首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endoperoxide antimalarials based on the ancient Chinese drug Qinghaosu (artemisinin) are currently our major hope in the fight against drug-resistant malaria. Rational drug design based on artemisinin and its analogues is slow as the mechanism of action of these antimalarials is not clear. Here we report that these drugs, at least in part, exert their effect by interfering with the plasmodial hemoglobin catabolic pathway and inhibition of heme polymerization. In an in vitro experiment we observed inhibition of digestive vacuole proteolytic activity of malarial parasite by artemisinin. These observations were further confirmed by ex vivo experiments showing accumulation of hemoglobin in the parasites treated with artemisinin, suggesting inhibition of hemoglobin degradation. We found artemisinin to be a potent inhibitor of heme polymerization activity mediated by Plasmodium yoelii lysates as well as Plasmodium falciparum histidine-rich protein II. Interaction of artemisinin with the purified malarial hemozoin in vitro resulted in the concentration-dependent breakdown of the malaria pigment. Our results presented here may explain the selective and rapid toxicity of these drugs on mature, hemozoin-containing, stages of malarial parasite. Since artemisinin and its analogues appear to have similar molecular targets as chloroquine despite having different structures, they can potentially bypass the quinoline resistance machinery of the malarial parasite, which causes sublethal accumulation of these drugs in resistant strains.  相似文献   

2.
Artemisinin derivatives appear to mediate their anti-malarial through an initial redox-mediated reaction. Heme, inorganic iron, and hemoglobin have all been implicated as the key molecules that activate artemisinins. The reactions of artemisinin with different redox forms of heme, ferrous iron, and deoxygenated and oxygenated hemoglobin were analyzed under similar in vitro conditions. Heme reacted with artemisinin much more efficiently than the other iron-containing molecules, supporting the role of redox active heme as the primary activator of artemisinin.  相似文献   

3.
Artemisinin Enhances Heme-Catalysed Oxidation of Lipid Membranes   总被引:15,自引:0,他引:15  
Artemisinin, a sesquiterpene endoperoxide derived from a traditional Chinese herbal remedy for fevers, is a promising new antimalarial drug, particularly useful against multidrug resistant strains of P. falciparum. Despite widespread clinical use, its mode of action remains uncertain. We investigated whether its antimalarial properties could be explained by an ability to enhance the redox activity of heme, formed in the parasite food vacuole from digested hemoglobin. Artemisinin caused a sustained threefold increase, followed by a gradual decline, in the peroxidase activity of heme. It also enhanced the ability of heme to oxidize membrane lipids about sixfold. An unexpected finding was the potentiation of heme-catalysed membrane lipid oxidation by Vitamin E. The changes in redox-catalytic activity induced by artemisinin were paralleled by major changes in the absorption spectrum of heme, culminating in loss of the Soret band. We propose a model in which artemisinin binds irreversibly to heme in the parasite food vacuole, preventing its polymerization to chemically inert hemozoin, and promoting heme-catalysed oxidation of the vacuolar membrane by molecular oxygen, which leads, ultimately, to vacuole rupture and parasite autodigestion. © 1997 Elsevier Science Inc.  相似文献   

4.
5.
J M Rifkind  L D Lauer  S C Chiang  N C Li 《Biochemistry》1976,15(24):5337-5343
Oxidation studies of hemoglobin by Cu(II) indicate that for horse hemoglobin, up to a Cu(II)/heme molar ratio of 0.5, all of the Cu(II) added is used to rapidly oxidize the heme. On the other hand, most of the Cu(II) added to human hemoglobin at low Cu(II)/heme molar ratios is unable to oxidize the heme. Only at Cu(II)/heme molar ratios greater than 0.5 does the amount of oxidation per added Cu(II) approach that of horse hemoglobin. At the same time, binding studies indicate that human hemoglobin has an additional binding site involving one copper for every two hemes, which has a higher copper affinity than the single horse hemoglobin binding site. The Cu(II) oxidation of human hemoglobin is explained utilizing this additional binding site by a mechanism where a transfer of electrons cannot occur between the heme and the Cu(II) bound to the high affinity human binding site. The electron transfer must involve the Cu(II) bound to the lower affinity human hemoglobin binding site, which is similar to the only horse hemoglobin site. The involvement of beta-2 histidine in the binding of this additional copper is indicated by a comparison of the amino acid sequences of various hemoglobins which possess the additional site, with the amino acid sequences of hemoglobins which do not possess the additional site. Zn(II), Hg(II), and N-ethylmaleimide (NEM) are found to decrease the Cu(II) oxidation of hemoglobin. The sulfhydryl reagents, Hg(II) and NEM, produce a very dramatic decrease in the rate of oxidation, which can only be explained by an effect on the rate for the actual transfer of electrons between the Cu(II) and the Fe(II). The effect of Zn(II) is much smaller and can, for the most part, be explained by the increased oxygen affinity, which affects the ligand dissociation process that must precede the electron transfer process.  相似文献   

