首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 149 毫秒
1.
Tu YL  Liu YB  Zhang L  Zhao YJ  Wang L  Hu ZA 《生理学报》2003,55(2):206-212
为研究大鼠不同发育阶段视皮层神经元电的生理学与形态学特性,实验观察了神经元电生理和形态学特性的变化与年龄的同步化程度,探讨视皮层视觉依赖性突触的形成和重新分布的细胞内机制。应用脑片膜片钳全细胞记录技术和细胞内生物家标记相结合的方法,记录4—28d SD大鼠视皮层神经元的突触后电流(postsynaptic currents,PSCs)。共记录156个大鼠视皮层神经元,睁眼前与睁眼后组中无反应型细胞数量,多突触反应型细胞数量、细胞的输入阻抗有显著性差异。成功标记23例神经元,不同年龄的神经元的形态学成熟度不同。低输入阻抗神经元在形态学上属成熟型,高输入阻抗神经元属幼稚型。该结果表明,大鼠在发育过程中,视皮层神经元功能的成熟表现为在形觉刺激以及局部神经元网络的整合作用下的视觉依赖性突触的形成和重新分布。在视觉发育可塑性关键期内,视皮层神经元形态和电生理特性的变化与年龄的同步化程度大于皮层下结构。  相似文献   

2.
吗啡对大鼠海马神经元突触传递的作用及机制探讨   总被引:1,自引:0,他引:1  
目的 :从离子通道角度研究吗啡对中枢神经系统兴奋性及抑制性突触传递的作用并探讨其机制。方法 : 原代培养新生Wistar大鼠的海马神经元。采用膜片钳技术研究吗啡对其兴奋性及抑制性突触后电流及谷氨酸诱发电流的影响。结果 :①吗啡可明显增强海马神经元兴奋性突触传递 ,加吗啡后自发兴奋性突触后电流 (sEPSC)的发放频率增加了 ( 2 0 7.8± 2 0 .9) %。此作用可被阿片受体阻断剂纳洛酮阻断 (P <0 .0 1) ;②吗啡对微小兴奋性突触后电流 (mEPSC)的发放频率及谷氨酸诱发电流的幅度没有明显影响 (P >0 .0 5 ) ;③吗啡可明显抑制神经元自发抑制性突触后电流 (sIPSC) ,纳洛酮可拮抗吗啡作用 (n =13 ,P <0 .0 1)。结论 :实验结果提示吗啡对海马神经元的兴奋作用不是由于吗啡直接作用于兴奋性氨基酸—谷氨酸突触传递过程 ,而是可能由于抑制了抑制性中间神经元 ,间接产生的兴奋作用。  相似文献   

3.
刘青松  何湘平 《生理学报》1996,48(4):313-319
在分散培养的新生大鼠皮层神经元标本上,用全细胞电压箝技术分析了自发兴奋性及抑制性突触后电流的性质并观察了乙酰胆碱对它们的影响。  相似文献   

4.
Zhang H  Meng JJ  Wang K  Liu RL  Xi MM  Hua TM 《动物学研究》2012,33(2):218-224
心理物理学研究提示,初级视区毁损后的视觉残留可能是通过外纹状皮层的神经网络重组介导的,但缺少支持这一假说的电生理实验证据。采用在体细胞外单细胞记录技术,该研究分别检测了初级视区(主要包括17和18区)急性毁损猫和正常对照猫的高级视区(包括19、20和21区)神经元对不同视觉刺激的反应性。结果显示,与对照相比,急性毁损初级视区使99.3%的高级视区神经元丧失对运动光栅刺激的诱发反应,93%的神经元丧失对闪光刺激的反应。该结果表明,急性毁损成年猫的初级视皮层可能会导致其绝大部分视觉能力丧失。在幼年期实施初级视皮层毁损后,成年猫出现的残留视觉可能主要是由于手术后皮层下神经核团与外纹状皮层之间的通路重组引起的。  相似文献   

