首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strain ZJB-063, a versatile nitrile-amide-degrading strain, was newly isolated from soil in this study. Based on morphology, physiological tests, Biolog and the 16S rDNA sequence, strain ZJB-063 was identified as Bacillus subtilis. ZJB-063 exhibited nitrilase activity without addition of inducers, indicating that the nitrilase in B. subtilis ZJB-063 is constitutive. Interestingly, the strain exhibited nitrile hydratase and amidase activity with the addition of ɛ-caprolactam. Moreover, the substrate spectrum altered with the alteration of enzyme systems due to the addition of ɛ-caprolactam. The constitutive nitrilase was highly specific for arylacetonitriles, while the nitrile hydratase/amidase in B. subtilis ZJB-063 could not only hydrolyze arylacetonitriles but also other nitriles including some aliphatic nitriles and heterocyclic nitriles. Despite comparatively low activity, the amidase of hydratase/amidase system was effective in converting amides to acids. The versatility of this strain in the hydrolysis of various nitriles and amides makes it a potential biocatalyst in organic synthesis.  相似文献   

2.
The enantioselective nitrile hydratase from the bacterium Agrobacterium tumefaciens d3 was purified and completely separated from the amidase activity that is also present in cell extracts prepared from this strain. The nitrile hydratase had an activity optimum at pH 7.0 and a temperature optimum of 40 °C. The holoenzyme had a molecular mass of 69 kDa, the subunits a molecular mass of 27 kDa. The enzyme hydrated various 2-arylpropionitriles and other aromatic and heterocyclic nitriles. With racemic 2-phenylpropionitrile, 2-phenylbutyronitrile, 2-(4-chlorophenyl)propionitrile, 2-(4-methoxy)propionitrile or ketoprofen nitrile the corresponding (S)-amides were formed enantioselectively. The highest enantiomeric excesses (ee >90% until about 30% of the respective substrates were converted) were found for the amides formed from 2-phenylpropionitrile, 2-phenylbutyronitrile and ketoprofen nitrile. For the reaction of the purified nitrile hydratase, higher ee values were found than when whole cells were used in the presence of an inhibitor of the amidase activity. The enantioselectivity of the whole-cell reaction was enhanced by increasing the reaction temperature. Received: 20 June 1997 / Received revision: 28 August 1997 / Accepted: 29 August 1997  相似文献   

3.
《Process Biochemistry》2010,45(6):866-873
Strain Amycolatopsis sp. IITR215 was isolated from a sewage sample using polyacrylonitrile powder as the sole nitrogen source. Identification was performed by 16S rDNA analysis. The isolated strain harbored multiple nitrile-metabolizing enzymes having a wide range of substrate specificities. It metabolized nitrile and amide compounds with constitutive enzymes. Studies using an amidase inhibitor showed that hydrolysis of acrylonitrile and acrylamide occurred due to nitrile hydratase and amidase, respectively, while hydrolysis of hexanenitrile was due to the action of either nitrilase or a second nitrile hydratase/amidase system. The inhibitory effects of N-bromosuccinimide and N-ethylmaleimide on enzymes of this culture were also studied and this further indicated the involvement of either a nitrilase or a second nitrile hydratase/amidase system for hydrolysis of hexanenitrile. Interestingly, hexanenitrile hydrolysis exhibited an optimum temperature of 55 °C, whereas acrylonitrile and acrylamide hydrolysis showed an optimum temperature of 45 °C. The optimum pH was 5.8 for hexanenitrile hydrolysis and 7.0 for acrylonitrile and acrylamide hydrolysis. Hexanenitrile hydrolysis by enzymes of this strain showed better organic solvent tolerance in the presence of alcohols. The maximum enzyme activity of nitrile-metabolizing enzymes was found using media containing isobutyramide as the nitrogen source. This is the first report on constitutive multiple enzymes from the Amycolatopsis genus.  相似文献   

4.
A Pichia pastoris strain with stereoselective nitrile hydratase activity has been constructed by engineering the co-expression of three genes derived from Pseudomonas putida. Using a technique that could be widely applicable, the genes encoding nitrile hydratase α and β structural subunits and P14K accessory protein were first assembled as individual expression cassettes and then incorporated onto one plasmid, which was integrated into the P. pastoris chromosome. The resulting strain can be used as a catalyst for bioconversions requiring stereospecific nitrile hydrolysis. Received: 3 November 1998 / Received revision: 25 February1999 / Accepted: 14 March 1999  相似文献   