6.
We report automated molecular docking of artemisinin to heme. The effects of atomic charges, and ligand and heme structures on the docking results were investigated. Several charge schemes for both artemisinin and heme, artemisinin structures taken from various optimization methods and X-ray data, and five heme models, were employed for this purpose. The docking showed that artemisinin approaches heme by pointing O1 at the endoperoxide linkage toward the iron center, a mechanism that is controlled by steric hindrance. This result differs from that reported by Shukla et al. which suggested that heme binds with artemisinin at the O2 position. The docking results also depended on the structures of both artemisinin and heme. Moreover, the atomic charges of heme have a significant effect on the docking configurations.  相似文献   

7.
Pathogenic trypanosomatid parasites are auxotrophic for heme and they must scavenge it from their human host. Trypanosoma brucei (responsible for sleeping sickness) and Leishmania (leishmaniasis) can fulfill heme requirement by receptor‐mediated endocytosis of host hemoglobin. However, the mechanism used to transfer hemoglobin‐derived heme from the lysosome to the cytosol remains unknown. Here we provide strong evidence that HRG transporters mediate this essential step. In bloodstream T. brucei, TbHRG localizes to the endolysosomal compartment where endocytosed hemoglobin is known to be trafficked. TbHRG overexpression increases cytosolic heme levels whereas its downregulation is lethal for the parasites unless they express the Leishmania orthologue LmHR1. LmHR1, known to be an essential plasma membrane protein responsible for the uptake of free heme in Leishmania, is also present in its acidic compartments which colocalize with endocytosed hemoglobin. Moreover, LmHR1 levels modulated by its overexpression or the abrogation of an LmHR1 allele correlate with the mitochondrial bioavailability of heme from lysosomal hemoglobin. In addition, using heme auxotrophic yeasts we show that TbHRG and LmHR1 transport hemoglobin‐derived heme from the digestive vacuole to the cytosol. Collectively, these results show that trypanosomatid parasites rescue heme from endocytosed hemoglobin through endolysosomal HRG transporters, which could constitute novel drug targets.  相似文献   

8.
Malaria is an infectious disease caused by the unicellular parasite Plasmodium sp. Currently, the malaria parasite is becoming resistant to the traditional pharmacological alternatives, which are ineffective. Artemisinin is the most recent advance in the chemotherapy of malaria. Since it has been proven that artemisinin may act on intracellular heme, we have undertaken a systematic study of several interactions and arrangements between artemisinin and heme. Density Functional Theory calculations were employed to calculate interaction energies, electronic states, and geometrical arrangements for the complex between the heme group and artemisinin. The results show that the interaction between the heme group and artemisinin at long distances occurs through a complex where the iron atom of the heme group retains its electronic features, leading to a quintet state as the most stable one. However, for interaction at short distances, due to artemisinin reduction by the heme group, the most stable complex has a septet spin state. These results suggest that a thermodynamically favorable interaction between artemisinin and heme may happen.  相似文献   

9.
The influence of ammonium peroxodisulphate on the functional state of human hemoglobin was studied. The investigation techniques included: laser photolysis, spectrophotometry and pH measurements. Two different actions of the peroxodisulphate ions upon hemoglobin seem to occur; a) a proton consuming process and an increase of the 4th CO-binding rate constant, l'4, but not yet oxidation of the heme iron (when S2O8(2-) and heme concentrations were of the same order), and b) a marked oxidation effect (when S2O8(2-) was added in excess).  相似文献   

