共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
K. M. Trollope J. F. G?rgens H. Volschenk 《Applied and environmental microbiology》2015,81(20):7319-7329
The Aspergillus japonicus β-fructofuranosidase catalyzes the industrially important biotransformation of sucrose to fructooligosaccharides. Operating at high substrate loading and temperatures between 50 and 60°C, the enzyme activity is negatively influenced by glucose product inhibition and thermal instability. To address these limitations, the solvent-exposed loop regions of the β-fructofuranosidase were engineered using a combined crystal structure- and evolutionary-guided approach. This semirational approach yielded a functionally enriched first-round library of 36 single-amino-acid-substitution variants with 58% retaining activity, and of these, 71% displayed improved activities compared to the parent. The substitutions yielding the five most improved variants subsequently were exhaustively combined and evaluated. A four-substitution combination variant was identified as the most improved and reduced the time to completion of an efficient industrial-like reaction by 22%. Characterization of the top five combination variants by isothermal denaturation assays indicated that these variants displayed improved thermostability, with the most thermostable variant displaying a 5.7°C increased melting temperature. The variants displayed uniquely altered, concentration-dependent substrate and product binding as determined by differential scanning fluorimetry. The altered catalytic activity was evidenced by increased specific activities of all five variants, with the most improved variant doubling that of the parent. Variant homology modeling and computational analyses were used to rationalize the effects of amino acid changes lacking direct interaction with substrates. Data indicated that targeting substitutions to loop regions resulted in improved enzyme thermostability, specific activity, and relief from product inhibition. 相似文献
3.
Masahiro Nakajima Ryuta Yoshida Akimasa Miyanaga Koichi Abe Yuta Takahashi Naohisa Sugimoto Hiroyuki Toyoizumi Hiroyuki Nakai Motomitsu Kitaoka Hayao Taguchi 《PloS one》2016,11(2)
Despite the presence of β-1,2-glucan in nature, few β-1,2-glucan degrading enzymes have been reported to date. Recently, the Lin1839 protein from Listeria innocua was identified as a 1,2-β-oligoglucan phosphorylase. Since the adjacent lin1840 gene in the gene cluster encodes a putative glycoside hydrolase family 3 β-glucosidase, we hypothesized that Lin1840 is also involved in β-1,2-glucan dissimilation. Here we report the functional and structural analysis of Lin1840. A recombinant Lin1840 protein (Lin1840r) showed the highest hydrolytic activity toward sophorose (Glc-β-1,2-Glc) among β-1,2-glucooligosaccharides, suggesting that Lin1840 is a β-glucosidase involved in sophorose degradation. The enzyme also rapidly hydrolyzed laminaribiose (β-1,3), but not cellobiose (β-1,4) or gentiobiose (β-1,6) among β-linked gluco-disaccharides. We determined the crystal structures of Lin1840r in complexes with sophorose and laminaribiose as productive binding forms. In these structures, Arg572 forms many hydrogen bonds with sophorose and laminaribiose at subsite +1, which seems to be a key factor for substrate selectivity. The opposite side of subsite +1 from Arg572 is connected to a large empty space appearing to be subsite +2 for the binding of sophorotriose (Glc-β-1,2-Glc-β-1,2-Glc) in spite of the higher Km value for sophorotriose than that for sophorose. The conformations of sophorose and laminaribiose are almost the same on the Arg572 side but differ on the subsite +2 side that provides no interaction with a substrate. Therefore, Lin1840r is unable to distinguish between sophorose and laminaribiose as substrates. These results provide the first mechanistic insights into β-1,2-glucooligosaccharide recognition by β-glucosidase. 相似文献
4.
A. Bondi G. Chieregatti V. Eusebi E. Fulcheri G. Bussolati 《Histochemistry and cell biology》1982,76(2):153-158
Summary A new immunocytochemical method using -galactosidase as a tracer is described. The positive staining appears blue on an unstained background. The present method has the high sensitivity and specificity of the immunoperoxidase method and appears to be a practical alternative. The substrate has no carcinogenic activity. Staining is permanent and the sections can be dehydrated and mounted in synthetic media. Enzyme and substrate solutions are stable for several months. 相似文献
5.
