首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
2.
From the site of transmission at mucosal surfaces, HIV is thought to be transported by DCs to lymphoid tissues. To initiate migration, HIV needs to activate DCs. This activation, reflected by intra- and extracellular changes in cell phenotype, is investigated in the present study. In two-thirds of the donors, R5- and X4-tropic HIV-1 strains induced partial up-regulation of DC activation markers such as CD83 and CD86. In addition, CCR7 expression was increased. HIV-1 initiated a transient phosphorylation of p44/p42 ERK1/2 in iDCs, whereas p38 MAPK was activated in both iDCs and mDCs. Up-regulation of CD83 and CD86 on DCs was blocked when cells were incubated with specific p38 MAPK inhibitors before HIV-1-addition. CCR7 expression induced by HIV-1 was sufficient to initiate migration of DCs in the presence of secondary lymphoid tissue chemokine (CCL21) and MIP-3beta (CCL19). Preincubation of DCs with a p38 MAPK inhibitor blocked CCR7-dependent DC migration. Migrating DCs were able to induce infection of autologous unstimulated PBLs in the Transwell system. These data indicate that HIV-1 triggers a cell-specific signaling machinery, thereby manipulating DCs to migrate along a chemokine gradient, which results in productive infection of nonstimulated CD4(+) cells.  相似文献   

3.
Dendritic cells (DCs) initiate immune responses by transporting antigens and migrating to lymphoid tissues to initiate T-cell responses. DCs are located in the mucosal surfaces that are involved in human immunodeficiency virus (HIV) transmission and they are probably among the earliest targets of HIV-1 infection. DCs have an important role in viral transmission and dissemination, and HIV-1 has evolved different strategies to evade DC antiviral activity. High mobility group box 1 (HMGB1) is a DNA-binding nuclear protein that can act as an alarmin, a danger signal to alert the innate immune system for the initiation of host defense. It is the prototypic damage-associated molecular pattern molecule, and it can be secreted by innate cells, including DCs and natural killer (NK) cells. The fate of DCs is dependent on a cognate interaction with NK cells, which involves HMGB1 expressed at NK–DC synapse. HMGB1 is essential for DC maturation, migration to lymphoid tissues and functional type-1 polarization of naïve T cells. This review highlights the latest advances in our understanding of the impact of HIV on the interactions between HMGB1 and DCs, focusing on the mechanisms of HMGB1-dependent viral dissemination and persistence in DCs, and discussing the consequences on antiviral innate immunity, immune activation and HIV pathogenesis.  相似文献   

4.
WU Li 《微生物与感染》2011,6(3):129-132
Human immunodeficiency virus type 1(HIV-1) persistence is a major barrier to the successful treatment and eradication of acquired immunodeficiency syndrome(AIDS).In addition to resting CD4+ T cells,a significant long-lived compartment of HIV-1 infection in vivo includes blood monocytes and tissue macrophages.Studying HIV-1 persistence in monocyte-lineage cells is critical because these cells are important HIV-1 target cells in vivo.Monocyte-lineage cells,including monocytes,dendritic cells(DCs) and macrophages,play a significant role in HIV-1 infection and transmission.These cells have been implicated as viral reservoirs that facilitate HIV-1 latency and persistence.A better understanding of HIV-1 interactions with monocyte-lineage cells can potentially aid in the development of new approaches for intervention.This minireview highlights the latest advances in understanding the role of monocyte-lineage cells in HIV-1 persistence and emphasizes new insights into the mechanisms underlying viral persistence.  相似文献   

