首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thirty-two Trichoderma isolates were collected from soils grown with chickpea in central highlands of Ethiopia. The eight isolates were identified by CAB-International as Trichoderma harzianum, T. koningii and T. pseudokoningii. In in vitro tests, all Trichoderma isolates showed significant (P < 0.05) differences in their colony growth and in inhibiting the colony growth of Fusarium oxysporum f.sp. ciceris, race 3. In potted experiment, four Trichoderma isolates were tested as seed treatment on three chickpea cultivars (JG-62 susceptible, Shasho moderately susceptible and JG-74 resistant) against F. oxysporum f.sp. ciceris, race 3. The result showed that T. harzianum and unidentified Trichoderma isolate T23 significantly reduced wilt severity and delayed disease onset. The degree of wilt severity and delay of disease onset varied with chickpea cultivars. Our study revealed that biological control agents such as Trichoderma can be a useful component of integrated chickpea Fusarium wilt management.  相似文献   

2.
Summary Fusarium oxysporum f. sp.dianthi, pathogenic on carnation plants is very sensitive toBacillus subtilis M51 inhibition.Fusarium oxysporum disease (fusariosis) is prevented for a period of two months after treatment of plants withBacillus subtilis M51. The persistence ofB. subtilis M51, marked for selenomycin resistance (MZ51) and inoculated on the roots of carnation cuttings was studied. Soil used was two types: naturally infested withFusarium oxysporum and free from this pathogen. Bacterial cells presence on the roots was detected by direct plating and the presence of the pathogen in the roots was investigated by histological assays. Evidence gathered by these procedures suggest that plant protection is dependent on the physical presence ofB. subtilis M51 cells on the roots.  相似文献   

3.
Interaction of Meloidogyne javanica and Fusarium oxysporum f. sp. ciceri was studied on Fusarium wilt-susceptible (JG 62 and K 850) and resistant (JG 74 and Avrodhi) chickpea cultivars. In greenhouse experiments, inoculation of M. javanica juveniles prior to F. oxysporum f. sp. ciceri caused greater wilt incidence in susceptible cultivars and induced vascular discoloration in roots of resistant cultivars. Nematode reproduction was greatest (P = 0.05) at 25 °C. Number of galls and percentage of root area galled increased when the temperature was increased from 15 °C to 25 °C. Wilt incidence was greater at 20 °C than at 25 °C. Chlorosis of leaves and vascular discoloration of plants did not occur at 15 °C. The nematode enhanced the wilt incidence in wilt-susceptible cultivars only at 25 °C. Interaction between the two pathogens on shoot and root weights was significant only at 20 °C, and F. o. ciceri suppressed the nematode density at this temperature. Wilt incidence was greater in clayey (48% clay) than in loamy sand (85% sand) soils. The nematode caused greater plant damage on loamy sand than on clayey soil. Fusarium wilt resistance in Avrodhi and JG 74 was stable in the presence of M. javanica across temperatures and soil types.  相似文献   

4.
Fusarium wilt is caused by F. oxysporum Schlecht end. Fr. f. sp. ciceris (FOC) is a devastating disease of chickpea in Algeria. In this study, antagonistic effects of B. subtilis MF352017 (Bs1) and Trichoderma harzianum KX523899 (T5) isolated from the rhizosphere of chickpea were investigated separately and in combination for their efficacy in controlling the disease in vivo. The efficacy of the antagonistic biocontrol agents on Fusarium wilt was evaluated based on vegetative and root growth parameters of chickpea. Seed bacterisation with B. subtilis MF352017 (Bs1) and seed treatment with T. harzianum (T5) significantly protected chickpea seedlings from FOC as compared to untreated plants. Plant protection was more pronounced in T. harzianum-treated plants than in bacterised plants. The application of both antagonists effectively suppressed 93.67% of the disease and also enhanced plant growth leading to increased plant height, root length, fresh and dry weights of shoot and root. The mixture of antagonists increased the effectiveness of B. subtilis MF352017 (Bs1) isolate on Fusarium wilt and improved chickpea growth.  相似文献   

