight of 603,000 and was amphiphilic. AChE-4 had a molecular weight of 147,000 and was hydrophilic. Results of PAGE analyses indicated that the purified enzyme had two bands, one of about 123 kDa and the other greater than 320 kDa, prior to disulfide reduction and only one band at about 54 kDa after reduction on SDS-PAGE. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    11.
    By combining gel permeation chromatography (GPC) and light-scattering spectroscopy, including photon correlation and angular distribution of absolute scattered intensity, we were able to characterize immunologically active Haemophilus influenzae type b polysaccharide (HIB Ps) bovine serum albumin (BSA) conjugates in terms of equivalent hydrodynamic radius rh ~ (6.2 ± 0.6) × 102 Å, apparent radius of gyration rg ~ (5.4 ± 0.3) × 102 Å, apparent molecular weight Mw ~ (3.5 ± 0.4) × 106 g/mol, and a second virial coefficient A2 ~ (1.9 ± 0.3) × 10?4 cm3 mol/g2. We could study the effects of each of the processes in the conjugate formation according to the following procedure: BSA (dialysis, modification, fractionation) + HIB Ps → HIB Ps/BSA conjugate (conjugate formation, fractionation). Narrow distributions of HIB Ps BSA conjugate formation can be achieved using fractionated BSA.  相似文献   

    12.
    At 7 days after first feeding (DAFF), the peptide hormone cholecystokinin (CCK) content (fmol individual?1) and the tryptic activity [μmol arginine‐methyl‐coumarinyl‐7‐amide (MCA) min?1 individual?1] per individual gut of Atlantic halibut Hippoglossus hippoglossus larvae were low: 0·2 ± 0·1 and 0·14 ± 0·10, respectively. Thereafter, both parameters increased with the increase in gut mass and reached 19·67 ± 5·58 and 2·71 ± 0·64 at 26 DAFF, respectively. Due to the small sample size, the dry mass (MG, mg) of the individual gut could not be determined accurately at 7 DAFF. At 13 DAFF MG represented 5·5% of whole body dry mass (Mw, mg) while at 26 DAFF it had increased to 23%. The mass specific tryptic activity [μmol MCA min?1 per mg dry mass (M)] in the gut increased from 2·74 ± 1 ± 98 at 13 DAFF to 5·00 ± 0·78 at 26 DAFF. There was more individual variation in the mass specific CCK content (fmol M?1) but no significant differences were found, although the data indicated an increase (from 23·38 ± 11·26 at 13 DAFF to 36·27 ± 8·96 fmol M?1 at 26 DAFF). At 7 DAFF the CCK content of the gut represented c. 2% of the whole body CCK content while it increased to c. 62% of the whole body CCK content at 26 DAFF. This demonstrates that it is necessary to separate neural and gastrointestinal sources of CCK in order to determine its alimentary role in fish larvae. Trypsin activity was only found in the gut compartment. In larvae aged 45 DAFF dietary proteins delivery into the gut by tube‐feeding appeared to stimulate post‐prandial secretion of CCK from the gut as well as stimulate pancreatic trypsin secretion, suggesting that both factors contribute to protein digestion.  相似文献   

    13.
    We have used inelastic laser light scattering to study the kinetics of the spontaneous assembly of heads and tails of bacteriophage T4D to form noninfectious tail fiberless particles. For interpretation of the kinetics, it was first necessary to determine the physical properties of the strongly scattering phage parts. For heads, these are D20,w = 3.60 × 10−8cm2/s, 820,w = 1025 S, M = 1.76 × 108. For tail fiberless particles, D20,w = 3.14 × 10−8cm2/s, 820,w = 968 S, and M = 1.95 × 108. The kinetics of the head-tail joining process was followed by measuring the time variation of the homodyne scattering autocorrelation function. This was interpreted as a sum of exponentials whose decay constants were known from the scattering angle and the diffusion coefficients, and whose amplitudes were related to the concentrations of reactants and products. Scattering experiments at 22 °C gave a bimolecular rate constant of 1.02 × 107m−1 s−1, while infectivity assays at 30 °C gave a rate constant of 1.28 × 107. Adjustment of both rate constants to 20 °C, assuming diffusion controlled reaction, gave 0.97 × 107 and 0.98 × 107m−1 s−1, respectively. This rate is about 1500 that predicted by Smoluchowski theory for a diffusion controlled reaction between two spherical particles; the discrepancy is largely explicable from orientational factors.  相似文献   

