首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Membrane proteins of the CTR family mediate cellular copper uptake in all eukaryotic cells and have been shown to participate in uptake of platinum-based anticancer drugs. Despite their importance for life and the clinical treatment of malignancies, directed biochemical studies of CTR proteins have been difficult because high-resolution structural information is missing. Building on our recent 7Å structure of the human copper transporter hCTR1, we present the results of an extensive tryptophan-scanning analysis of hCTR1 and its distant relative, yeast CTR3. The comparative analysis supports our previous assignment of the transmembrane helices and shows that most functionally and structurally important residues are clustered around the threefold axis of CTR trimers or engage in helix packing interactions. The scan also identified residues that may play roles in interactions between CTR trimers and suggested that the first transmembrane helix serves as an adaptor that allows evolutionarily diverse CTRs to adopt the same overall structure. Together with previous biochemical and biophysical data, the results of the tryptophan scan are consistent with a mechanistic model in which copper transport occurs along the center of the trimer.  相似文献   

2.
Human copper transporter 1 (hCTR1) is a homotrimer of a 190-amino acid monomer having three transmembrane domains believed to form a pore for copper permeation through the plasma membrane. The hCTR1-mediated copper transport mechanism is not well understood, nor has any measurement been made of the rate at which copper ions are transported by hCTR1. In this study, we estimated the rate of copper transport by the hCTR1 trimer in cultured cells using 64Cu uptake assays and quantification of plasma membrane hCTR1. For endogenous hCTR1, we estimated a turnover number of about 10 ions/trimer/s. When overexpressed in HEK293 cells, a second transmembrane domain mutant of hCTR1 (H139R) had a 3-fold higher Km value and a 4-fold higher turnover number than WT. Truncations of the intracellular C-terminal tail and an AAA substitution of the putative metal-binding HCH C-terminal tripeptide (thought to be required for transport) also exhibited elevated transport rates and Km values when compared with WT hCTR1. Unlike WT hCTR1, H139R and the C-terminal mutants did not undergo regulatory endocytosis in elevated copper. hCTR1 mutants combining methionine substitutions that block transport (M150L,M154L) on the extracellular side of the pore and the high transport H139R or AAA intracellular side mutations exhibited the blocked transport of M150L,M154L, confirming that Cu+ first interacts with the methionines during permeation. Our results show that hCTR1 elements on the intracellular side of the hCTR1 pore, including the carboxyl tail, are not essential for permeation, but serve to regulate the rate of copper entry.  相似文献   

3.
Human copper transporter 1 (hCTR1) is the major high affinity copper influx transporter in mammalian cells that also mediates uptake of the cancer chemotherapeutic agent cisplatin. A low resolution structure of hCTR1 determined by cryoelectron microscopy was recently published. Several protein structure simulation techniques were used to create an all-atom model of this important transporter using the low resolution structure as a starting point. The all-atom model provides new insights into the roles of specific residues of the N-terminal extracellular domain, the intracellular loop, and C-terminal region in metal ion transport. In particular, the model demonstrates that the central region of the pore contains four sets of methionine triads in the intramembranous region. The structure confirms that two triads of methionine residues delineate the intramembranous region of the transporter, and further identifies two additional methionine triads that are located in the extracellular N-terminal part of the transporter. Together, the four triads create a structure that promotes stepwise transport of metal ions into and then through the intramembranous channel of the transporter via transient thioether bonds to methionine residues. Putative copper-binding sites in the hCTR1 trimer were identified by a program developed by us for prediction of metal-binding sites. These sites correspond well with the known effects of mutations on the ability of the protein to transport copper and cisplatin.  相似文献   