5.
Mature dendritic cells (mDCs) undergo "exhaustion" in producing cytokines. Nevertheless, whether this "exhaustion" of mDCs is selective to certain cytokines, or whether mDCs have specific cytokine-producing profiles has yet to be defined. Herein, we investigated the cytokine production in vitro by immature DCs (iDCs) and LPS-induced mDCs. Compared to iDCs, mDCs produced comparable levels of IL-6 and TNF-alpha. Strikingly, mDCs produced significantly higher IFN-gamma and IL-10. IL-12 production of mDCs was suppressed. Kinetic studies of the responses of iDCs and mDCs to LPS or CD40L showed that mDCs acquired progressively heightened activity in producing IFN-gamma and IL-10. TNF-alpha-, IL-6-producing capability of mDCs was maintained. Nevertheless, IL-12 production by mDCs was not recovered at any time point. Mature DCs were potent in priming both Th1 and Th2 cells. In conclusion, upon maturation, DCs are reprogrammed with a distinct cytokine-secreting profile, which may play an important role in regulating T cell functions.  相似文献   

6.
Dendritic cells (DCs) are professional antigen-presenting cells that play an important role in anti-tumour immunity. Endothelial-like differentiation of DCs is an interesting phenomenon. The specific role of vascular endothelial growth factor-A (VEGF-A) on the differentiation of immature DCs (iDCs) and mature DCs (mDCs) is worth further research. Here, we show that VEGF-A can induce iDCs to differentiate into endothelial-like cells (ELCs). But it has no obvious influence on mDCs. In the process of endothelial-like differentiation of iDCs, a sustained activation of extracellular signal-regulated kinase (ERK1/2) and cAMP response element binding protein (CREB) was detected. VEGF-A induced the activation of ERK1/2, and led to the nuclear translocation of phosphorylation ERK1/2. Incubation of iDCs with the ERK1/2 upstream kinase MEK1/2 inhibitor PD98059, blocked the phosphorylation of ERK1/2 and CREB as well as the endothelial-like differentiation of iDCs. These data suggest that VEGF-A induces endothelial-like differentiation of iDCs not mDCs through ERK1/2 signalling pathway.  相似文献   

7.
8.
Dendritic cells (DCs) capture human immunodeficiency virus (HIV) through a non-fusogenic mechanism that enables viral transmission to CD4(+) T cells, contributing to in vivo viral dissemination. Although previous studies have provided important clues to cell-free viral capture by mature DCs (mDCs), dynamic and kinetic insight on this process is still missing. Here, we used three-dimensional video microscopy and single-particle tracking approaches to dynamically dissect both cell-free and cell-associated viral capture by living mDCs. We show that cell-free virus capture by mDCs operates through three sequential phases: virus binding through specific determinants expressed in the viral particle, polarized or directional movements toward concrete regions of the cell membrane and virus accumulation in a sac-like structure where trapped viral particles display a hindered diffusive behavior. Moreover, real-time imaging of cell-associated viral transfer to mDCs showed a similar dynamics to that exhibited by cell-free virus endocytosis leading to viral accumulation in compartments. However, cell-associated HIV type 1 transfer to mDCs was the most effective pathway, boosted throughout enhanced cellular contacts with infected CD4(+) T cells. Our results suggest that in lymphoid tissues, mDC viral uptake could occur either by encountering cell-free or cell-associated virus produced by infected cells generating the perfect scenario to promote HIV pathogenesis and impact disease progression.  相似文献   