    14.
    Guy C. Fletcher 《Biopolymers》1976,15(11):2201-2217
    Solutions of native collagen extracted from rat tail tendons in neutral salt solution have been studied by dynamic light scattering. The spectra obtained are consistent with the presence in solution of both single rod-shaped collagen molecules and aggregates of molecules. No contribution to the spectrum has been detected at any scattering angle from rotational diffusion of single molecules, although a measurable broadening effect is expected at high angles. The translational diffusion coefficient D of single molecules, calculated from the broader spectral component, shows an anomalous dependence on collagen concentration with a maximum value of D20,w = 8.6 ± 0.2 × 10?12 m2/sec near the concentration 0.04% by weight. Above 0.05% D falls linearly with increasing concentration and takes the value D 20,w = 8.1 ± 0.2 × 10?12 m2/sec at 0.064% collagen.  相似文献   

    15.
    Abstract: The binding of radioactive piperidine-4-sulphonic acid ([3H]P4S) to thoroughly washed, frozen, and thawed membranes isolated from cow and rat brains has been studied. Quantitative computer analysis of the binding curves for four regions of bovine brain revealed the general presence of two binding sites. In these brain regions less satisfactory computer fits were obtained for receptor models showing one or three binding sites or negative cooperativity. With the use of Tris-citrate buffer at 0°C the two affinity classes for P4S in bovine cortex membranes revealed the following binding parameters: KD= 17 ± 7 nM (Bmax= 0.15 ± 0.07 pmol/mg protein) and KD= 237 ± 100 nM (Bmax= 0.80 ± 0.20 pmol/mg protein). Heterogeneity was also observed for association and dissociation rates of [3H]P4S. The slow binding component (kon= 5.6 × 107 or 8.8 × 107 M-1 min-1, kOff= 0.83 min-1, and KD= 14.7 or 9.4 nM, determined by two different methods in phosphate buffer containing potassium chloride) corresponds to the high-affinity component of the equilibrium binding curve (KD= 11 nM, Bmax= 0.12 pmol/mg protein in the same buffer system). The association and dissociation rates for the subpopulation of rapidly dissociating sites, apparently corresponding to the low-affinity sites, were too rapid to be measured accurately. The binding of [3H]P4S appears to involve the same two populations of sites with Bmax values similar to those for [3H]GABA binding to the same tissue, although the kinetic parameters for the two ligands are somewhat different. Furthermore, comparative studies on the inhibition of [3H]P4S and [3H]GABA binding by various GABA analogues, strongly suggest that P4S binds to the GABA receptors. The different effects of P4S and GABA on benzodiazepine binding are discussed.  相似文献   

    16.
    Abstract: We identified and characterized 125I-endothelin-1 (125I-ET-1) binding sites in tumor capillaries isolated from human glioblastomas, using the quantitative receptor autoradiographic technique with pellet sections. Quantification was done using the computerized radioluminographic imaging plate system. High-affinity ET receptors were localized in capillaries from glioblastomas and the surrounding brain tissues (KD = 4.7 ± 1.0 × 10?10 and 1.6 ± 0.3 × 10?10M, respectively; Bmax = 161 ± 38 and 140 ± 37 fmol/mg, respectively; mean ± SEM, n = 5). BQ-123, a selective antagonist for the ETA receptor, potently competed for 125I-ET-1 binding to sections of the microvessels with IC50 values of 5.1 ± 0.3 and 5.1 ± 1.5 nM, and 10?6M BQ-123 displaced 84 and 58% of ET binding to capillaries from tumors and brains, respectively. In addition, competition curves obtained in the presence of increasing concentrations of ET-3 showed two components (IC50 = 5.7 ± 2.5 × 10?10 and 1.4 ± 0.2 × 10?6M for tumor microvessels, 1.8 ± 0.6 × 10?10 and 1.1 ± 0.3 × 10?6M for brain microvessels, respectively). Our results indicate that (a) the method we used is simple and highly sensitive for detecting and characterizing various receptors in tumor capillaries, especially in the case of a sparse specimen, and (b) capillaries in glioblastomas express specific high-affinity ET binding sites, candidates for biologically active ET receptors, which predominantly belong to the ETA subtype.  相似文献   