4.
5.
Copper transporter 1 (CTR1) is a transmembrane protein that imports copper(i) into yeast and mammalian cells. Surprisingly, the protein also mediates the uptake of platinum anticancer drugs, e.g. cisplatin and carboplatin. To study the effects of several metal-binding residues/motifs of hCTR1 on the transport of both Cu(+) and cisplatin, we have constructed Hela cells that stably express a series of hCTR1 variant proteins including H22-24A, NHA, C189S, hCTR1ΔC, H139R and Y156A, and compared their abilities to regulate the accumulation and cytotoxicity of these metal compounds. Our results demonstrated that the cells expressing the hCTR1 mutants of histidine-rich motifs in the N-terminus (H22-24A, NHA) resulted in a higher basal copper level in the steady state compared to those expressing wild-type protein. However, the cellular accumulation of both copper and cisplatin in these variants was found at a similar level to that of wild type when incubated with an excess of metal compounds (100 μM). The cells expressing hCTR1 variants of H139R and Y156A exhibit lower capacities towards accumulation of copper but not cisplatin. Significantly, cells with the C189S variant partially retained the ability of the wild-type hCTR1 protein to accumulate both copper and cisplatin, while for cells expressing the C-terminus truncated variant of hCTR1 (hCTR1ΔC) this ability was absolutely abolished, suggesting that this motif is crucial for the function of the transporter.  相似文献   

6.
Copper is essential for human growth and survival. Enterocytes mediate the absorption of dietary copper from the intestinal lumen into blood as well as utilizing copper for their biosynthetic needs. Currently, the pathways for copper entry into enterocytes remain poorly understood. We demonstrate that the basolateral copper uptake into intestinal cells greatly exceeds the apical uptake. The basolateral but not apical transport is mediated by the high affinity copper transporter hCTR1. This unanticipated conclusion is supported by cell surface biotinylation and confocal microscopy of endogenous hCTR1 in Caco2 cells as well as copper influx measurements that show saturable high affinity uptake at the basolateral but not the apical membrane. Basolateral localization of hCTR1 and polarized copper uptake are also conserved in T84 cells, models for intestinal crypt cells. The lateral localization of hCTR1 seen in intestinal cell lines is recapitulated in immunohistochemical staining of mouse intestinal sections. Biochemical and functional assays reveal the basolateral localization of hCTR1 also in renal Madin-Darby canine kidney cells and opossum kidney cells. Overexpression of hCTR1 in Madin-Darby canine kidney cells results in both apical and basolateral delivery of the overexpressed protein and greatly enhanced copper uptake at both cell surfaces. We propose a model of intestinal copper uptake in which basolateral hCTR1 plays a key role in the physiologically important delivery of copper from blood to intracellular proteins, whereas its role in the initial apical uptake of dietary copper is indirect.  相似文献   