9.
Early stages of Human Immunodeficiency Virus-1 (HIV-1) infection are associated with local recruitment and activation of important effectors of innate immunity, i.e. natural killer (NK) cells and dendritic cells (DCs). Immature DCs (iDCs) capture HIV-1 through specific receptors and can disseminate the infection to lymphoid tissues following their migration, which is associated to a maturation process. This process is dependent on NK cells, whose role is to keep in check the quality and the quantity of DCs undergoing maturation. If DC maturation is inappropriate, NK cells will kill them (“editing process”) at sites of tissue inflammation, thus optimizing the adaptive immunity. In the context of a viral infection, NK-dependent killing of infected-DCs is a crucial event required for early elimination of infected target cells. Here, we report that NK-mediated editing of iDCs is impaired if DCs are infected with HIV-1. We first addressed the question of the mechanisms involved in iDC editing, and we show that cognate NK-iDC interaction triggers apoptosis via the TNF-related apoptosis-inducing ligand (TRAIL)-Death Receptor 4 (DR4) pathway and not via the perforin pathway. Nevertheless, once infected with HIV-1, DCHIV become resistant to NK-induced TRAIL-mediated apoptosis. This resistance occurs despite normal amounts of TRAIL released by NK cells and comparable DR4 expression on DCHIV. The escape of DCHIV from NK killing is due to the upregulation of two anti-apoptotic molecules, the cellular-Flice like inhibitory protein (c-FLIP) and the cellular inhibitor of apoptosis 2 (c-IAP2), induced by NK-DCHIV cognate interaction. High-mobility group box 1 (HMGB1), an alarmin and a key mediator of NK-DC cross-talk, was found to play a pivotal role in NK-dependent upregulation of c-FLIP and c-IAP2 in DCHIV. Finally, we demonstrate that restoration of DCHIV susceptibility to NK-induced TRAIL killing can be obtained either by silencing c-FLIP and c-IAP2 by specific siRNA, or by inhibiting HMGB1 with blocking antibodies or glycyrrhizin, arguing for a key role of HMGB1 in TRAIL resistance and DCHIV survival. These findings provide evidence for a new strategy developed by HIV to escape immune attack, they challenge the question of the involvement of HMGB1 in the establishment of viral reservoirs in DCs, and they identify potential therapeutic targets to eliminate infected DCs.  相似文献   

10.

Background

HIV-1 Protease Inhibitors, namely PIs, originally designed to inhibit HIV-1 aspartic protease, can modulate the immune response by mechanisms largely unknown, and independent from their activity on viral replication. Here, we analyzed the ability of PIs to interfere with differentiation program of monocytes toward dendritic cell (DCs) lineage, a key process in the inflammatory response.

Methodology/Principal Findings

Monocytes from healthy donors were isolated and induced to differentiate in vitro in the presence or absence of saquinavir, ritonavir, nelfinavir, indinavir or amprenavir (sqv, rtv, nlfv, idv, apv, respectively). These drugs demonstrated a differential ability to sustain the generation of immature DCs (iDCs) with an altered phenotype, including low levels of CD1a, CD86, CD36 and CD209. DCs generated in the presence of rtv also failed to acquire the typical phenotype of mature DCs (mDCs), and secreted lower amounts of IL-12 and IL-15. Accordingly, these aberrant mDCs failed to support activation of autologous Natural Killer (NK) cells, and resulted highly susceptible to NK cell-mediated cytotoxicity.

Conclusions/Significance

Our findings uncover novel functional properties of PIs within the DC-NK cell cross-talk, unveiling the heterogeneous ability of members of this class drugs to drive the generation of atypical monocyte-derived DCs (MDDCs) showing an aberrant phenotype, a failure to respond appropriately to bacterial endotoxin, a weak ability to prime autologous NK cells, and a high susceptibility to NK cell killing. These unexpected properties might contribute to limit inflammation and viral spreading in HIV-1 infected patients under PIs treatment, and open novel therapeutical perspectives for this class drugs as immunomodulators in autoimmunity and cancer.  相似文献   

11.
Human immunodeficiency virus type 1 (HIV-1) infection of dendritic cells (DCs) has been documented in vivo and may be an important contributor to HIV-1 transmission and pathogenesis. HIV-1-specific CD4+ T cells respond to HIV antigens presented by HIV-1-infected DCs and in this process become infected, thereby providing a mechanism through which HIV-1-specific CD4+ T cells could become preferentially infected in vivo. HIV-2 disease is attenuated with respect to HIV-1 disease, and host immune responses are thought to be contributory. Here we investigated the susceptibility of primary myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) to infection by HIV-2. We found that neither CCR5-tropic primary HIV-2 isolates nor a lab-adapted CXCR4-tropic HIV-2 strain could efficiently infect mDCs or pDCs, though these viruses could infect primary CD4+ T cells in vitro. HIV-2-exposed mDCs were also incapable of transferring virus to autologous CD4+ T cells. Despite this, we found that HIV-2-specific CD4+ T cells contained more viral DNA than memory CD4+ T cells of other specificities in vivo. These data suggest that either infection of DCs is not an important contributor to infection of HIV-2-specific CD4+ T cells in vivo or that infection of DCs by HIV-2 occurs at a level that is undetectable in vitro. The frequent carriage of HIV-2 DNA within HIV-2-specific CD4+ T cells, however, does not appear to be incompatible with preserved numbers and functionality of HIV-2-specific CD4+ T cells in vivo, suggesting that additional mechanisms contribute to maintenance of HIV-2-specific CD4+ T-cell help in vivo.  相似文献   