Cormican P Meade KG Cahalane S Narciandi F Chapwanya A Lloyd AT O'Farrelly C 《Immunogenetics》2008,60(3-4):147-156
The anti-microbial peptides β-defensins constitute a large family of innate immune effector molecules, conserved across a
wide species range. In this paper, we describe a systematic search of the sequenced bovine genome to characterise this extensive
gene family in Bos taurus, providing an insight into the pattern of conservation of β-defensin genes between species. We have sequenced a sub-set of
these newly discovered bovine β-defensin genes and also report expression data for these genes across a range of tissues.
We have synthesised the peptide product of one of these genes, bovine β-defensin 123, and found it to be a potent inhibitor
of several pathogenic microbes, particularly Escherichia coli and Listeria monocytogenes.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
6.
7.
8.
《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1995,663(1):103-110
The Salivette® was evaluated with a range of racemic β-adrenoceptor blocking drugs with different lipophilicity. Recovery from the Salivette appeared to be independent of the stereochemical configuration of the drugs but a significant loss of drug due to the Salivette was observed for all tested drugs. The performance of the method, in terms of accuracy and precision, fitted well within the generally accepted criteria for validation, except near the limit of quantification. The Salivette is successfully used for quantitating salivary β-blocking drugs. 相似文献
9.
《Bioorganic & medicinal chemistry letters》2014,24(7):1825-1829
Bisindole analogs 1–17 were synthesized and evaluated for their in vitro β-glucuronidase inhibitory potential. Out of seventeen compounds, the analog 1 (IC50 = 1.62 ± 0.04 μM), 6 (IC50 = 1.86 ± 0.05 μM), 10 (IC50 = 2.80 ± 0.29 μM), 9 (IC50 = 3.10 ± 0.28 μM), 14 (IC50 = 4.30 ± 0.08 μM), 2 (IC50 = 18.40 ± 0.09 μM), 19 (IC50 = 19.90 ± 1.05 μM), 4 (IC50 = 20.90 ± 0.62 μM), 7 (IC50 = 21.50 ± 0.77 μM), and 3 (IC50 = 22.30 ± 0.02 μM) showed superior β-glucuronidase inhibitory activity than the standard (d-saccharic acid 1,4-lactone, IC50 = 48.40 ± 1.25 μM). In addition, molecular docking studies were performed to investigate the binding interactions of bisindole derivatives with the enzyme. This study has identified a new class of potent β-glucouronidase inhibitors. 相似文献
10.
11.
12.
Taku Uchiyama Kentaro Miyazaki Katsuro Yaoi 《The Journal of biological chemistry》2013,288(25):18325-18334
The β-glucosidase encoded by the td2f2 gene was isolated from a compost microbial metagenomic library by functional screening. The protein was identified to be a member of the glycoside hydrolase family 1 and was overexpressed in Escherichia coli, purified, and biochemically characterized. The recombinant β-glucosidase, Td2F2, exhibited enzymatic activity with β-glycosidic substrates, with preferences for glucose, fucose, and galactose. Hydrolysis occurred at the nonreducing end and in an exo manner. The order of catalytic efficiency for glucodisaccharides and cellooligosaccharides was sophorose > cellotetraose > cellotriose > laminaribiose > cellobiose > cellopentaose > gentiobiose, respectively. Intriguingly, the p-nitrophenyl-β-d-glucopyranoside hydrolysis activity of Td2F2 was activated by various monosaccharides and sugar alcohols. At a d-glucose concentration of 1000 mm, enzyme activity was 6.7-fold higher than that observed in the absence of d-glucose. With 31.3 mm
d-glucose, Td2F2 catalyzed transglycosylation to generate sophorose, laminaribiose, cellobiose, and gentiobiose. Transglycosylation products were detected under all activated conditions, suggesting that the activity enhancement induced by monosaccharides and sugar alcohols may be due to the transglycosylation activity of the enzyme. These results show that Td2F2 obtained from a compost microbial metagenome may be a potent candidate for industrial applications. 相似文献
13.