7.
Copper is an essential co-factor in many important physiological processes, but at elevated levels it is toxic to cells. Thus at both the organism and cellular level mechanisms have evolved to finely tune copper homeostasis. The protein responsible for copper entry from the circulation in most human cells is hCTR1, a small protein (190 amino acid residues) that functions as a trimer in the plasma membrane. In the present work we employ cell surface biotinylation and isotopic copper uptake studies of overexpressed hCTR1 in HEK293 cells to examine the acute (minutes) response of hCTR1 to changes in extracellular copper. We show that within 10 min of exposure to copper at 2.5 μm or higher, plasma membrane hCTR1 levels are reduced (by ∼40%), with a concomitant reduction in copper uptake rates. We are unable to detect any degradation of internalized hCTR1 in the presence of cycloheximide after up to 2 h of exposure to 0–100 μm copper. Using a reversible biotinylation assay, we quantified internalized hCTR1, which increased upon the addition of copper and corresponded to the hCTR1 lost from the surface. In addition, when extracellular copper is then removed, internalized hCTR1 is promptly (within 30 min) recycled to the plasma membrane. We have shown that in the absence of added extracellular copper, there is a small but detectable amount of internalized hCTR1 that is increased in the presence of copper. Similar studies on endogenous hCTR1 show a cell-specific response to elevated extracellular copper. Copper-dependent internalization and recycling of hCTR1 provides an acute and reversible mechanism for the regulation of cellular copper entry.Copper is an essential micronutrient and plays an important function as a co-factor for a number of cellular processes including oxidative phosphorylation, free radical detoxification, neurotransmitter synthesis, iron metabolism, and maturation of connective tissue (1). Copper in excess of cellular requirements is toxic; therefore cells have developed sophisticated mechanisms for regulating copper acquisition and secretion, thus maintaining a critical copper homeostasis (2, 3). In eukaryotes a family of transporters known as the copper transporter (Ctr) proteins mediate cellular copper uptake (4). Ctr proteins are integral membrane proteins that are structurally conserved with three membrane-spanning domains and a number of methionine rich motifs in the N terminus (5). They contain a sequence of conserved cysteine and histidine residues at or close to the C terminus and are predominantly located at the plasma membrane (6). In the yeast, Saccharomyces cerevisiae, the first high affinity copper transporters, yCtr1 and yCtr3, were identified (7, 8), and this facilitated the identification of the human copper transporter gene, hCTR1,2 by functional complementation of yeast high affinity copper uptake mutant, ctr1 (9). The mouse CTR1 is 92% identical to hCTR1 (10), and the deletion of mCTR1 results in early embryonic lethality, suggesting an essential role for the high affinity copper transporter in mammalian growth and development (11).hCTR1 has 190 amino acid residues, three membrane-spanning domains, an extracellular N terminus (of 66 amino acids), a large cytoplasmic loop (of 46 amino acid residues), and a short C-terminal tail (of 15 amino acids) and has been shown to form stable dimers and trimers (1214). The hCTR1 protein has been shown in 64Cu uptake experiments to mediate copper transport with a Km of 1–5 μm and is thought to transport the reduced form, Cu(I) (12, 13, 15). The extracellular N terminus has both N- and O-linked glycosylation at residues Asn15 and Thr27, respectively (12, 16, 17), and contains two histidine-rich regions and two methionine motifs that are thought to function in copper binding/sensing. Recent studies showed that mutation or deletion of the methionine residues closest to the first transmembrane domain (Met43 and Met45) and the conserved methionine residues in the second transmembrane domain (Met150 and Met154) had a large inhibitory effect on 64Cu uptake (18, 19). Mutational analysis provided no evidence for the tight binding of copper at any specific residues, and it was proposed that hCTR1 provided a pore for the permeation of copper across the membrane (18). Structural confirmation of such a mechanism was provided in the low resolution structure obtained by cryo-electron microscopy studies on recombinant protein (20, 21).Considerable progress has been made in understanding the biochemical, structure-functional, and molecular aspects of hCTR1-mediated copper transport, although many questions remain unanswered (22). It is also important to determine whether or not hCTR1 has a regulatory role preventing the accumulation of toxic levels of copper and maintaining cellular copper homeostasis. Previous reports on whether or not hCTR1 is involved in an acute response to elevated copper have been somewhat controversial. It has been reported that elevated extracellular copper (1–100 μm) stimulates rapid endocytosis and degradation of hCTR1-Myc-tagged protein in HEK293 cells (23), but also high copper levels had no effect on endogenous hCTR1 localization in both HeLa and Caco-2 cells (14). In a study of overexpressed hCTR1 in insect cells, no evidence was seen of internalization in response to elevated copper (24). Imaging studies have shown that the cellular location of hCTR1 varies among cell lines, CTR1 in MDCK and HEK293 cells resides mainly at the plasma membrane (13, 15, 23, 24). Endogenous hCTR1 is located in cytoplasmic vesicular compartments in HeLa, Caco-2, and HepG2 cell lines with some plasma membrane staining in Caco-2 (14). In intestinal sections, basolateral and subapical staining is seen (15).Previous studies (see above) have utilized internalization of prebound antibody (23) or imaging methods (14) to characterize the response of hCTR1 to elevated copper. In the present work we employed HEK cells overexpressing hCTR1 and used cell surface biotinylation, a sensitive and quantitative measure of CTR1 at the cell surface (15, 17). We have combined this with measurements of hCTR1-mediated 64Cu uptake as a functional measure of plasma membrane hCTR1 levels. We find that a fraction (∼40%) of hCTR1 is rapidly internalized in the presence of elevated copper and that there is a concomitant reduction in the hCTR1-mediated copper uptake rate. The internalized transporter is not degraded and can be detected in the cytosol. On removal of extracellular copper, the transporter is recycled promptly to the plasma membrane. Internalization of endogenous CTR1 is also observed in MDCK and HepG2 cells, and no reduction is seen in T47D cells. This is, to our knowledge, the first such report of copper-dependent recycling of hCTR1 in response to copper and represents an acute regulatory mechanism that reversibly modulates cellular copper entry.  相似文献   