5.
兴奋性和抑制性活动平衡神经网络中的混沌现象动物皮层脑片受到恒定电流刺激时,神经元放电较为规则,而行为动物大脑神经元呈现不规则的放电模式,这是否意味着完整大脑神经元的不规则放电是由其突触输入存在着强烈的时间波动所致?但对于单个皮层神经元而言,即使单个突...  相似文献   

6.
大脑皮层中兴奋和抑制系统之间的动态平衡决定了皮层神经元对刺激的反应特性.已有研究表明,二甲双胍能够诱导γ-氨基丁酸受体向突触后膜聚集,增强神经系统的抑制效果.本课题进一步探讨了二甲双胍对初级视觉皮层兴奋和抑制系统平衡的调节作用,以及其改善小鼠视觉功能的潜力.实验使用成年雄性小鼠,实验组(metformin) 10只每天给予二甲双胍250 mg/kg,对照组(control) 6只每天给予0.3 ml生理盐水,灌胃处理3周.结果发现二甲双胍可以显著升高囊泡GABA转运蛋白VGAT和突触后抑制性递质受体相关蛋白Gephyrin的合成.此外,它显著降低突触后兴奋性受体Glu A1和Glu N1的表达.多通道电极电生理记录结果显示,二甲双胍作用下小鼠初级视觉皮层的自发放和诱发放显著降低,而信噪比、方向和方位选择性显著增加.实验结果表明,二甲双胍可以通过降低兴奋突触、增强抑制突触,调节初级视皮层的兴奋——抑制平衡,提高信息处理能力,增强视觉功能.  相似文献   

7.
应用常规电生理学细胞外记录技术,研究了生后3周龄幼年大鼠皮层听-视双模态神经元及听-视信息整合特性,并与成年动物进行对照。在听皮层的背侧,听皮层和视皮层的交界处,即颞-顶-枕联合皮层区,共记录到了324个神经元,其中45个为听-视双模态神经元,占13.9%,远低于成年动物双模态神经元所占比例(42.8%)。这些双模态神经元可分为A-V型,v-A型和a-V型3种类型。根据它们对听-视信息的整合效应,可分为增强型、抑制型和调制型。整合效应与给予的声和光组合刺激的时间间隔有关,以获得整合效应的时间间隔范围为整合时间窗,幼年动物的平均整合时间窗为11.9 ms,远小于成年动物的整合时间窗(平均为23.2 ms)。结果提示,与单模态感觉神经元对模态特异性反应特性一样,皮层听-视双模态神经元生后有一个发育、成熟的过程。研究结果为深入研究中枢神经元多感觉整合机制提供了重要实验资料。  相似文献   

8.
丹扬 《生命科学》2008,20(5):692-694
活动依赖的神经可塑性在视觉皮层信息处理过程中起着很重要的作用。该文将讲述几个关于视觉刺激引起皮层反应发生快速变化的研究工作。在体膜片钳的实验结果表明,将视觉刺激与能够诱发孽个视皮层神经元发放动作电位的电刺激相偶联可以改变神经元的感受野特性。单电极和多电极胞外记录的实验结果显示,反复地给予自然图形电影刺激,不仅能增加视皮层神经元反应的可靠性,而且能造成之后的自发活动中存在“记忆的痕迹”。最后,用电压敏感染料成像的方法对群体细胞活动进行考察,结果提示视觉活动之后的皮层回放可能是由皮层波介导的。  相似文献   

9.
人离体新皮层神经元的神经生物学特性   总被引:1,自引:0,他引:1  
活检得到的人离体新皮层神经元的神经生物学研究表明,人新皮层神经元包括快锋电位和规则锋电位两种细胞类型,并存在局部抑制性突触环路和局部兴奋性突触环路,以兴奋性和抑制性氨基酸为重要的神经递质。另外,神经元的神经生物学特性还与胞外钙镁离子浓度有关。  相似文献   