5.
A hydrocarbon mixture containing p-xylene, naphthalene, Br-naphthalene and straight aliphatic hydrocarbons (C14 to C17) was aerobically degraded without lag phase by a natural uncontaminated potting soil at 20 °C and 6 °C. Starting concentrations were approximately 46 ppm for the aromatic and 13 ppm for the aliphatic compounds. All aliphatic hydrocarbons were degraded within 5 days at 20 °C, to levels below detection (ppb levels) but only down to 10% of initial concentration at 6 °C. Naphthalene was degraded within 12 days at 20 °C and unaffected at 6 °C. At 20 °C p-xylene was degraded within 20 days, but no degradation occurred at 6 °C. Br-naphthalene was only removed down to 30% of initial concentration at 20 °C, with no significant effect at 6 °C. The biodegradation was monitored with head space solid-phase microextraction and gas chromatography–mass spectrometry. Received: 5 October 1998 / Received revision: 4 December 1998 / Accepted: 5 December 1998  相似文献   

6.
In this study, a novel nitrilase gene from Rhodobacter sphaeroides was cloned and overexpressed in Escherichia coli. The open reading frame of the nitrilase gene includes 969 base pairs, which encodes a putative polypeptide of 322 amino acid residues. The molecular weight of the purified native nitrilase was about 560 kDa determined by size exclusion chromatography. This nitrilase showed one single band on SDS-PAGE with a molecular weight of 40 kDa. This suggested that the native nitrilase consisted of 14 subunits with identical size. The optimal pH and temperature of the purified enzyme were 7.0 and 40 °C, respectively. The kinetic parameters V max and K m toward 3-cyanopyridine were 77.5 μmol min?1 mg?1 and 73.1 mmol/l, respectively. The enzyme can easily convert aliphatic nitrile and aromatic nitriles to their corresponding acids. Furthermore, this enzyme demonstrated regioselectivity in hydrolysis of aliphatic dinitriles. This specific characteristic makes this nitrilase have a great potential for commercial production of various cyanocarboxylic acids by hydrolyzing readily available dinitriles.  相似文献   

7.
A fungus with the ability to utilize a metal-cyano compound, tetracyanonickelate (II) {K2[Ni (CN)4]; TCN}, as its sole source of nitrogen was isolated from soil and identified as Fusarium oxysporum N-10. Both intact mycelia and cell-free extract of the strain catalyzed hydrolysis of TCN to formate and ammonia and produced formamide as an intermediate, thereby indicating that a hydratase and an amidase sequentially participated in the degradation of TCN. The enzyme catalyzing the hydration of TCN was purified approximately ten-fold from the cell-free extract of strain N-10 with a yield of 29%. The molecular mass of the active enzyme was estimated to be 160 kDa. The enzyme appears to exist as a homotetramer, each subunit having a molecular mass of 40 kDa. The enzyme also catalyzed the hydration of KCN, with a cyanide-hydrating activity 2 × 104 times greater than for TCN. The kinetic parameters for TCN and KCN indicated that hydratase isolated from F. oxysporum was a cyanide hydratase able to utilize a broad range of cyano compounds and nitriles as substrates. Received: 9 August 1999 / Received revision: 13 September 1999 / Accepted: 24 September 1999  相似文献   

8.
A novel thermophilic Bacillus smithii strain SC-J05-1, isolated from a hot spring, had the ability of hydrating nitrile to form amide. The nitrile hydratase was purified to homogeneity from the microbial cells of SC-J05-1 and was characterized. The enzyme was a 130-kDa protein composed of two different subunits (25.3 kDa and 26.8 kDa) and contained cobalt ions. This enzyme had the optimal temperature of 40°C and was stable up to 50°C. The optimal pH was in the alkaline region higher than pH 10. Received 02 September 1997/ Accepted in revised form 06 February 1998  相似文献   