14.
In order to determine the effect of various soil components on the activity of proteins, we monitored the fluorescence and
the enzymatic activity of, respectively, green fluorescent protein (GFP) and β-glucosidase adsorbed on fine soil particles.
We also monitored the activity of these proteins in the presence of components that are representative of soil colloids: a
montmorillonite clay, goethite and organic matter extracted from soil. Upon adsorption on clay and goethite, GFP lost its
fluorescence properties while β-glucosidase suffered only a partial loss of its catalytic activity. Extractable organic matter
had an inactivating role on GFP while it did not cause inactivation of β-glucosidase. When GFP and β-glucosidase adsorbed
on particles from natural soil samples, their behaviour was consistent with the behaviour observed for these proteins in the
presence of the separate components, suggesting that the macroscopic activity of proteins adsorbed on soil particles corresponds
to an average of the activities of proteins adsorbed on a mixture of surfaces. The monitoring of the proteins on soil particles
with different organic matter contents has also shown that organic matter can have different effects (protecting or inactivating)
on different proteins. 相似文献
15.
Biosynthesis of di-myo-inositol-1,1′-phosphate (DIP) is proposed to occur with myo-inositol and myo-inositol 1-phosphate (I-1-P) used as precursors. Activation of the I-1-P with CTP and condensation of the resultant CDP-inositol (CDP-I) with myo-inositol then generates DIP. The sole known biosynthetic pathway of inositol in all organisms is the conversion of d-glucose-6-phosphate to myo-inositol. This conversion requires two key enzymes: l-I-1-P synthase and I-1-P phosphatase. Enzymatic assays using 31P nuclear magnetic resonance spectroscopy as well as a colorimetric assay for inorganic phosphate have confirmed the occurrence of l-I-1-P synthase and a moderately specific I-1-P phosphatase. The enzymatic reaction that couples CDP-I with myo-inositol to generate DIP has also been detected in Methanococcus igneus. 13C labeling studies with [2,3-13C]pyruvate and [3-13C]pyruvate were used to examine this pathway in M. igneus. Label distribution in DIP was consistent with inositol units formed from glucose-6-phosphate, but the label in the glucose moiety was scrambled via transketolase and transaldolase activities of the pentose phosphate pathway.Di-myo-inositol-1,1′-phosphate (DIP) is an unusual inositol derivative that has been identified as a major solute in hyperthermophilic archaea including Pyrococcus woesei (22), Pyrococcus furiosus (16), Methanococcus igneus (5), and several eubacteria of the order Thermotogales (15). Intracellular DIP increases with increasing extracellular concentrations of NaCl in both M. igneus (5) and P. furiosus (16). DIP also increases dramatically at supraoptimal growth temperatures (>80°C for M. igneus and 98 to 101°C for P. furiosus). The unusual intracellular high concentration of K+ ions and the extreme optimal growth temperatures (100 to 104°C) of P. woesei (30) suggested the role of DIP as a main counterion of K+ with a possible thermostabilizing action. Scholz et al. (22) demonstrated that among several salts, the potassium salt of DIP provided optimum enzyme stabilization when the activity of glyceraldehyde-3-phosphate dehydrogenase of P. woesei was tested at 105°C under anaerobic conditions.Since de novo synthesis of DIP occurs in response to external levels of NaCl and temperature, there must be regulatory biosynthetic mechanisms linked to osmotic pressure and temperature. To study the regulation, the enzymes and/or other proteins responsible for synthesis of this compatible solute must be isolated. This requires knowledge of the biosynthetic pathways involved in the synthesis of DIP. The sole known pathway for inositol biosynthesis in all other organisms is the conversion of d-glucose-6-phosphate to l-myo-inositol 