10.
Primary chick embryo liver cells, which had been previously cultured in Eagle's medium containing 10% fetal bovine serum, had the same characteristics (inducibility of delta-aminolevulinic acid synthetase and synthesis of plasma proteins) when cultured in a completely defined Ham F-12 medium containing insulin. Insulin was active in the physiological range; 2 to 3 nM were sufficient to increase the induced delta-aminolevulinic acid synthetase to 50% of the maximum effect obtained with a saturating amount of insulin (30 nM). Serum albumin added to the Ham-insulin medium caused protoporphyrin but not uroporphyrin, generated in the cultured liver cells, to be transferred to the medium. As little as 10 mug of human serum albumin per ml caused the transfer of one-half of the protoporphyrin. Bovine serum albumin was only about 1/30 as effective. A spectrofluorometric method and calculation procedure are described for quantitation, in the nanomolar range, of total porphyrin and the percentage of this that is protoporphyrin or uroporphyrin plus coproporphyrin. The method is satisfactory for the measurement of porphyrins generated by 1 mg wet weight of cells in culture in 20 hours. Heme (0.1 to 0.3 muM), when added to the medium as hemin, human hemoglobin, or chicken hemoglobin, specifically inhibited the induction of delta-aminolevulinic acid synthetase by one-half. This high sensitivity for heme was observed under conditions in which the defined medium was free of serum and where a chelator of iron was added to the medium to diminish the synthesis of endogenous heme. Heme endogenously generated from exogenous delta-aminolevulinic acid also inhibited the induction; chelators of iron prevented this inhibition. The migration of heme from the mitochondria to other portions of the cell is discussed in terms of the affinities of different proteins for heme. A hypothesis of a steady state of liver heme metabolism, controlled by the concentration of "free" heme, is presented. The different effects of heme on the synthesis of a number of proteins are summarized.  相似文献   

11.
Hemin treatment of mouse Friend virus-transformed cells in cultured caused a dose-dependent increase in hemoglobin synthesis. By the addition of radioactively labeled hemin and by the analysis of the radioactive heme in hemoglobin, only 60 to 70% of heme in the newly synthesized hemoglobin was accounted for by the exogenously added hemin. In keeping with this finding, hemin treatment increased the activity of two enzymes in the heme biosynthetic activity, i.e. delta-aminolevulinate (ALA) dehydratase and uroporphyrinogen-I (URO) synthase in these cells. Incorporation of [2(-14C)]glycine, [14C]ALA, and 59Fe into heme was also significantly increased in the cells treated with hemin, suggesting that essentially all enzyme activities in the heme biosynethetic pathway were increased after hemin treatment. These results indicate that heme in the newly synthesized hemoglobin in hemin-treated Friend cells derives both from hemin added to the culture and from heme synthesized intracellularly. In addition, these results suggest that the stimulation of heme biosynthesis by hemin in Friend virus-transformed cells is in contrast to the hemin repression of heme biosynthesis in liver cells.  相似文献   

12.
The utilization by Serratia marcescens of heme bound to hemoglobin requires HasA, an extracellular heme-binding protein. This unique heme acquisition system was studied in an Escherichia coli hemA mutant that was a heme auxotroph. We identified a 92-kDa iron-regulated S. marcescens outer membrane protein, HasR, which alone enabled the E. coli hemA mutant to grow on heme or hemoglobin as a porphyrin source. The concomitant secretion of HasA by the HasR-producing hemA mutant greatly facilitates the acquisition of heme from hemoglobin. This is the first report of a synergy between an outer membrane protein and an extracellular heme-binding protein, HasA, acting as a heme carrier, which we termed a hemophore.  相似文献   