9.
Several novel nitrilases were selected from metagenomic libraries using cinnamonitrile and a mixture of six different nitriles as substrates. The nitrilase gene nit1 was expressed in Escherichia coli and the resulting protein was further examined concerning its biochemical properties. Nit1 turned out to be an aliphatic nitrilase favoring dinitriles over mononitriles. Stereochemical analysis revealed that Nit1 converted the dinitrile 2-methylglutaronitrile regioselectively. Hydrolysis at the ω-nitrile group of a dinitrile, such as catalyzed by Nit1, leads to ω-cyanocarboxylic acids, which are important precursors for chemical and pharmaceutical products. Nit1 metabolized 2-methylglutaronitrile to the corresponding ω-cyanocarboxylic acid 4-cyanopentanoic acid can be used for the production of the fine chemical 1,5-dimethyl-2-piperidone.  相似文献   

10.
A novel thermostable nitrile hydratase   总被引:4,自引:0,他引:4  
A novel, nitrile-degrading, thermophilic microorganism belonging to the genus Bacillus and most closely related to strain DSM 2349 has been isolated. The strain grew optimally at 65°C with the constitutive expression of a thermostable intracellular nitrile hydratase. No aromatic-specific "benzonitrilase" activity was detected under any conditions. The enzyme, an α2β2 heterotetramer with a native molecular weight of 110 kDa, was purified to homogeneity. N-terminal sequence data showed no homology to known bacterial α subunit sequences but had a high level of identity with other bacterial N-terminal β subunit sequences. The purified enzyme had a broad pH-activity range (50% activity limits were pH 5.1 and 8.7) and was stable in aqueous solution up to 60°C in the absence of either substrates or substrate analogues. Substrate specificity was restricted to aliphatic nitriles, but an unusual preference for branched and cyclic aliphatic nitriles was noted. Turnover rates under optimum reaction conditions were 746 and 4580 sec−1 for acetonitrile and valeronitrile, respectively. Received: December 1, 1997 / Accepted: February 24, 1998  相似文献   

11.
12.
Nitrile groups are catabolized to the corresponding acid and ammonia through one-step reaction involving a nitrilase. Here, we report the use of bioinformatic and biochemical tools to identify and characterize the nitrilase (NitPf5) from Pseudomonas fluorescens Pf-5. The nitPf5 gene was identified via sequence analysis of the whole genome of P. fluorescens Pf-5 and subsequently cloned and overexpressed in Escherichia coli. DNA sequence analysis revealed an open-reading frame of 921 bp, capable of encoding a polypeptide of 307 amino acids residues with a calculated isoelectric point of pH 5.4. The enzyme had an optimal pH and temperature of 7.0°C and 45°C, respectively, with a specific activity of 1.7 and 1.9 μmol min−1 mg protein−1 for succinonitrile and fumaronitrile, respectively. The molecular weight of the nitrilase as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography was 33,000 and 138,000 Da, respectively, suggesting that the enzyme is homotetrameric. Among various nitriles, dinitriles were the preferred substrate of NitPf5 with a K m = 17.9 mM and k cat/K m = 0.5 mM−1 s−1 for succinonitrile. Homology modeling and docking studies of dinitrile and mononitrile substrate into the active site of NitPf5 shed light on the substrate specificity of NitPf5. Although nitrilases have been characterized from several other sources, P. fluorescens Pf-5 nitrilase NitPf5 is distinguished from other nitrilases by its high specific activity toward dinitriles, which make P. fluorescens NitPf5 useful for industrial applications, including enzymatic synthesis of various cyanocarboxylic acids.  相似文献   

13.
The Rhodococcus erythropolis strain (N′4) possesses the ability to convert 4-chloro-3-hydroxybutyronitrile into the corresponding acid. This conversion was determined to be performed by its nitrile hydratase and amidase. Ammonium sulfate fractionation, DEAE ion exchange chromatography, and phenyl chromatography were used to partially purify nitrile hydratase from cell-free extract. A SDS-PAGE showed that the partially purified enzyme had two subunits and gel filtration chromatography showed that it consisted of four subunits of α2β2. The purified enzyme had a high specific activity of 860 U mg−1 toward methacrylonitrile. The enzyme was found to have high activity at low temperature range, with a maximum activity occurring at 25 °C and be stable in the presence of organic acids at higher temperatures. The enzyme exhibited a preference for aliphatic saturated nitrile substrates over aliphatic unsaturated or aromatic ones. It was inhibited by sulfhydryl, oxidizing, and serine protease inhibitors, thus indicating that essential cysteine and serine residues can be found in the active site.The purified nitrile hydratase was able to convert 4-chloro-3-hydroxybutyronitrile into the corresponding amide at 15 °C. GC analysis showed that the initial conversion rate of the reaction was 215 mg substrate consumed min−1 mg−1. This demonstrated that this enzyme could be used in conjunction with a stereoselective amidase to synthesize ethyl (S)-4-chloro-3-hydroxybutyrate, an intermediate for a hypercholesterolemia drug, Atorvastatin.  相似文献   