8.
The major human copper uptake protein, hCTR1, has 190 amino acids and a predicted mass of 21 kDa. hCTR1 antibodies recognize multiple bands in SDS-PAGE centered at 35 kDa. Part of this increased mass is due to N-linked glycosylation at Asn-15. We show that in mammalian cells the N15Q mutant protein trafficked to the plasma membrane and mediated copper uptake at 75% of the rate of wild-type hCTR1. We demonstrate that the extracellular amino terminus of hCTR1 also contains O-linked polysaccharides. Glycosidase treatment that removed O-linked sugars reduced the apparent mass of hCTR1 or N15Q mutant protein by 1-2 kDa. Expression of amino-terminal truncations and alanine substitution mutants of hCTR1 in HEK293 and MDCK cells localized the site of O-linked glycosylation to Thr-27. Expression of alanine substitutions at Thr-27 resulted in proteolytic cleavage of hCTR1 on the carboxyl side of the T27A mutations. This cleavage produced a 17-kDa polypeptide missing approximately the first 30 amino acids of hCTR1. Expression of wild-type hCTR1 in mutant Chinese hamster ovary cells that were unable to initiate O-glycosylation also resulted in hCTR1 cleavage to produce the 17-kDa polypeptide. The 17-kDa hCTR1 polypeptide was located in the plasma membrane and mediated copper uptake at about 50% that of the rate of wild-type hCTR1. Thus, O-linked glycosylation at Thr-27 is necessary to prevent proteolytic cleavage that removes half of the extracellular amino terminus of hCTR1 and significantly impairs transport activity of the remaining polypeptide.  相似文献   

9.
We have expressed hCTR1, the human copper transporter, in Sf9 cells using a baculovirus-mediated expression system, and we observed greatly enhanced copper uptake. Western blots showed that the protein is delivered to the plasma membrane, where it mediates saturable copper uptake with a K(m) of approximately 3.5 microm. We also expressed functional transporters where the N-linked glycosylation sites were substituted, and we provided evidence for the extracellular location of the amino terminus. Accessibility of amino-terminal FLAG epitope to antibody prior to permeabilization and of carboxyl-terminal FLAG only after permeabilization confirmed the extracellular location of the amino terminus and established the intracellular location of the carboxyl terminus. Tryptic digestion of hCTR1 occurred within the cytoplasmic loop and generated a 10-Da carboxyl-terminal peptide; cleavage was prevented by the presence of copper. hCTR1 mutants where Cys-161 and Cys-189, the two native cysteines, were replaced with serines also mediated copper uptake, indicating that neither cysteine residue was essential for transport. However, the mutants provided evidence that these residues may stabilize hCTR1 oligomerization. Western blots of hCTR1 in Sf9 cells showed expression levels 100-fold higher than in mammalian (HepG2) cells. The high level of functional expression and the low level of endogenous copper uptake will enable future structure-function analysis of this important protein.  相似文献   