13.
Drugs are primary weapons for reducing malaria in human populations. However emergence of resistant parasites has repeatedly curtailed the lifespan of each drug that is developed and deployed. Currently the most effective anti-malarial is artemisinin, which is extracted from the leaves of Artemisia annua. Due to poor pharmacokinetic properties and prudent efforts to curtail resistance to monotherapies, artemisinin is prescribed only in combination with other anti-malarials composing an Artemisinin Combination Therapy (ACT). Low yield in the plant, and the added cost of secondary anti-malarials in the ACT, make artemisinin costly for the developing world. As an alternative, we compared the efficacy of oral delivery of the dried leaves of whole plant (WP) A. annua to a comparable dose of pure artemisinin in a rodent malaria model (Plasmodium chabaudi). We found that a single dose of WP (containing 24 mg/kg artemisinin) reduces parasitemia more effectively than a comparable dose of purified drug. This increased efficacy may result from a documented 40-fold increase in the bioavailability of artemisinin in the blood of mice fed the whole plant, in comparison to those administered synthetic drug. Synergistic benefits may derive from the presence of other anti-malarial compounds in A. annua. If shown to be clinically efficacious, well-tolerated, and compatible with the public health imperative of forestalling evolution of drug resistance, inexpensive, locally grown and processed A. annua might prove to be an effective addition to the global effort to reduce malaria morbidity and mortality.  相似文献   

14.
Kapetanaki S  Varotsis C 《FEBS letters》2000,474(2-3):238-241
Fourier transform infrared (FTIR) and resonance Raman (RR) spectroscopies have been employed to investigate the reductive cleavage of the O-O bond of the endoperoxide moiety of the antimalarial drug artemisinin and its analog trioxane alcohol by hemin dimer. We have recorded FTIR spectra in the nu(O-O) and nu(as)(Fe-O-Fe) regions of artemisinin and of the hemin dimer that show the cleavage of the endoperoxide and that of the hemin dimer, respectively. We observed similar results in the trioxane alcohol/hemin dimer reaction. The RR spectrum of the artemisinin/hemin dimer reaction displays a vibrational mode at 850 cm(-1) that shifts to 818 cm(-1) when the experiment is repeated with (18)O-O(18) endoperoxide enriched trioxane alcohol. The frequency of this vibration and the magnitude of the (18)O-O(18) isotopic shift led us to assign the 850 cm(-1) mode to the Fe(IV) = O stretching vibration of a ferryl-xoxo heme intermediate that occurs in the artemisinin/hemin dimer and trioxane alcohol/hemin reactions. These results provide the first direct characterization of the antimalarial mode of action of artemisinin and its trioxane analog, and suggest that artemisinin appears to react with heme molecules that have been incorporated into hemozoin and subsequently the heme performs cytochrome P450-type chemistry.  相似文献   

15.
Following our search for novel compounds with high antimalarial activity, a series of artemisinin (QHS) derivatives containing a ferrocenic nucleus was prepared and tested in vitro against Plasmodium falciparum strains. Two new metallocenic derivatives (1 and 3) were found as potent as QHS. All compounds showed a capacity to bind with ferroprotoporphyrin IX. A decrease in the Soret band absorbance of ferroprotoporphyrin IX, resulting from the addition of different drugs concentrations, was shown. The association stoichiometry of compounds to ferroprotoporphyrin IX appears to be 1:2 at equilibrium, with an intermediate 1:1 complexation. These results appear to strengthen the role of adducts between artemisinin derivatives and heme in generation of artemisinin radicals. Such interaction of artemisinin ferrocenyl derivatives with ferroprotoporphyrin IX and its biological significance could form a basis in future drug development.  相似文献   

16.
Heme metabolism of Plasmodium is a major antimalarial target   总被引:1,自引:0,他引:1  
The malarial parasite manifests unique features of heme metabolism. In the intraerythrocyte stage it utilizes the host hemoglobin to generate amino acids for its own protein synthesis, but polymerizes the acquired heme as a mechanism for detoxification. At the same time the parasite synthesizes heme de novo for metabolic use. The heme biosynthetic pathway of the parasite is similar to that of hepatocytes and erythrocytes. However, while the parasite makes its own delta-aminolevulinate (ALA) synthase that is immunochemically different from that of the host, it imports ALA dehydrase and perhaps the subsequent enzymes of the pathway from the host red cell. Many schizonticidal drugs such as chloroquine and artemisinin act by interfering with the heme metabolism of the parasite and there is scope to design new molecules based on the unique features of this metabolic machinery in the parasite.  相似文献   