1-phosphate (l-I-1-P) via l-myo-inositol 1-monophosphate (I-1-P) synthase and hydrolysis of I-1-P to myo-inositol via a specific phosphatase, I-1-P phosphatase (13, 14). Similar enzymes are likely to exist in methanogens. A logical pathway for the biosynthesis of DIP would then use myo-inositol and I-1-P as precursors. Activation of the I-1-P with CTP and condensation of the resultant CDP-inositol (CDP-I) with myo-inositol would generate DIP. As summarized in Fig. Fig.1,1, DIP biosynthesis requires four key enzymes: I-1-P synthase (step 1), I-1-P phosphatase (step 2), CTP:I-1-P cytidylyltransferase (step 3), and DIP synthase (step 4). The enzymes that catalyze steps 1 and 2 have been well studied in plants, yeasts, and mammalian tissues. However, the enzymes invoked for steps 3 and 4 are novel activities, although based on similar chemical transformations in cells. Open in a separate windowFIG. 1Proposed biosynthetic pathway for DIP showing the four key enzymatic activities. Based on similar transformations in other organisms, cofactors are indicated for several of the steps.This work describes the use of 31P nuclear magnetic resonance (NMR) and colorimetric assays to verify the existence of three of these activities in cell extracts of M. igneus. Specific labeling of DIP with [13C]pyruvate was also used to probe the DIP biosynthetic pathway. The pattern of 13C label incorporation from [3-13C]pyruvate and [2,3-13C]pyruvate coupled with the known stereochemistry of DIP provided evidence that M. igneus also has enzymes of the pentose phosphate pathway (transaldolase and transketolase) that scramble label in glucose-6-phosphate. 相似文献
16.
It has been documented that when furnished with an endomembrane signal sequence for the endoplasmic reticulum, -glucuronidase (GUS) is N-glycosylated, resulting in the nearly complete loss of enzymatic activity. To enable use of -glucuronidase as a reporter protein in secretory and vacuolar targeting studies, one of the two putative N-linked glycosylation sites within the GUS gene was altered by site-directed mutagenesis. The second N-linked glycosylation site was not altered because sequence analysis of nucleotide sequences around the second putative glycosylation site revealed that the published sequence was incorrect, and that no such site existed. 相似文献
17.
Using a least-squares fitting procedure, polypeptide backbones of one parallel and seven antiparallel β-barrels were approximated with various curved surfaces. Although the hyperboloid gave better approximations to all the β-barrel backbones than the ellipsoid, elliptical cylinder or catenoid, the best approximations were obtained with a novel surface, a twisted hyperboloid (strophoid). The root-mean-square errors between individual β-barrels and the fitted strophoid surfaces ranged from 0.75 Å to 1.64 Å. The parameters which determine the strophoid surface allow groups of β-barrel shapes to be defined according to their barrel twists (i.e. angles subtended by directions of the long axis of cross-section at the top and the bottom of the barrel), course of elliptical cross-sections (either monotonically increasing along the barrel axis, as in cones, or having a middle “waist”, as in hyperboloids), and types of backbone curvatures (either convex or concave). The curvatures at individual points of strophoid surface are local, variable quantities related to the local helicity (coil) of the polypeptide backbone, in contrast to values of β-sheet twist (i.e. dihedral angles subtended by adjacent β-strands) known to be virtually identical in all the β-sheets. The variability found in parameters such as barrel shapes and curvatures suggests that simple models (isotropically stressed surfaces, principle of minimal surface tension) proposed in the past to account for β-barrel shapes are not sufficient. Rather, the complex nature of best-fit theoretical surfaces points to an important role played by a local variability of the forces involved. 相似文献
18.