12.

Background

Dendritic cells (DCs) are considered as key mediators of the early events in human immunodeficiency virus type 1 (HIV-1) infection at mucosal sites. Previous studies have shown that surface-bound virions and/or internalized viruses found in endocytic vacuoles of DCs are efficiently transferred to CD4+ T cells. Extracellular adenosine triphosphate (ATP) either secreted or released from necrotic cells induces a distorted maturation of DCs, transiently increases their endocytic capacity and affects their migratory capacity. Knowing that high extracellular ATP concentrations are present in situations of tissue injury and inflammation, we investigated the effect of ATP on HIV-1 transmission from DCs to CD4+ T lymphocytes.

Results

In this study, we show that extracellular ATP reduces HIV-1 transfer from immature monocyte-derived DCs (iDCs) to autologous CD4+ T cells. This observed decrease in viral replication was related to a lower proportion of infected CD4+ T cells following transfer, and was seen with both X4- and R5-tropic isolates of HIV-1. Extracellular ATP had no effect on direct CD4+ T cell infection as well as on productive HIV-1 infection of iDCs. These observations indicate that extracellular ATP affects HIV-1 infection of CD4+ T cells in trans with no effect on de novo virus production by iDCs. Additional experiments suggest that extracellular ATP might modulate the trafficking pathway of internalized virions within iDCs leading to an increased lysosomal degradation, which could be partly responsible for the decreased HIV-1 transmission.

Conclusion

These results suggest that extracellular ATP can act as a factor controlling HIV-1 propagation.
  相似文献   

13.
The trafficking of immature and mature dendritic cells (DCs) to different anatomical sites in vivo is critical for fulfilling their roles in the induction of Ag-specific immune responses. Although this process is complex and regulated by many mediators, the capacity of DCs to migrate is predominantly dependent on the expression of particular chemotactic receptors on the surface of DCs that enable them to move along chemotactic gradients formed by the corresponding chemokines and/or classical chemoattractants. Here we show that immature DCs (iDCs) respond to both fMLP and C5a as determined by chemotaxis and Ca2+ mobilization, whereas mature DCs (mDCs) respond to C5a, but not fMLP. Additionally, iDCs express the receptors for both fMLP and C5a at mRNA and protein levels. Upon maturation of DCs, fMLP receptor expression is almost completely absent, whereas C5a receptor mRNA and protein expression is maintained. Concomitantly, mDCs migrate chemotactically and mobilize intracellular Ca2+ in response to C5a, but not fMLP. Thus the interaction between C5a and its receptor is likely involved in the regulation of trafficking of both iDCs and mDCs, whereas fMLP mobilizes only iDCs. The differential responsiveness to fMLP and C5a of iDCs and mDCs suggests that they play different roles in the initiation of immune responses.  相似文献   