17.
Heme (Fe2+ protoporphyrin IX) is an essential molecule that has been implicated the potent antimalarial action of artemisinin and its derivatives, although the source and nature of the heme remain controversial. Artemisinins also exhibit selective cytotoxicity against cancer cells in vitro and in vivo. We demonstrate that intracellular heme is the physiologically relevant mediator of the cytotoxic effects of artemisinins. Increasing intracellular heme synthesis through the addition of aminolevulinic acid, protoporphyrin IX, or transferrin-bound iron increased the cytotoxicity of dihydroartemisinin, while decreasing heme synthesis through the addition of succinyl acetone decreased its cytotoxic activity. A simple and robust high throughput assay was developed to screen chemical compounds that were capable of interacting with heme. A natural products library was screened which identified the compound coralyne, in addition to artemisinin, as a heme interacting compound with heme synthesis dependent cytotoxic activity. These results indicate that cellular heme may serve a general target for the development of both anti-parasitic and anti-cancer therapeutics.  相似文献   

18.
Binding of human hemoglobin by Haemophilus influenzae   总被引:8,自引:0,他引:8  
Abstract Binding of biotinylated human hemoglobin to Haemophilus influenzae was detected when organisms were grown in heme-deplete, but not heme-replete, conditions. Hemoglobin binding was completely inhibited by a 100-fold excess of unlabelled human hemoglobin or human hemoglobin complexed with human haptoglobin. Binding was only partially inhibited by rat hemoglobin, bovine hemoglobin, human globin, and bovine globin, and not at all by heme, human serum albumin, bovine serum albumin, human transferrin, or myoglobin. Hemoglobin binding was saturable at 16–20 ng of hemoglobin per 109 cfu. Binding of human hemoglobin was detected in serotypes a-f and serologically non-typable strains of H. influenzae , as well as Haemophilus haemolyticus but not Haemophilus parainfluenzae, Haemophilus aphrophilus, Haemophilus parahaemolyticus , or Escherichia coli .  相似文献   

19.
为了从原子水平上揭示青蒿素及其类似物的结构与抗疟活性之间的关系,运用密度泛函理论DFT方法,在B3LYP/6-31G*水平上对青蒿素及其类似物二氢青蒿素、蒿甲醚和青蒿琥酯的结构和性质进行了理论计算。从分子的平衡构型、Wiberg键级、溶剂化能、偶极矩和静电势等方面分析了青蒿素及其类似物的抗疟构效关系。结果表明,青蒿素及其类似物结构中七元环上的过氧桥键、醚氧键以及六元环上的内酯结构是其抗疟作用的关键活性位,过氧桥键处负的静电势越多,青蒿素与血红素的相互作用越强,分子的抗疟活性越强。理论预测四个药物分子的抗疟活性顺序为:青蒿素<二氢青蒿素<蒿甲醚<青蒿琥酯,与实验活性结果一致。  相似文献   

20.
Plasmodium falciparum malaria is a major global health problem, causing approximately 780,000 deaths each year. In response to the spreading of P. falciparum drug resistance, WHO recommended in 2001 to use artemisinin derivatives in combination with a partner drug (called ACT) as first-line treatment for uncomplicated falciparum malaria, and most malaria-endemic countries have since changed their treatment policies accordingly. Currently, ACT are often the last treatments that can effectively and rapidly cure P. falciparum infections permitting to significantly decrease the mortality and the morbidity due to malaria. However, alarming signs of emerging resistance to artemisinin derivatives along the Thai-Cambodian border are of major concern. Through long-term in vivo pressures, we have been able to select a murine malaria model resistant to artemisinins. We demonstrated that the resistance of Plasmodium to artemisinin-based compounds depends on alterations of heme metabolism and on a loss of hemozoin formation linked to the down-expression of the recently identified Heme Detoxification Protein (HDP). These artemisinins resistant strains could be able to detoxify the free heme by an alternative catabolism pathway involving glutathione (GSH)-mediation. Finally, we confirmed that artemisinins act also like quinolines against Plasmodium via hemozoin production inhibition. The work proposed here described the mechanism of action of this class of molecules and the resistance to artemisinins of this model. These results should help both to reinforce the artemisinins activity and avoid emergence and spread of endoperoxides resistance by focusing in adequate drug partners design. Such considerations appear crucial in the current context of early artemisinin resistance in Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号