5.
Plant growth promoting rhizobacteria (PGPR) strains Rb29 (B. amyloliquefaciens MF352007), Bs1 (B. subtilis MF352017) and Bt1 (B. tequilensis MF352019) were tested for growth promotion and for their ability to induce systemic resistance against Fusarium wilt, a vascular disease of chickpea, using two methods that include whole plant and a split-root system. Bacillus strains and Fusarium oxysporum f. sp. ciceris (FOC) were inoculated on separate halves of roots of chickpea seedlings at the same time and then planted in separate pots either in superposition or one side of the other. All Bacillus strains systemically induced resistance against FOC, and significantly (p < 0.05) reduced the wilt disease by 98–100%. Application of Bacillus strains effectively enhanced plant growth, leading to increased plant height, root length, a fresh and dry weight of shoots and roots. These results help to explain the role of strains of Bacillus in growth promotion and biological control of Fusarium wilt in chickpea. This is the first report of systemic-induced resistance against Fusarium wilt in chickpea obtained by application of Bacillus strains to a root system spatially separated from the FOC-inoculated root.  相似文献   

6.
Fusarium wilt is a widespread and serious chickpea disease caused by the soil-borne fungus Fusarium oxysporum f.sp. ciceri (Foc). We evaluated an F9 recombinant inbred line population of chickpea for resistance to three Foc races (1, 2 and 3) in pot culture experiments and identified flanking and tightly linked DNA markers for the resistance genes. The simple sequence repeat markers H3A12 and TA110 flanked the Foc1 locus at 3.9 and 2.1 cM, respectively, while Foc2 was mapped 0.2 cM from TA96 and 2.7 cM from H3A12. The H1B06y and TA194 markers flanked the Foc3 locus at 0.2 and 0.7 cM, respectively. These markers were also validated using 16 diverse chickpea genotypes. Identification of tightly linked flanking markers for wilt resistance genes will be useful for their exploitation in breeding programs and to understand the mechanism of resistance and evolution of the genes. S. J. M. Gowda and P. Radhika contributed equally to this study.  相似文献   

7.
The potential of the biological control fungus Penicillium oxalicum to suppress wilt caused by Fusarium oxysporum f. sp. melonis and F. oxysporum f. sp. niveum on melon and watermelon, respectively, was tested under different growth conditions. The area under disease progress curve of F. oxysporum f. sp. melonis infected melon plants was significantly reduced in growth chamber and field experiments. In glasshouse experiments, it was necessary to apply P. oxalicum and dazomet in order to reduce Fusarium wilt severity in melons caused by F. oxysporum f. sp. melonis. For watermelons, we found that P. oxalicum alone reduced the area under the disease progress curve by 58% in the growth chamber experiments and 54% in the glasshouse experiments. From these results, we suggested that P. oxalicum may be effective for the management of Fusarium wilt in melon and watermelon plants.  相似文献   

8.
In Egypt, sesame cultivation is subject to attack by wilt and root-rot diseases caused by Fusarium oxysporum f.sp. sesami (Zap) Cast. and Macrophomina phaseolina (Maubl) Ashby causing losses in quality and quantity of sesame seed yield. Bacillus subtilis and Trichoderma viride isolates which were isolated from sesame rhizosphere were the most effective to antagonise fungal pathogens, causing high reduction of hyphal fungal growth. Trichoderma viride was found to be mycoparasitic on Fusarium oxysporum f.sp. sesami and M. phaseolina causing morphological atternation of fungal cells and sclerotial formation. In general, Bacillus subtilis, T. viride, avirulent Fusarium oxysporum isolate and Glomus spp. (Amycorrhizae) significantly reduced wilt and root-rot incidence of sesame plants at artificially infested potted soil by each one or two pathogens. Data obtained indicate that Glomus spp significantly reduced wilt and disease severity development on sesame plants followed by T. viride. Meanwhile, avirulent Fusarium oxysporum isolate followed by Glomus spp. were effective against root-rot disease incidence caused by M. phaseolina. Glomus spp. followed by B. subtilis significantly reduced wilt and root-rot disease of sesame plants. All biotic agents significantly reduced F. oxysporum f.sp. sesami and M. phaseolina counts in sesame rhizosphere at the lowest level. Glomus spp. and the avirulent isolate of F. oxysporum eliminated M. phaseolina in sesame rhizosphere. Meanwhile T. viride was the best agent at reducing F. oxysporum at a lower level than other treatments. Application of VA mycorrhizae (Glomus spp.) in fields naturally infested by pathogens significantly reduced wilt and root-rot incidence and it significantly colonised sesame root systems and rhizospheres compared to untreated sesame transplantings.  相似文献   