14.
HIV-1 virions are efficiently captured by monocyte-derived immature dendritic cells (iDCs), as well as by cell lines expressing the lectin DC-SIGN. Viral infectivity can be retained for several days, and even enhanced, before transmission to CD4+ lymphocytes. The role of DC-SIGN in viral retention and enhancement of infection is not fully understood and varies according to the cell line expressing the lectin. We studied here the mechanisms underlying this process. We focused our study on X4-tropic human immunodeficiency virus (HIV) strains, since they were widely believed not to replicate in iDCs. However, we first show that X4 HIV replicates covertly and slowly in iDCs. This is also the case in Raji-DC-SIGN cells, which are classically used to study HIV transmission. We used either single-cycle or replicative HIV and measured viral RT and replication to further demonstrate that transfer of incoming virions from iDCs or DC-SIGN+ cells occurs only on the short-term (i.e., a few hours after viral exposure). There is no long-term storage of original HIV particles in these cells. A few days after viral exposure, replicative viruses, and not single-cycle virions, are transmitted to CD4+ cells. The cell-type-dependent activity of DC-SIGN reflects the ability of HIV to replicate covertly in some cells, and not in others.  相似文献   

15.
Dendritic cells (DCs) are considered as key mediators of the early events in HIV-1 infection at mucosal sites. Although several aspects of the complex interactions between DCs and HIV-1 have been elucidated, there are still basic questions that remain to be answered about DCs/HIV-1 interplay. In this study, we examined the contribution of nonreceptor TKs in the known ability of DCs to efficiently transfer HIV-1 to CD4(+) T cells in trans. Experiments performed with specific inhibitors of Src and Syk family members indicate that these tyrosine kinases (TKs) are participating to HIV-1 transfer from immature monocyte-derived DCs (IM-MDDCs) to autologous CD4(+) T cells. Experiments with IM-MDDCs transfected with small interfering RNAs targeting Lyn and Syk confirmed the importance of these nonreceptor TKs in HIV-1 transmission. The Src- and Syk-mediated effect on virus transfer was linked with infection of IM-MDDCs in cis-as monitored by quantifying integrated viral DNA and de novo virus production. The process of HIV-1 transmission from IM-MDDCs to CD4(+) T cells was unaffected following treatment with protein kinase C and protein kinase A inhibitors. These data suggest that Src and Syk TKs play a functional role in productive HIV-1 infection of IM-MDDCs. Additional work is needed to facilitate our comprehension of the various mechanisms underlying the exact contribution of Src and Syk TKs to this phenomenon.  相似文献   

16.
St Gelais C  Coleman CM  Wang JH  Wu L 《PloS one》2012,7(3):e34521
HIV-1 Nef enhances dendritic cell (DC)-mediated viral transmission to CD4(+) T cells, but the underlying mechanism is not fully understood. It is also unknown whether HIV-1 infected DCs play a role in activating CD4(+) T cells and enhancing DC-mediated viral transmission. Here we investigated the role of HIV-1 Nef in DC-mediated viral transmission and HIV-1 infection of primary CD4(+) T cells using wild-type HIV-1 and Nef-mutated viruses. We show that HIV-1 Nef facilitated DC-mediated viral transmission to activated CD4(+) T cells. HIV-1 expressing wild-type Nef enhanced the activation and proliferation of primary resting CD4(+) T cells. However, when co-cultured with HIV-1-infected autologous DCs, there was no significant trend for infection- or Nef-dependent proliferation of resting CD4(+) T cells. Our results suggest an important role of Nef in DC-mediated transmission of HIV-1 to activated CD4(+) T cells and in the activation and proliferation of resting CD4(+) T cells, which likely contribute to viral pathogenesis.  相似文献   

17.
The natural function of dendritic cells (DCs) is to capture and degrade pathogens for Ag presentation. However, HIV-1 can evade viral degradation by DCs and hijack DCs for migration to susceptible CD4(+) T lymphocytes. It is unknown what factors decide whether a virus is degraded or transmitted to T cells. The interaction of DCs with HIV-1 involves C-type lectin receptors, such as DC-specific ICAM-3-grabbing nonintegrin, which bind to the envelope glycoprotein complex (Env), which is decorated heavily with N-linked glycans. We hypothesized that the saccharide composition of the Env N-glycans is involved in avoiding viral degradation and Ag presentation, as well as preserving infectious virus for the transmission to target cells. Therefore, we studied the fate of normally glycosylated virus versus oligomannose-enriched virus in DCs. Changing the heterogeneous N-linked glycan composition of Env to uniform oligomannose N-glycans increased the affinity of HIV-1 for DC-specific ICAM-3-grabbing nonintegrin and enhanced the capture of HIV-1 by immature DCs; however, it decreased the subsequent transmission to target cells. Oligomannose-enriched HIV-1 was directed more efficiently into the endocytic pathway, resulting in enhanced viral degradation and reduced virus transfer to target cells. Furthermore, Env containing exclusively oligomannose N-glycans was presented to Env-specific CD4(+) T cells more efficiently. Taken together, our results showed that the HIV-1 N-glycan composition plays a crucial role in the balance between DC-mediated Ag degradation and presentation and DC-mediated virus transmission to target cells. This finding may have implications for the early events in HIV-1 transmission and the induction of antiviral immune responses.  相似文献   