10.
Møller LB  Petersen C  Lund C  Horn N 《Gene》2000,257(1):13-22
The human hCTR1 gene was originally identified by its ability to complement a yeast mutant deficient in high-affinity copper uptake (Zhou, B., Gitschier, J., 1997. A human gene for copper uptake identified by complementation in yeast. Proc. Natl. Acad. Sci. USA 94, 7481-7486). Here, we have determined the DNA sequence of the exon-intron borders of the hCTR1 structural gene and report that the coding sequence is disrupted by three introns, all of which comply with the GT/AG rule. Furthermore, human fibroblasts, transfected with hCTR1 cDNA, were shown to have a dramatically increased capacity for (64)Cu uptake, indicating that the hCtr1 protein is functional in copper uptake in human cells. In contrast, no evidence was found for involvement of the hCTR2 gene product in copper uptake. Finally, we have identified a highly homologous processed pseudogene, hCTR1psi, which was localized to chromosome 3q25/26. The processed gene was found to be transcribed, but due to a frame shift mutation, it only had the potential to encode a truncated protein of 95 amino acid residues, and cells transfected with hCTR1psi DNA showed no increase of (64)Cu uptake.  相似文献   

11.
Cellular copper uptake is a prerequisite for the biosynthesis of many copper-dependent enzymes; disruption of copper uptake results in embryonic lethality. In humans, copper is transported into cells by hCTR1, a membrane protein, composed of 190 amino acids with only three trans-membrane segments. To provide insight into the mechanism of this unusual transporter, we characterized the functional properties of various hCTR1 mutants stably expressed in Sf9 cells. Most single amino acid substitutions involving charged and potential copper-coordinating residues have some influence on the V(max) and K(m) values for copper uptake but do not greatly alter hCTR1-mediated copper transport. However, there were two notable exceptions. Replacement of Tyr(156) with Ala greatly reduced the maximal transport rate without effect on the K(m) value for copper. Also, replacement of His(139) in the second trans-membrane segment with Arg caused a dramatic increase in the rate of copper uptake and a large increase in the K(m) value for copper. This effect was not seen with an Ala replacement, pointing to the role of a positive charge in modulating copper exit from the pathway. Truncated mutants demonstrated that the deletion of a large portion of the N-terminal domain only slightly decreased the apparent K(m) value for copper and decreased the rate of transport. Similar effects were observed with the removal of the last 11 C-terminal residues. The results suggested that the N and C termini, although nonessential for transport, may have an important role in facilitating the delivery of copper to and retrieving copper from, respectively, the translocation pathway. A model of how hCTR1 mediates copper entry into cells was proposed that included a rate-limiting site in the pore close to the intracellular exit.  相似文献   

12.
The high-affinity glycine betaine uptake system BetP, an osmosensing and osmoregulated sodium-coupled symporter from Corynebacterium glutamicum, was overexpressed in Escherichia coli with an N-terminal StrepII-tag, solubilized in beta-dodecylmaltoside and purified by streptactin affinity chromatography. Analytical ultracentrifugation indicated that BetP forms trimers in detergent solution. Detergent-solubilized BetP can be reconstituted into proteoliposomes without loss of function, suggesting that BetP is a trimer in the bacterial membrane. Reconstitution with E.coli polar lipids produced 2D crystals with unit cell parameters of 182A x 154A, gamma=90 degrees exhibiting p22(1)2(1) symmetry. Electron cryo-microscopy yielded a projection map at 7.5A. The unit cell contains four non-crystallographic trimers of BetP. Within each monomer, ten to 12 density peaks characteristic of transmembrane alpha-helices surround low-density regions that define potential transport pathways. Small but significant differences between the three monomers indicate that the trimer does not have exact 3-fold symmetry. The observed differences may be due to crystal packing, or they may reflect different functional states of the transporter, related to osmosensing and osmoregulation. The projection map of BetP shows no clear resemblance to other secondary transporters of known structure.  相似文献   