10.
神经营养因子-酪氨酸受体激酶B (tyrosine receptor kinase B,TrkB)信号通路在调控初级视皮层(primary visual cortex,V1)兴奋与抑制平衡上发挥着重要的作用,以往的研究揭示了其通过增加兴奋性传递效率来调控皮层兴奋性水平的机制,却并未阐明TrkB受体如何通过抑制系统来调控兴奋与抑制平衡,进而影响视觉皮层功能。为了探讨TrkB信号通路如何特异性地调控最主要的抑制性神经元——PV神经元进而对小鼠视觉皮层功能产生影响,本研究通过病毒特异性地降低V1区的PV神经元上TrkB受体的表达水平,并通过在体多通道电生理手段记录初级视皮层抑制性与兴奋性神经元功能变化,通过行为学实验测试小鼠的方位辨别能力改变。结果表明,初级视觉皮层中的PV抑制性神经元上的TrkB受体表达减少会显著增加兴奋性神经元的反应强度,减弱抑制性神经元与兴奋性神经元的方位辨别能力,增加二者的信噪比,但是小鼠个体水平的方位辨别能力出现下降。这些结果说明,TrkB信号通路并非单纯通过增加靶向PV神经元的兴奋性传递来调控PV神经元的功能,其对神经元信噪比的影响也并非由于抑制系统的增强所致。  相似文献   

11.
最近的一些研究结果显示,视皮层内抑制性递质系统作用减弱可能是导致老年性视觉功能衰退的重要因素.是否皮层内兴奋性递质系统亦伴随衰老而发牛改变并影响皮层内神经兴奋与抑制的平衡尚不清楚.为此,利用Nissl染色和免疫组织化学染色方法以及Image-Pro Express图像分析软件对青、老年猫初级视皮层(17区)内各层神经元密度、兴奋性递质谷氨酸免疫反应阳性(Glu-immunoreactive,Glu-IR)神经元密度以及抑制性递质γ-氨基丁酸免疫反应阳性(γ-aminobutyric acid.immunoreactive,GABA-IR)神经元密度进行了统汁分析.结果显示,青、老年猫初级视皮层各层神经元密度均没有明显的年龄性差异(P>0.05);与青年猫相比,老年猫初级视皮层Glu-IR、GABA-IR神经元密度均显著减少(P<0.01),而Glu.IR/GABA.IR神经元密度比率去却显著增大(P<0.01).结果提示,老年猫初级视皮层内兴奋性递质系统作用相对增强,而抑制性递质系统的作用相对减弱,导致皮层内兴奋-抑制平衡关系失调,这可能是引起老年个体视觉功能衰退的重要原因之一.  相似文献   

12.
During development, cortical plasticity is associated with the rearrangement of excitatory connections. While these connections become more stable with age, plasticity can still be induced in the adult cortex. Here we provide evidence that structural plasticity of?inhibitory synapses onto pyramidal neurons is?a major component of plasticity in the adult neocortex. In?vivo two-photon imaging was used to monitor the formation and elimination of fluorescently labeled inhibitory structures on pyramidal neurons. We find that ocular dominance plasticity in the adult visual cortex is associated with rapid inhibitory synapse loss, especially of those present on dendritic spines. This occurs not only with monocular deprivation but also with subsequent restoration of binocular vision. We propose that in the adult visual cortex the experience-induced loss of inhibition may effectively strengthen specific visual inputs with limited need for rearranging the excitatory circuitry.  相似文献   