14.
Mesophilic nitrile-degrading enzymes are widely dispersed in the Bacteria and lower orders of the eukaryotic kingdom. Two distinct enzyme systems, a nitrilase catalyzing the direct conversion of nitriles to carboxylic acids and separate but cotranscribed nitrile hydratase and amidase activities, are now well known. Nitrile hydratases are metalloenzymes, incorporating FeIII or CoII ions in thiolate ligand networks where they function as Lewis acids. In comparison, nitrilases are thiol-enzymes and the two enzyme groups have little or no apparent sequence or structural homology. The hydratases typically exist as αβ dimers or tetramers in which the α- and β-subunits are similar in size but otherwise unrelated. Nitrilases however, are usually found as homomultimers with as many as 16 subunits. Until recently, the two nitrile-degrading enzyme classes were clearly separated by functional differences, the nitrile hydratases being aliphatic substrate specific and lacking stereoselectivity, whereas the nitrilases are enantioselective and aromatic substrate specific. The recent discovery of novel enzymes in both classes (including thermophilic representatives) has blurred these functional distinctions. Purified mesophilic nitrile-degrading enzymes are typically thermolabile in buffered solution, rarely withstanding exposure to temperatures above 50°C without rapid inactivation. However, operational thermostability is often increased by addition of aliphatic acids or by use of immobilized whole cells. Low molecular stability has frequently been cited as a reason for the limited industrial application of "nitrilases"; such statements notwithstanding, these enzymes have been successfully applied for more than a decade to the kiloton production of acrylamide and more recently to the smaller-scale production of nicotinic acid, R-(−)-mandelic acid and S-(+)-ibuprofen. There is also a rapidly growing catalog of other potentially useful conversions of complex nitriles in which the regioselectivity of the enzyme coupled with the ability to achieve high conversion efficiencies without detriment to other sensitive functionalities is a distinct process advantage. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

15.
The gene coding for cyanidase, which catalyzes the hydrolysis of cyanide to formate and ammonia, was cloned from chromosomal DNA of Pseudomonas stutzeri AK61 into Escherichia coli. The cyanidase gene consisted of an open reading frame of 1004 bp, and it was predicted that cyanidase was composed of 334 amino acids with a calculated molecular mass of 37 518 Da. The amino acid sequence of cyanidase showed a 35.1% and 26.4% homology to aliphatic nitrilase from Rhodococcus rhodochrous K22 and cyanide hydratase from Fusarium lateritium, respectively. A unique cysteine residue of aliphatic nitrilase, which was suggested to play an essential role in the catalytic activity, was conserved in cyanidase. The active form of cyanidase was successfully expressed by a DNA clone containing the cyanidase gene in E.coli. Its productivity was approximately 230 times larger than that of P. stutzeri AK61. The characteristics of the expressed cyanidase, including optimum pH, optimum temperature, Michaelis constant (K m) for cyanide and specific activity, were similar to those of the native enzyme from P. stutzeri AK61. Received: 24 October 1997 / Received last revision: 17 March 1998 / Accepted: 20 March 1998  相似文献   

16.
The operational stabilities of nitrilases from Aspergillus niger K10 and Fusarium solani O1 were examined with 4-cyanopyridine as the substrate in continuous-stirred membrane reactors (CSMRs). The former enzyme was fairly stable at 30 °C with a deactivation constant (k d) and enzyme half-life of 0.014 h−1 and 50 h, respectively, but the latter exhibited an even higher stability characterized by k d = 0.008 h−1 and half-life of 87 h at 40 °C. Another advantage of this enzyme was its high chemoselectivity, i.e., selective transformation of nitriles into carboxylic acids, while the amide formed a high ratio of A. niger K10 nitrilase product. High conversion rates (>90%) were maintained for about 52 h using the nitrilase from F. solani O1 immobilized in cross-linked enzyme aggregates (CLEAs). The purity of isonicotinic acid was increased from 98% to >99.9% by using two CSMRs connected in series, the first one containing the F. solani O1 nitrilase and the second the amidase from Rhodococcus erythropolis A4 (both enzymes as CLEAs), the amidase hydrolyzing the by-product isonicotinamide.  相似文献   