9.
Fusarium head blight (FHB), caused by Fusarium graminearum (= Gibberella zeae), is a destructive disease of wheat for which biological controls are needed. Lysobacter enzymogenes strain C3, a bacterial antagonist of fungal pathogens via lytic enzymes and induced resistance, was evaluated in this study for control of FHB. In greenhouse experiments, chitin broth cultures of C3 reduced FHB severity to <10% infected spikelets as compared to >80% severity in the controls in some experiments. C3 broth cultures heated to inactivate cells and lytic enzymes, but retaining the elicitor factor for induced resistance, also were effective in reducing FHB severity, suggesting induced resistance is one mechanism of action. C3 broth cultures also were effective when applied in highly diluted form and when applied 1 week prior to pathogen inoculation. When applied to 8 cultivars of hard red spring wheat in the greenhouse, C3 treatments reduced FHB in 5 cultivars but not in the others. These findings also are consistent with induced resistance. Protection offered by C3 treatments, however, was not systemic and required that C3 be applied uniformly to all susceptible florets. Field tests were conducted in South Dakota and Nebraska to evaluate the efficacy of C3 chitin broth cultures in spring and winter wheat, respectively. In experiments involving two hard red spring wheat cultivars, treatment with C3 reduced FHB severity in ‘Russ’ but not in ‘Ingot’. In three other field experiments comparing C3, the fungicide tebuconazole, and the combination of C3 and tebuconazole, treatments with the bacterial culture alone and the fungicide alone were inconsistent across experiments, each treatment being ineffective in controlling FHB in one experiment. The biocontrol agent–fungicide combination was more consistently effective, reducing FHB incidence or severity in all three experiments. Thus, the potential for using L. enzymogenes C3 as a biological control agent for FHB was demonstrated along with a number of factors that might affect control efficacy in the field.  相似文献   

10.
Plant products along with biocontrol agents were tested against Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense (Foc). Of the 22 plant species tested, the leaf extract of Datura metel (10%) showed complete inhibition of the mycelial growth of Foc. Two botanical fungicides, Wanis 20 EC and Damet 50 EC along with selected PGPR strains with known biocontrol activity, Pseudomonas fluorescens 1, Pf1 and Bacillus subtilis, TRC 54 were tested individually and in combination for the management of Fusarium wilt under greenhouse and field conditions. Combined application of botanical formulation and biocontrol agents (Wanis 20 EC + Pf1 + TRC 54) reduced the wilt incidence significantly under greenhouse (64%) and field conditions (75%). Reduction in disease incidence was positively correlated with the induction of defense-related enzymes peroxidase (PO) and polyphenol oxidase (PPO). Three antifungal compounds (two glycosides and one ester) in D. metel were separated and identified using TLC, RP-HPLC (Reverse Phase-High Pressure Liquid Chromatography) and mass spectrometry. In this study it is clear that combined application of botanical formulations and biocontrol agents can be very effective in the management of Fusarium wilt of banana.  相似文献   

11.
Pot experiments were carried out in the green house at Amhara Regional Agriculture Research Institute (ARARI) Bahirdar, Ethiopia to evaluate the potential of Brassica carinata cultivars namely; Holleta-l, S-67 and Yellow Dodola in 2007 and 2008. The treatment effects of B. carinata (L.) cultivars Holleta–1, S-67 and Yellow Dodola seed meals on chickpea fusarium wilt (Fusarium oxysporum f.sp. ciceris) were studied. Six rates of seed (0, 5, 10, 15, 20 and 25 g/kg of infested soil) were used. Infested soil without B.carinata cultivars amendments as a control and susceptible check variety JG-62 also without amendments were used in all the experiments. For each seed meal experiment, the treatments were arranged in factorial randomised complete block design in three replications. Data on seedling emergence, wilt incidence, fresh weight, dry weight, pod per plant, seed per pod, hundred seed weight and yield per hectare were collected. The amendments of infested soil with B.carinata cultivars seed meal reduced the incidence of chickpea fusarium wilt and increased yield per hectare. The interaction of the seed meal Holleta-1, S-67 and Yellow Dodola at 10–25 g/kg infested soil were effective in reducing wilt incidences on chickpea. However, the interaction of Yellow Dodola with 20 and 25 g seed meal per kg infested soil were the best combination in reducing significantly wilt incidence. The three cultivars incorporated at different level of doses significantly affected the influence of Fusarium wilt on the fresh weight, dry weight, pod per plant, seed per pod, hundred seed weight and yield per hectare. The highest yield kg/ha was recorded in combination of Yellow Dodola seed meal at 20 and 25 g followed by S-67 and Holleta-1 at 25 g /kg infested soil, respectively. The interaction of Holleta-1 at 5–25 infested soil significantly reduced disease incidence up to 16.7–43.3% and increased yield per hectare with mean by (30%) over the control. Seed meal amendment S-67 significantly reduce disease incidence 26.7–46.7% and increased yield kg/ha with mean by (36.7%) from the unamended control. Yellow dodola reduces disease incidence with 26.7–63.3% and increased yield kg/ha with mean by (45%) from the unamended control. The result indicates the potential of using Brassica crop seed meal amendment as useful component of integrated chickpea wilt management.  相似文献   