13.
Monocular deprivation (MD) during development leads to a dramatic loss of responsiveness through the deprived eye in primary visual cortical neurons, and to degraded spatial vision (amblyopia) in all species tested so far, including rodents. Such loss of responsiveness is accompanied since the beginning by a decreased excitatory drive from the thalamo-cortical inputs. However, in the thalamorecipient layer 4, inhibitory interneurons are initially unaffected by MD and their synapses onto pyramidal cells potentiate. It remains controversial whether ocular dominance plasticity similarly or differentially affects the excitatory and inhibitory synaptic conductances driven by visual stimulation of the deprived eye and impinging onto visual cortical pyramids, after a saturating period of MD. To address this issue, we isolated visually-driven excitatory and inhibitory conductances by in vivo whole-cell recordings from layer 4 regular-spiking neurons in the primary visual cortex (V1) of juvenile rats. We found that a saturating period of MD comparably reduced visually–driven excitatory and inhibitory conductances driven by visual stimulation of the deprived eye. Also, the excitatory and inhibitory conductances underlying the synaptic responses driven by the ipsilateral, left open eye were similarly potentiated compared to controls. Multiunit recordings in layer 4 followed by spike sorting indicated that the suprathreshold loss of responsiveness and the MD-driven ocular preference shifts were similar for narrow spiking, putative inhibitory neurons and broad spiking, putative excitatory neurons. Thus, by the time the plastic response has reached a plateau, inhibitory circuits adjust to preserve the normal balance between excitation and inhibition in the cortical network of the main thalamorecipient layer.  相似文献   

14.
A neural field model is presented that captures the essential non-linear characteristics of activity dynamics across several millimeters of visual cortex in response to local flashed and moving stimuli. We account for physiological data obtained by voltage-sensitive dye (VSD) imaging which reports mesoscopic population activity at high spatio-temporal resolution. Stimulation included a single flashed square, a single flashed bar, the line-motion paradigm – for which psychophysical studies showed that flashing a square briefly before a bar produces sensation of illusory motion within the bar – and moving squares controls. We consider a two-layer neural field (NF) model describing an excitatory and an inhibitory layer of neurons as a coupled system of non-linear integro-differential equations. Under the assumption that the aggregated activity of both layers is reflected by VSD imaging, our phenomenological model quantitatively accounts for the observed spatio-temporal activity patterns. Moreover, the model generalizes to novel similar stimuli as it matches activity evoked by moving squares of different speeds. Our results indicate that feedback from higher brain areas is not required to produce motion patterns in the case of the illusory line-motion paradigm. Physiological interpretation of the model suggests that a considerable fraction of the VSD signal may be due to inhibitory activity, supporting the notion that balanced intra-layer cortical interactions between inhibitory and excitatory populations play a major role in shaping dynamic stimulus representations in the early visual cortex.  相似文献   

15.
The optic tectum holds a central position in the tectofugal pathway of non-mammalian species and is reciprocally connected with the nucleus isthmi. Here, we recorded from individual nucleus isthmi pars parvocellularis (Ipc) neurons in the turtle eye-attached whole-brain preparation in response to a range of computer-generated visual stimuli. Ipc neurons responded to a variety of moving or flashing stimuli as long as those stimuli were small. When mapped with a moving spot, the excitatory receptive field was of circular Gaussian shape with an average half-width of less than 3°. We found no evidence for directional sensitivity. For moving spots of varying sizes, the measured Ipc response-size profile was reproduced by the linear Difference-of-Gaussian model, which is consistent with the superposition of a narrow excitatory center and an inhibitory surround. Intracellular Ipc recordings revealed a strong inhibitory connection from the nucleus isthmi pars magnocellularis (Imc), which has the anatomical feature to provide a broad inhibitory projection. The recorded Ipc response properties, together with the modulatory role of the Ipc in tectal visual processing, suggest that the columns of Ipc axon terminals in turtle optic tectum bias tectal visual responses to small dark changing features in visual scenes.  相似文献   