17.
In soil the herbicide 2,6-dichlorobenzonitrile (dichlobenil) is degraded to the persistent metabolite 2,6-dichlorobenzamide (BAM) which has been detected in 19% of samples taken from Danish groundwater. We tested if common soil bacteria harbouring nitrile-degrading enzymes, nitrile hydratases or nitrilases, were able to degrade dichlobenil in vitro. We showed that several strains degraded dichlobenil stoichiometrically to BAM in 1.5–6.0 days; formation of the amide intermediate thus showed nitrile hydratase rather than nitrilase activity, which would result in formation of 2,6-dichlorobenzoic acid. The non-halogenated␣analogue benzonitrile was also degraded, but here the benzamide intermediate accumulated only transiently showing nitrile hydratase followed by amidase activity. We conclude that a potential for dichlobenil degradation to BAM is found commonly in soil bacteria, whereas further degradation of the BAM intermediate could not be demonstrated.  相似文献   

18.
Rhodococcus sp. NDB 1165, a nitrile-transforming organism was isolated from temperate forest soil of Himalayas. The nitrilase (EC 3.5.5.2) activity of this organism had higher substrate specificity toward aromatic nitriles (benzonitrile, 3-cyanopyridine and 4-cyanopyridine) and unsaturated aliphatic nitrile (acrylonitrile) in comparison to saturated aliphatic nitriles (acetonitrile, propionitrile, butyronitrile and isobutyronitrile) nitrile and arylacetonitrile (phenylacetonitrile and indole-3-acetonitrile). The nitrilase of Rhodococcus sp. NDB 1165 was inducible in nature and propionitrile proved to be an efficient inducer. However, the salts of ferrous and cobalt ions had an inhibitory effect. Under optimized reaction conditions (pH 8.0 and temperature 45°C) the nitrilase activity of this organism was 2.39 ± 0.07 U/mg dry cell mass (dcm). The half-life of this enzyme was 150 min and 40 min at 45°C and 50°C respectively. However, it was quite stable at 40°C and around 58 % activity was retained even after 6 h at this temperature. The V max and K m value of this nitrilase were 1.67 μmol/ml min and 0.1 M respectively using 3-cyanopyridine as substrate. However, the decrease in V max and K m values (0.56 μmol/ml min and 0.02 M, respectively) were ␣observed at >0.05 M 3-cyanopyridine which revealed that this enzyme experienced uncompetitive inhibition at higher substrate concentrations. Under optimized reaction conditions, 1.6 M 3-cyanopyridine was successfully converted in to nicotinic acid using 2.0 mg resting cells (dcm)/ml reaction mixture in 11 h. This is the highest production of nicotinic acid i.e. 8.95 mg/mg resting cells (dcm)/h as compared to nitrilase systems reported hitherto.  相似文献   

19.
The transformation dynamics of 2- and 4-cyanopyridines by cells suspended and adsorbed on inorganic carriers has been studied in the Rhodococcus ruber gt1 possessing nitrile hydratase activity and the Pseudomonas fluorescens C2 containing nitrilase. It was shown that both nitrile hydratase and nitrilase activities of immobilized cells against 2-cyanopyridine were 1.5–4 times lower compared to 4-cyanopyridine and 1.6–2 times lower than the activities of free cells against 2-cyanpopyridine. The possibility of obtaining isonicotinic acid during the combined conversion of 4-cyanopyridine by a mixed suspension of R. ruber gt1 cells with a high level of nitrile hydratase activity and R. erythropolis 11-2 cells with a pronounced activity of amidase has been shown. Immobilization of Rhodococcus cells on raw coal and Pseudomonas cells on kaolin was shown to yield a heterogeneous biocatalyst for the efficient transformation of cyanopyridines into respective amides and carboxylic acids.  相似文献   

20.
Two Rhodococcal isolates, one possessing a nitrile hydratase and an amidase enzyme, the other an aliphatic nitrilase enzyme have been isolated. The kinetic constants for the enzymes in each isolate have been determined. This data coupled with stability tests indicate that Rhodococcus ruber NCIMB 40757, the nitrilase containing organism, should be an excellent biocatalyst for the commercial production of ammonium acrylate. This is confirmed by a fed-batch bioconversion to produce 5.7 M ammonium acrylate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号