18.
19.
Reduced frequencies of myeloid and plasmacytoid dendritic cell (DC) subsets (mDCs and pDCs, respectively) have been observed in the peripheral blood of HIV-1-infected individuals throughout the course of disease. Accumulation of DCs in lymph nodes (LNs) may partly account for the decreased numbers observed in blood, but increased DC death may also be a contributing factor. We used multiparameter flow cytometry to evaluate pro- and antiapoptotic markers in blood mDCs and pDCs from untreated HIV-1-infected donors, from a subset of infected donors before and after receiving antiretroviral therapy (ART), and from uninfected control donors. Blood mDCs, but not pDCs, from untreated HIV-1-infected donors expressed lower levels of antiapoptotic Bcl-2 than DCs from uninfected donors. A subset of HIV-1-infected donors had elevated frequencies of proapoptotic caspase-3(+) blood mDCs, and positive correlations were observed between caspase-3(+) mDC frequencies and plasma viral load and CD8(+) T-cell activation levels. Caspase-3(+) mDC frequencies, but not mDC Bcl-2 expression, were reduced with viral suppression on ART. Apoptosis markers on DCs in blood and LN samples from a cohort of untreated, HIV-1-infected donors with chronic disease were also evaluated. LN mDCs displayed higher levels of Bcl-2 and lower caspase-3(+) frequencies than did matched blood mDCs. Conversely, LN pDCs expressed lower Bcl-2 levels than their blood counterparts. In summary, blood mDCs from untreated HIV-1-infected subjects displayed a proapoptotic profile that was partially reversed with viral suppression, suggesting that DC death may be a factor contributing to blood DC depletion in the setting of chronic, untreated HIV disease.  相似文献   

20.
Dendritic cells (DCs) are specialized antigen-presenting cells. However, DCs exposed to human immunodeficiency virus type 1 (HIV-1) are also able to transmit a vigorous cytopathic infection to CD4(+) T cells, a process that has been frequently related to the ability of DC-SIGN to bind HIV-1 envelope glycoproteins. The maturation of DCs can increase the efficiency of HIV-1 transmission through trans infection. We aimed to comparatively study the effect of maturation in monocyte-derived DCs (MDDCs) and blood-derived myeloid DCs during the HIV-1 capture process. In vitro capture and transmission of envelope-pseudotyped HIV-1 and its homologous replication-competent virus to susceptible target cells were assessed by p24(gag) detection, luciferase activity, and both confocal and electron microscopy. Maturation of MDDCs or myeloid DCs enhanced the active capture of HIV-1 in a DC-SIGN- and viral envelope glycoprotein-independent manner, increasing the life span of trapped virus. Moreover, higher viral transmission of mature DCs to CD4(+) T cells was highly dependent on active viral capture, a process mediated through cholesterol-enriched domains. Mature DCs concentrated captured virus in a single large vesicle staining for CD81 and CD63 tetraspanins, while immature DCs lacked these structures, suggesting different intracellular trafficking processes. These observations help to explain the greater ability of mature DCs to transfer HIV-1 to T lymphocytes, a process that can potentially contribute to the viral dissemination at lymph nodes in vivo, where viral replication takes place and there is a continuous interaction between susceptible T cells and mature DCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号