首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 5 毫秒
1.
Skeletal muscles are formed from two cell lineages, myogenic and fibroblastic. Mesoderm-derived myogenic progenitors form muscle cells whereas fibroblastic cells give rise to the supportive connective tissue of skeletal muscles, such as the tendons and perimysium. It remains unknown how myogenic and fibroblastic cell-cell interactions affect cell fate determination and the organization of skeletal muscle. In the present study, we investigated the functional significance of cell-cell interactions in regulating skeletal muscle development. Our study shows that cranial neural crest (CNC) cells give rise to the fibroblastic cells of the tongue skeletal muscle in mice. Loss of Tgfbr2 in CNC cells (Wnt1-Cre;Tgfbr2flox/flox) results in microglossia with reduced Scleraxis and Fgf10 expression as well as decreased myogenic cell proliferation, reduced cell number and disorganized tongue muscles. Furthermore, TGF-β2 beads induced the expression of Scleraxis in tongue explant cultures. The addition of FGF10 rescued the muscle cell number in Wnt1-Cre;Tgfbr2flox/flox mice. Thus, TGF-β induced FGF10 signaling has a critical function in regulating tissue-tissue interaction during tongue skeletal muscle development.  相似文献   

2.
During craniofacial development, Meckel's cartilage and the mandible bone derive from the first branchial arch, and their development depends upon the contribution of cranial neural crest (CNC) cells. We previously demonstrated that conditional inactivation of Tgfbr2 in the neural crest of mice (Tgfbr2fl/fl;Wnt1-Cre) results in severe defects in mandibular development, although the specific cellular and molecular mechanisms by which TGF-β signaling regulates the fate of CNC cells during mandibular development remain unknown. We show here that loss of Tgfbr2 does not affect the migration of CNC cells during mandibular development. TGF-β signaling is specifically required for cell proliferation in Meckel's cartilage and the mandibular anlagen and for the formation of the coronoid, condyle and angular processes. TGF-β-mediated connective tissue growth factor (CTGF) signaling is critical for CNC cell proliferation. Exogenous CTGF rescues the cell proliferation defect in Meckel's cartilage of Tgfbr2fl/fl;Wnt1-Cre mutants, demonstrating the biological significance of this signaling cascade in chondrogenesis during mandibular development. Furthermore, TGF-β signaling controls Msx1 expression to regulate mandibular osteogenesis as Msx1 expression is significantly reduced in Tgfbr2fl/fl;Wnt1-Cre mutants. Collectively, our data suggest that there are differential signal cascades in response to TGF-β to control chondrogenesis and osteogenesis during mandibular development.  相似文献   

3.
P311 is an 8-kDa protein originally found in neurons and muscle. We recently showed that expression of P311 in NIH 3T3 cells induced a myofibroblast phenotype with low TGF-beta1 expression. Here we demonstrate that P311 downregulates not only TGF-beta1, but also TGF-beta2, expression, with no effect on TGF-beta3. In addition, P311 interacts with TGF-beta2 in a yeast two-hybrid system through a sequence encompassing part of the TGF-beta latent associated protein (LAP) and part of mature TGF-beta2. Coimmunoprecipitations demonstrated interaction between P311 and TGF-beta1 and 2, but not TGF-beta3. Additional coimmunoprecipitations after introducing LAP or mature TGF-beta1 into cells demonstrated P311 binding to LAP, but not to mature TGF-beta. P311 has a conserved PEST domain, which generally serves as a rapid degradation signal. Deletion of the PEST domain reversed the effect of P311 on TGF-beta isoforms. Finally, Smad3 activity was decreased in P311-expressing cells, but was corrected by exogenous TGF-beta1 treatment, which also elevated TGF-beta1 mRNA level. This suggested that P311 downregulates TGF-beta1 and 2 in part by blocking TGF-beta autoinduction.  相似文献   

4.
5.
6.
Epidermal growth factor (EGF) receptor (EGFR) is involved in various basic biochemical pathways and is thus thought to play an important role in cell migration. We examined the effect of EGF on motility, migration, and morphology of a human adenocarcinoma cell line CAC-1. EGF treatment increased the motility of cervical adenocarcinoma cells and promoted migration of the cells on fibronectin and type IV collagen. EGF induced morphological changes with lamellipodia during EGFR-mediated motility. The results of an immunoprecipitation study showed that EGF up-regulated the expression of alpha2beta1-integrin in a dose-dependent manner. EGF-induced cell migration was blocked by alpha2beta1-integrin antibody. Our results also showed that EGF treatment stimulated the level of tyrosine dephosphorylation of FAK, which is required for EGF-induced changes in motility, migration, and cell morphology. A tyrosine kinase inhibitor (ZD1839) blocked EGF-induced changes in cervical adenocarcinoma cells. The results suggest that EGF promotes cell motility and migration and increases the expression of alpha2beta1-integrin, possibly by decreasing FAK phosphorylation.  相似文献   

7.
8.
9.
Summary Sentence: Conditional ablation of AP-2γ results in a delay in skin development and abnormal expression of p63, K14, K1, filaggrin, repetin and secreted Ly6/Plaur domain containing 1, key genes required for epidermal development and differentiation.The development of the epidermis, a stratified squamous epithelium, is dependent on the regulated differentiation of keratinocytes. Differentiation begins with the initiation of stratification, a process tightly controlled through proper gene expression. AP-2γ is expressed in skin and previous research suggested a pathway where p63 gene induction results in increased expression of AP-2γ, which in turn is responsible for induction of K14. This study uses a conditional gene ablation model to further explore the role of AP-2γ in skin development. Mice deficient for AP-2γ exhibited delayed expression of p63, K14, and K1, key genes required for development and differentiation of the epidermis. In addition, microarray analysis of E16.5 skin revealed delayed expression of additional late epidermal differentiation genes: filaggrin, repetin and secreted Ly6/Plaur domain containing 1, in mutant mice. The genetic delay in skin development was further confirmed by a functional delay in the formation of an epidermal barrier. These results document an important role for AP-2γ in skin development, and reveal the existence of regulatory factors that can compensate for AP-2γ in its absence.  相似文献   

10.
11.
12.
13.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号