16.
The response of a neuron in the visual cortex to stimuli of different contrast placed in its receptive field is commonly characterized using the contrast response curve. When attention is directed into the receptive field of a V4 neuron, its contrast response curve is shifted to lower contrast values (Reynolds et al., 2000). The neuron will thus be able to respond to weaker stimuli than it responded to without attention. Attention also increases the coherence between neurons responding to the same stimulus (Fries et al., 2001). We studied how the firing rate and synchrony of a densely interconnected cortical network varied with contrast and how they were modulated by attention. The changes in contrast and attention were modeled as changes in driving current to the network neurons. We found that an increased driving current to the excitatory neurons increased the overall firing rate of the network, whereas variation of the driving current to inhibitory neurons modulated the synchrony of the network. We explain the synchrony modulation in terms of a locking phenomenon during which the ratio of excitatory to inhibitory firing rates is approximately constant for a range of driving current values. We explored the hypothesis that contrast is represented primarily as a drive to the excitatory neurons, whereas attention corresponds to a reduction in driving current to the inhibitory neurons. Using this hypothesis, the model reproduces the following experimental observations: (1) the firing rate of the excitatory neurons increases with contrast; (2) for high contrast stimuli, the firing rate saturates and the network synchronizes; (3) attention shifts the contrast response curve to lower contrast values; (4) attention leads to stronger synchronization that starts at a lower value of the contrast compared with the attend-away condition. In addition, it predicts that attention increases the delay between the inhibitory and excitatory synchronous volleys produced by the network, allowing the stimulus to recruit more downstream neurons. Action Editor: David Golomb  相似文献   

17.
N-methyl-D-aspartate receptors (NMDARs) play a central role in synaptic plasticity. Their activation requires the binding of both glutamate and d-serine or glycine as co-agonist. The prevalence of either co-agonist on NMDA-receptor function differs between brain regions and remains undetermined in the visual cortex (VC) at the critical period of postnatal development. Here, we therefore investigated the regulatory role that d-serine and/or glycine may exert on NMDARs function and on synaptic plasticity in the rat VC layer 5 pyramidal neurons of young rats. Using selective enzymatic depletion of d-serine or glycine, we demonstrate that d-serine and not glycine is the endogenous co-agonist of synaptic NMDARs required for the induction and expression of Long Term Potentiation (LTP) at both excitatory and inhibitory synapses. Glycine on the other hand is not involved in synaptic efficacy per se but regulates excitatory and inhibitory neurotransmission by activating strychnine-sensitive glycine receptors, then producing a shunting inhibition that controls neuronal gain and results in a depression of synaptic inputs at the somatic level after dendritic integration. In conclusion, we describe for the first time that in the VC both D-serine and glycine differentially regulate somatic depolarization through the activation of distinct synaptic and extrasynaptic receptors.  相似文献   

18.
Lammel S  Ion DI  Roeper J  Malenka RC 《Neuron》2011,70(5):855-862
Midbrain dopamine (DA) neurons are not homogeneous but differ in their molecular properties and responses to external stimuli. We examined whether the modulation of excitatory synapses on DA neurons by rewarding or aversive stimuli depends on the brain area to which these DA neurons project. We identified DA neuron subpopulations in slices after injection of "Retrobeads" into single target areas of adult mice and found differences in basal synaptic properties. Administration of cocaine selectively modified excitatory synapses on DA cells projecting to nucleus accumbens (NAc) medial shell while an aversive stimulus selectively modified synapses on DA cells projecting to medial prefrontal cortex. In contrast, synapses on DA neurons projecting to NAc lateral shell were modified by both rewarding and aversive stimuli, which presumably reflects saliency. These results suggest that the mesocorticolimbic DA system may be comprised of three anatomically distinct circuits, each modified by distinct aspects of motivationally relevant stimuli.  相似文献   

19.
In 27 acute experiments with anesthetized and immobilized adult cats 101 maps of receptive field (RF) in 67 striate neurons were studied by means of mapping with single flashed stimuli presented in different parts of the visual field and under conditions of additional activation of the RF excitatory center by the local oscillating or flashing grid. Under conditions of both classical and combined modes of mapping, the RFs of the classical shape with a single excitatory zone (63.4 and 29.3% of cases, respectively) and RFs with multiple (2-5) excitatory and/or inhibitory zones (36.6 and 70.7%, respectively) were found. We were the first to describe, also, some RFs of horseshoe-like, cross-like and T-like shapes. Simulation of non-classical RFs revealed possible contributions of cooperative excitatory and inhibitory intracortical interactions to the effects under study. The functional role of RFs of different types in the feature detection is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号