13.
The major copper influx transporter, copper transporter 1 (hCTR1), controls the cellular accumulation of cisplatin in mammalian cells. The goal of this study was to determine the pattern of hCTR1 expression in normal and malignant human tissues. Tissue arrays were stained with an antibody specific for hCTR1 using standard immunohistochemical techniques. Particularly strong staining was noted in the alpha cells of the pancreatic islets, enteroendocrine cells of the gastric mucosa and bronchioles, C cells of the thyroid, and a subset of cells in the anterior pituitary. Frequency and intensity of hCTR1 staining in malignant tissues reflected the levels found in their normal tissue counterparts. For example, neither normal prostate nor prostate cancers expressed hCTR1, whereas it was commonly expressed in both normal colonic epithelium and in colon carcinomas. Strong staining was observed in a limited number of cases of carcinoid tumors, Ewing's sarcoma, and undifferentiated carcinomas. Although all tissues require copper, expression of hCTR1 was highly variable among normal tissues and among the major human malignancies, with the highest levels found in enteroendocrine cells. No hCTR1 expression was found in several common types of cancer, suggesting that hCTR1 expression is not commonly enhanced by transformation.  相似文献   

14.
Copper is an essential but potentially harmful trace element involved in many enzymatic processes that require redox chemistry. Cellular copper homeostasis in mammals is predominantly maintained by posttranslational regulation of copper import and export through the copper import proteins hCTR1 and hCTR2 and the copper exporters ATP7A and ATP7B. Regulation of copper uptake and export is achieved by modulation of transporter expression, copper-dependent and copper-independent trafficking of the different transporters, posttranslational modifications, and interacting proteins. In this review we systematically discuss the contribution of these different mechanisms to the regulation of copper transport.  相似文献   

15.
Iron (Fe), copper (Cu), and zinc (Zn) fulfill various essential biological functions and are vital for all living organisms. They play important roles in oxygen transport, cell growth and differentiation, neurotransmitter synthesis, myelination, and synaptic transmission. Because of their role in many critical functions, they are commonly used in food fortification and supplementation strategies globally. To determine the involvement of divalent metal transporter 1 (DMT1) and human copper transporter 1 (hCTR1) on Fe, Cu, and Zn uptake, Caco-2 cells were transfected with four different shRNA plasmids to selectively inhibit DMT1 or hCTR1 transporter expression. Fe and Cu uptake and total Zn content measurements were performed in shRNA-DMT1 and shRNA-hCTR1 cells. Both shRNA-DMT1 and shRNA-hCTR1 cells had lower apical Fe uptake (a decrease of 51% and 41%, respectively), Cu uptake (a decrease of 25.8% and 38.5%, respectively), and Zn content (a decrease of 23.1% and 22.7%, respectively) compared to control cells. These results confirm that DMT1 is involved in active transport of Fe, Cu, and Zn although Zn showed a different relative capacity. These results also show that hCTR1 is able to transport Fe and Zn.  相似文献   

16.
Gated gap junction channels are important cellular conduits for establishing and maintaining intercellular communication. The three-dimensional structure of a mutant human connexin 26 (Cx26M34A) by electron cryocrystallography revealed a plug-like density in the channel pore suggesting that physical blockage of the pore may be one mechanism of closure (Oshima et al. 2007, Proc Natl Acad Sci USA 104: 10034-10039). However, it remains to be determined what part of the sequence contributes to the plug. Here, we present the projection structure of an N-terminus deletion of Cx26M34A missing amino acids 2 to 7 (Cx26M34Adel2-7) crystallized in the same two-dimensional crystal form. A 10 A resolution projection map of Cx26M34Adel2-7 revealed that the plug density was dramatically reduced in comparison with that found in full-length Cx26 channel. The difference map between the deletion and full-length Cx26M34A channels strongly suggests that the N-terminus of connexin contributes to the plug for the physical closure of gap junction channels.  相似文献   