12.
A study was carried out to test direct and indirect antagonistic effect against Fusarium wilt, caused by Fusarium oxysporum f. sp. ciceri (FOC), and plant growth-promoting (PGP) traits of bacteria isolated from rhizosphere soils of chickpea (Cicer arietinum L.). A total of 40 bacterial isolates were tested for their antagonistic activity against FOC and of which 10 were found to have strong antagonistic potential. These were found to be Streptomyces spp. (five isolates) and Bacillus spp. (five isolates) in the morphological and biochemical characterisation and 16S rDNA analysis. Under both greenhouse and wilt sick field conditions, the selected Streptomyces and Bacillus isolates reduced disease incidence and delayed expression of symptoms of disease, over the non-inoculated control. The PGP ability of the isolates such as nodule number, nodule weight, shoot weight, root weight, grain yield and stover yield were also demonstrated under greenhouse and field conditions over the non-inoculated control. Among the ten isolates, Streptomyces sp. AC-19 and Bacillus sp. BS-20 were found to have more potential for biocontrol of FOC and PGP in chickpea. This investigation indicates that the selected Streptomyces and Bacillus isolates have the potential to control Fusarium wilt disease and to promote plant growth in chickpea.  相似文献   

13.
Pot experiments were carried out in the green house at Amhara Regional Agriculture Research Institute (ARARI) Bahirdar, Ethiopia, to evaluate the potential of Brassica carinata cultivars, namely Holleta-l, S-67 and Yellow Dodola in 2007 and 2008. The effect of B. carinata (Ethiopian mustard) cultivars Holleta-1, S-67 and Yellow Dodola as green manure and Holleta-1 as dried plant residue on chickpea fusarium wilt (Fusarium oxysporum f.sp. ciceris) was studied. Six rates of green manure and dried plant residue (0, 20, 40, 60, 80 and 100 g) each per kg of pathogen-infested soil were used in the experiments. Infested soil without B. carinata cultivars amendment as a control and susceptible check variety JG-62 without amendment was used in the experiments. In the experiments, the treatments were arranged in randomised complete block design in three replications and repeated twice. Data on seedling emergence, wilt incidence, fresh weight and dry weight were collected. The amendments of infested soil with B. carinata cultivars green manure and dried plant residue reduced the incidence of chickpea fusarium wilt. The incorporation of the green manure Holleta-1, S-67 and Yellow Dodola at 20–100 g/kg of infested soil was effective in reducing wilt incidences on chickpea. However, the incorporation of Yellow Dodola at 80 and 100 g green manure per kg of infested soil were the best combination in reducing significantly wilt incidence. The application of the dried plant residue at 20–100 g/kg of infested soil was effective in reducing wilt incidences on chickpea. However when applied dried plant residue at 60, 80 and 100 g green manure per kg of infested soil were better in reducing wilt incidence as compared to 20 and 40 g/kg of infested soil. The three cultivars green manure incorporated at different level of doses affected the influence of fusarium wilt on the fresh and dry weight respectively. The use of Holleta-1 green manure at 20–100 g/kg of infested soil significantly reduced disease incidence in the range of 20.0–33.3%. Green manure amendment S-67 significantly reduced disease incidence in the range of 20.0–46.6%. Yellow Dodola reduce disease incidence with 26.7–60%. The dried plant residue incorporated at different level influence fusarium wilt. The application of Holleta-1 dried plant residue at 20–100 g/kg of infested soil reduced disease incidence in the range 20.0–26.7%. The results imply the potential of using B. carinata green manure and dried plant residue as cultural management components in chickpea fusarium wilt disease management.  相似文献   