    17.
    Laser light-scattering has been used to investigate the size of native proteoglycan aggregates (PGA-aA1) from day-8 chick limb-bud chondrocyte cultures isolated under associative extraction and purification conditions in 0.4M guanidinium chloride (GdnHCl) solution. Dynamic light-scattering measurements yielded a hydrodynamic radius, Rs, of 244 ± 10 nm for PGA-aA1 in 0.4M GdnHCl, and a weight-average molecular weight (M w) of 150 ± 50 × 106 was obtained from a Zimm plot. Disaggregation in 4.0M GdnHCl aqueous solution yielded proteoglycan subunits (PGS) with Rs = 39 ± 2 nm, M w = 1.6 ± 0.3 × 106, which reassembled in 0.4M GdnHCl to form “reconstituted native” aggregates (PGA-raA1) with Rs = 121 ± 6 nm, M w = 17 ± 3 × 106. A second specimen of PGA-aA1 had Rs = 192 ± 10 nm, M w = 100 ± 10 × 106. The latter value was estimated from an empirical relationship between M w and Rs. After dissociation, this specimen reassembled to form PGA-raA1 with Rs = 85 ± 5 nm, M w = 12 ± 1 × 106. These data are compared with those for a specimen of reconstituted aggregate (PGA-A1) that had been extracted under dissociative conditions and then reaggregated by dialysis to 0.4M GdnHCl aqueous solution, for which Rs = 138 ± 9 nm, M w = 45 ± 8 × 106. From these values, we have calculated the weight-average number of subunits per aggregate Nw: 111 for PGA-aA1 and 12 for raA1 (70 and 7 for the second PGA-aA1 and PGA-raA1 specimen, respectively) as compared to 32 for PGA-A1. The numbers of subunits per aggregate were also determined from electron micrographs of spread specimens. The latter results show the same trends as those obtained by light scattering, but lead in each case to lower numbers of subunits per aggregate. These data demonstrate conclusively that PGA samples exhibit a higher degree of aggregation in solution than visualized in typical electron microscopy (EM) preparations, probably due to disaggregation during EM specimen preparation. Since Nw determined both by light scattering (LS) and by EM are larger for native versus reconstituted aggregate samples, our data point to a more compact aggregation of subunits along the hyaluronic acid (HA) chains in the former.  相似文献   

    18.
    Given the increase in the incidence of insulin resistance, obesity, and type 2 diabetes in children and adolescents, it would be of paramount importance to assess quantitative indices of insulin secretion and action during a physiological perturbation, such as a meal or an oral glucose‐tolerance test (OGTT). A minimal model method is proposed to measure quantitative indices of insulin secretion and action in adolescents from an oral test. A 7 h, 21‐sample OGTT was performed in 11 adolescents. The C‐peptide minimal model was identified on C‐peptide and glucose data to quantify indices of β‐cell function: static φs and dynamic φd responsivity to glucose from which total responsivity φ was also measured. The glucose minimal model was identified on glucose and insulin data to estimate insulin sensitivity, SI, which was compared to a reference measure, SIref, provided by a tracer method. Disposition indices, which adjust insulin secretion for insulin action, were then calculated. Indices of β‐cell function were φs = 51.35 ± 8.89 × 10?9min?1, φd = 1,392 ± 258 × 10?9, and φ = 82.09 ± 17.70 × 10?9min?1. Insulin sensitivity was SI = 14.19 ± 2.73 × 10?4, not significantly different from SIref = 14.96 ± 3.04 × 10?4 dl/kg·min per µU/ml, and well correlated: r = 0.98, P < 0.0001, thus indicating that SI can be accurately measured from an oral test. Disposition indices were DIs = 1,040 ± 201 × 10?14 dl/kg/min2 per pmol/l, DId = 33,178 ± 10,720 × 10?14 dl/kg/min per pmol/l, DI = 1,844 ± 522 × 10?14 dl/kg/min2 per pmol/l. Virtually the same minimal model assessment was obtained with a reduced 3 h, 9‐sample protocol. OGTT interpreted with C‐peptide and glucose minimal model has the potential to provide novel insight regarding the regulation of glucose metabolism in adolescents, and to evaluate the effect of obesity and interventions such as diet and exercise.  相似文献   

    19.
    T. Raj  W. H. Flygare 《Biopolymers》1977,16(3):545-549
    The translational diffusion coefficient of a pure sample of α-chymotrypsinogen A is measured by laser light scattering to give a value of D20,w0 = (8.40 ± 0.15) × 10?7 cm2/sec.  相似文献   

    20.
    Molecular characteristics for pullulan, a polysaccharide produced by a fungus Aureobasidium pullulans, were measured by light scattering, viscometry, and gel-permeation chromatography. From the experimental data the Mark-Houwink-Sakurada viscosity equation in water at 25°C was determined for samples having the molecular weight M ranging from 48 × 103 to 2.18 × 106 g mol?1 as [η] = (1.91 ± 0.02) × 10?2Mw0.67±0.01 (in cm3 g?1); and as molecular weight decreased, the slope of the viscosity equation decreased, although the molecular weight values below 30 × 103 g mol?1 evaluated by gel-permeation chromatography were somewhat unreliable. The unperturbed dimensions 〈R201/2 of pullulan were estimated by determining the expansion factor αs, from the theoretical combination of theories for the interpenetration function Ψ and those for αs. The 〈R20/M value estimated from this procedure in 6.7 × 10?17 cm2 mol g?1. We concluded that the polysaccharide chain that is linked by the α-1,6-glucosidic linkage behaves like a flexible chain in aqueous solution.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号