17.
Copper(I) is an essential metal for all life forms. Though Cu(II) is the most abundant and stable state, its reduction to Cu(I) via an unclear mechanism is prerequisite for its bioutilization. In eukaryotes, the copper transporter-1 (CTR1) is the primary high-affinity copper importer, although its mechanism and role in Cu(II) reduction remain uncharacterized. Here we show that extracellular amino-terminus of human CTR1 contains two methionine-histidine clusters and neighboring aspartates that distinctly bind Cu(I) and Cu(II) preceding its import. We determined that hCTR1 localizes at the basolateral membrane of polarized MDCK-II cells and that its endocytosis to Common-Recycling-Endosomes is regulated by reduction of Cu(II) to Cu(I) and subsequent Cu(I) coordination by the methionine cluster. We demonstrate the transient binding of both Cu(II) and Cu(I) during the reduction process is facilitated by aspartates that also act as another crucial determinant of hCTR1 endocytosis. Mutating the first Methionine cluster (7Met-Gly-Met9) and Asp13 abrogated copper uptake and endocytosis upon copper treatment. This phenotype could be reverted by treating the cells with reduced and nonreoxidizable Cu(I). We show that histidine clusters, on other hand, bind Cu(II) and are crucial for hCTR1 functioning at limiting copper. Finally, we show that two N-terminal His-Met-Asp clusters exhibit functional complementarity, as the second cluster is sufficient to preserve copper-induced CTR1 endocytosis upon complete deletion of the first cluster. We propose a novel and detailed mechanism by which the two His-Met-Asp residues of hCTR1 amino-terminus not only bind copper, but also maintain its reduced state, crucial for intracellular uptake.  相似文献   

18.
19.
Human copper transporter 1 (hCTR1) is the high-affinity copper influx transporter in mammalian cells that also mediates the influx of cisplatin. Loss of hCTR1 expression has been implicated in the development of resistance to this cancer chemotherapeutic agent. It has turned out to be very difficult to develop antibodies to hCTR1 and polyclonal antibodies produced by different laboratories have yielded conflicting results. We have characterized a newly-available rabbit monoclonal antibody that reacts with an epitope on the N-terminal end of hCTR1 that now permits rigorous identification and quantification of hCTR1 using Western blot analysis. Postnuclear membrane (PNM) preparations made from cells engineered to express high levels of myc-tagged hCTR1, and cells in which the expression of hCTR1 was knocked down, were used to characterize the antibody. The identity of the bands detected was confirmed by immunoprecipitation, surface biotinylation and deglycosylation of myc-tagged hCTR1. Despite the specificity expected of a monoclonal antibody, the anti-hCTR1 detected a variety of bands in whole cell lysates (WCL), which made it difficult to quantify hCTR1. This problem was overcome by isolating post-nuclear membranes and using these for further analysis. Three bands were identified using this antibody in PNM preparations that migrated at 28, 33–35 and 62–64 kDa. Multiple lines of evidence presented here suggest that the 33–35 and 62–64 kDa bands are hCTR1 whereas the 28 kDa band is a cross-reacting protein of unknown identify. The 33–35 kDa band is consistent with the expected MW of the glycosylated hCTR1 monomer. This analysis now permits rigorous identification and quantification of hCTR1.  相似文献   

20.
The structure of thin three-dimensional crystals of the light-harvesting chlorophyll a/b protein complex, an integral membrane protein from the photosynthetic membrane of chloroplasts, has been determined at 7 A (1 A = 0.1 nm) resolution in projection. The structure analysis was carried out by image processing of low-dose electron micrographs, and electron diffraction of thin three-dimensional crystals preserved in tannin. The three-dimensional crystals appeared to be stacks of two-dimensional crystals having p321 symmetry. Results of the image analysis indicated that the crystals were disordered, due to random translational displacement of stacked layers. This was established by a translation search routine that used the low-resolution projection of a single layer as a reference. The reference map was derived from the symmetrized average of two images that showed features consistent with the projected structure of negatively stained two-dimensional crystals. The phase shift resulting from the displacement of each layer was corrected. Phase shifts were then refined by minimizing the phase residual, bringing all layers to the same phase origin. Refined phases from different images were in agreement and reliable to 7 A resolution. A projection map was generated from the averaged phases and electron diffraction amplitudes. The map showed that the complex was a trimer composed of three protein monomers related by 3-fold symmetry. The projected density within the protein monomer suggested membrane-spanning alpha-helices roughly perpendicular to the crystal plane. The density in the centre and on the periphery of the trimeric complex was lower than that of the protein, indicating that this region contained low-density matter, such as lipids and antenna chlorophylls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号