14.
The effects of Fusarium oxysporum f. sp. cucumerinum, the pathogen causing Fusarium wilt in cucumber and cinnamic acid, a principal autotoxic component in the root exudates of cucumber (Cucumis sativus L.), on plant growth, Photosynthesis and incidence of Fusarium wilt in cucumber were studied in order to elucidate the interaction of autotoxins and soil-borne pathogens in the soil sickness. F. oxysporum. f. sp. cucumerinum (FO) and cinnamic acid (CA) at 0.1 or 0.25 mM significantly decreased net photosynthetic rate, stomatal conductance and the quantum yield of Photosystem II photochemistry (PSII), followed by a reduction of plant biomass production, but did not induce photoinhibition. Pretreatment with CA before inoculation with FO increased the effectiveness of FO, together with a slight photoinhibition. CA pretreatment significantly increased percentage of plants affected by Fusarium wilt, browning index of vascular bundle and Fusarium population in the nutrient solution. All these results indicate that CA enhanced Fusarium wilt by predisposing cucumber roots to infection by FO through a direct biochemical and physiological effect. It is likely that soil sickness results from an interaction of many factors. Abbreviations: CA – cinnamic acid; CFU – colony forming units; Ci – intercellular CO2 concentration; FO –Fusarium oxysporum (Schlechtend.:Fr) f. sp. cucumerinum (Owen) Snyder & Hansen; Fv/Fm– maximal quantum efficiency of PS II; Fv/Fm– the efficiency of excitation capture by open PS II centers; Gs – stomatal conductance; NPQ – non-photochemical quenching coefficient; Pn – net photosynthetic rate; PS II – Photosystem II; PS II– the quantum yield of PS II photochemistry; qP – photochemical quenching coefficient.  相似文献   

15.
Pengmin Li  Lailiang Cheng   《Plant science》2009,177(5):418-426
Pigments, chlorophyll fluorescence, dark respiration, and the antioxidant system in the shaded peel of green ‘Anjou’ pear (Pyrus communis L.) and its bud mutation, red ‘Anjou’, were compared in response to high peel temperature, high light alone or in combination to determine the protective role of anthocyanins under high temperature with or without light. Under high temperature treatment alone, no difference in the maximum quantum yield of PSII (FV/FM) was detected between red ‘Anjou’ and green ‘Anjou’; the superoxide dismutase activity and the glutathione pool were up-regulated in green ‘Anjou’ peel but remained unchanged in red ‘Anjou’ peel. Under high temperature coupled with high light, the FV/FM of green ‘Anjou’ peel was decreased to a lower value than that of red ‘Anjou’, and significant interaction was detected between temperature and light for both cultivars. Furthermore, the difference in FV/FM between red ‘Anjou’ and green ‘Anjou’ under high temperature coupled with high light was significantly larger than that under high light alone, indicating that this larger difference was caused by the interaction between high temperature and high light as no significant difference was detected in FV/FM between the two cultivars under high temperature treatment alone at any sampling point. It is concluded that the elevated anthocyanin level in the shaded peel of red ‘Anjou’ does not alter its thermotolerance in the dark, but makes it more tolerant of high temperature under high light.  相似文献   

16.
The extent of soil microbial diversity in agricultural soils is critical to the maintenance of soil health and quality. The aim of this study was to investigate the influence of land use intensification on soil microbial diversity and thus the level of soil suppressiveness of cucumber Fusarium wilt. We examined three typical microbial populations, Bacillus spp., Pseudomonas spp. and Fuasarium oxysporum, and bacterial functional diversity in soils from three different land use types in China’s Yangtze River Delta, and related those to suppressiveness of cucumber Fusarium wilt. The land use types were a traditional rice wheat (or rape) rotation land, an open field vegetable land, and a polytunnel greenhouse vegetable land that had been transformed from the above two land use types since 1995. Results generated from the field soils showed similar counts for Bacillus spp. (log 5.87–6.01 CFU g−1 dw soil) among the three soils of different land use types, significantly lower counts for Pseudomonas spp. (log 5.44 CFU g−1 dw soil) in the polytunnel greenhouse vegetable land whilst significantly lower counts for Fusarium oxysporum (log 3.21 CFU g−1 dw soil) in the traditional rice wheat (or rape) rotation land. A significant lower dehydrogenase activity (33.56 mg TPF kg−1 dw day−1) was observed in the polytunnel greenhouse vegetable land. Community level physiological profiles (CLPP) of the bacterial communities in soils showed that the average well color development (AWCD) and three functional diversity indices of Shannon index (H′), Simpson index (D) and McIntosh index (U) at 96 h incubation in BIOLOG Eco Micro plates were significantly lower in the polytunnel greenhouse vegetable land than in both the traditional rice wheat (or rape) rotation land and the open field vegetable land. A further greenhouse experiment with the air-dried and sieved soils displayed significantly lower plant growth parameters of 10-old cucumber seedlings as well as significantly lower biomass and total fresh fruit yield at the end of harvesting at day 70 in the polytunnel greenhouse vegetable soil sources. The percentages of Fusarium wilt plant death were greatly increased in the polytunnel greenhouse vegetable plants, irrespective of being inoculated with or without Fusarium oxysporum f. sp. cucumerinum. Our results could provide a better understanding of the effects of land use intensification on soil microbial population and functional diversity as well as the level of soil suppressiveness of cucumber Fusarium wilt.  相似文献   