Min Liu Wenping Xie Haoming Xu Jiali Gu Xiaomei Lv Hongwei Yu Lidan Ye 《Biotechnology letters》2014,36(9):1801-1807
A novel high-throughput screening method is proposed for the directed evolution of exoglucanase facilitated by the co-expression of β-glucosidase, using the glucose released from filter paper as the screening indicator. Three transformants (B1, D6 and G10) with improved activity were selected from 4,000 colonies. The specific activities of B1, D6 and G10 for releasing glucose were, respectively, 1.4-, 1.3- and 1.6-fold higher than that of the wild type. The engineered exoglucanase gene was inserted into an expression vector carrying the previously engineered endoglucanase and β-glucosidase genes, and transformed into Escherichia coli to form a completely engineered cellulase system that showed 8.2-fold increase in glucose production (relative activity) compared to the cells equipped with wild-type enzymes. To our knowledge, this is the first report for directed evolution of an exoglucanase using insoluble cellulose as the screening substrate. 相似文献
19.
We previously reported on a new yeast strain of Clavispora sp. NRRL Y-50464 that is capable of utilizing cellobiose as sole source of carbon and energy by producing sufficient native β-glucosidase enzyme activity without further enzyme supplementation for cellulosic ethanol production using simultaneous saccharification and fermentation. Eliminating the addition of external β-glucosidase reduces the cost of cellulosic ethanol production. In this study, we present results on the isolation and identification of a β-glucosidase protein from strain Y-50464. Using Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and blast search of the NCBInr database (National Center for Biotechnology Information nonredundant), the protein from Y-50464 was identified as a β-glucosidase (BGL1) with a molecular weight of 93.3 kDa. The BGL1 protein was purified through multiple chromatographic steps to a 26-fold purity (K m?=?0.355 mM [pNPG]; K i?=?15.2 mM [glucose]), which has a specific activity of 18.4 U/mg of protein with an optimal performance temperature at 45 °C and pH of 6.0. This protein appears to be intracellular although other forms of the enzyme may exist. The fast growth rate of Y-50464 and its capability to produce sufficient β-glucosidase activity for ethanol conversion from cellobiose provide a promising means for low-cost cellulosic ethanol production through a consolidated bioprocessing development. 相似文献
20.
Souheila Guerbouj Fattouma Djilani Jihene Bettaieb Bronwen Lambson Mohamed Fethi Diouani Afif Ben Salah Riadh Ben Ismail Ikram Guizani 《PloS one》2014,9(8)
A gp63PCR method was evaluated for the detection and characterization of Leishmania (Leishmania) (L.) parasites in canine lymph node aspirates. This tool was tested and compared to other PCRs based on the amplification of 18S ribosomal genes, a L. infantum specific repetitive sequence and kinetoplastic DNA minicircles, and to classical parasitological (smear examination and/or culture) or serological (IFAT) techniques on a sample of 40 dogs, originating from different L. infantum endemic regions in Tunisia. Sensitivity and specificity of all the PCR assays were evaluated on parasitologically confirmed dogs within this sample (N = 18) and control dogs (N = 45) originating from non–endemic countries in northern Europe and Australia. The gp63 PCR had 83.5% sensitivity and 100% specificity, a performance comparable to the kinetoplast PCR assay and better than the other assays. These assays had comparable results when the gels were southern transferred and hybridized with a radioactive probe. As different infection rates were found according to the technique, concordance of the results was estimated by (κ) test. Best concordance values were between the gp63PCR and parasitological methods (74.6%, 95% confidence intervals CI: 58.8–95.4%) or serology IFAT technique (47.4%, 95% CI: 23.5–71.3%). However, taken together Gp63 and Rib assays covered most of the samples found positive making of them a good alternative for determination of infection rates. Potential of the gp63PCR-RFLP assay for analysis of parasite genetic diversity within samples was also evaluated using 5 restriction enzymes. RFLP analysis confirmed assignment of the parasites infecting the dogs to L. infantum species and illustrated occurrence of multiple variants in the different endemic foci. Gp63 PCR assay thus constitutes a useful tool in molecular diagnosis of L. infantum infections in dogs in Tunisia. 相似文献