17.
Native strains ofPseudomonas fluorescens exhibitedin vitro antibiosis towards isolates of races 1 and 4 ofFusarium oxysporum f.sp.cubense, the Panama wilt pathogen of banana. The seedlings ofMusa balbisiana seedlings treated withP. fluorescens showed less severe wilting and internal discolouration due toF. oxysporum f.sp.cubense infection in greenhouse experiments. In addition to suppressing Panama wilt, bacterized seedlings ofM. balbisiana also showed better root growth and enhanced plant height.  相似文献   

18.
Screenhouse studies were conducted to investigate the effects of Fusarium oxysporum f. sp. glycines and Sclerotium rolfsii on the pathogenicity of Meloidogyne incognita race 2 on soybean and the influence of the nematode on wilt incidence and growth of soybean. The interaction of each fungus with the nematode resulted in reduced shoot and root growth. Final nematode population was also reduced with concomitant inoculation of nematode and fungus or inoculation of fungus before nematode. While M. incognita suppressed wilt incidence in two nematode-susceptible cultivars of soybean (TGX 1485-2D and TGX 1440-IE), it had limited effect on wilt incidence in the nematode resistant cultivar of soybean (TGX 1448-2E). When F. oxysporumwas inoculated with the nematode, the mean number of nematodes that penetrated soybean roots decreased by 75% in TGX 1448-2E, 68% in TGX 1485-1D and 65% in TGX 1440-1E. Similarly when the soil was treated with S. rolfsii, the number decreased by 78% in TGX 1448-2E, 77% in TGX 1485-1D and 68% in TGX 1440-1E. The nematode did not develop beyond second-stage juvenile in TGX-1448-2E.  相似文献   

19.
Fusarium wilt caused by Fusarium oxysporum f.sp. ciceris (Foc) is the most important soilborne disease of chickpea in the Sudan and many other countries. A total of 76 Foc isolates from six different chickpea‐growing states in the Sudan have been collected in this study to investigate the genetic diversity of Sudanese Foc isolates. Additional 14 Foc isolates from Syria and Lebanon were included in this study. All isolates were characterized using four random amplified polymorphic DNA (RAPD), three simple sequence repeats (SSR), five sequence‐characterized amplified region (SCAR) primers and three specific Foc genome primers. Based on the similarity coefficient, the results indicated two major clusters included seven subclusters. The isolates from the Sudan were grouped as identified as races 0, 2 and unknown races. The isolates from Syria and Lebanon were grouped together as they identified as races 1B/C and 6, respectively. This study identified a new race Foc (race 0) in the Sudan. The results of this study will be useful for breeders to design effective resistance breeding program in chickpea in the Sudan.  相似文献   

20.

Background

Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris, a main threat to global chickpea production, is managed mainly by resistant cultivars whose efficiency is curtailed by Fusarium oxysporum f. sp. ciceris races.

Methodology

We characterized compatible and incompatible interactions by assessing the spatial-temporal pattern of infection and colonization of chickpea cvs. P-2245, JG-62 and WR-315 by Fusarium oxysporum f. sp. ciceris races 0 and 5 labeled with ZsGreen fluorescent protein using confocal laser scanning microscopy.

Findings

The two races colonized the host root surface in both interactions with preferential colonization of the root apex and subapical root zone. In compatible interactions, the pathogen grew intercellularly in the root cortex, reached the xylem, and progressed upwards in the stem xylem, being the rate and intensity of stem colonization directly related with the degree of compatibility among Fusarium oxysporum f. sp. ciceris races and chickpea cultivars. In incompatible interactions, race 0 invaded and colonized ‘JG-62’ xylem vessels of root and stem but in ‘WR-315’, it remained in the intercellular spaces of the root cortex failing to reach the xylem, whereas race 5 progressed up to the hypocotyl. However, all incompatible interactions were asymptomatic.

Conclusions

The differential patterns of colonization of chickpea cultivars by Fusarium oxysporum f. sp. ciceris races may be related to the operation of multiple resistance mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号