首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HeLa 229 cells were treated with methotrexate (MTX) and doxorubicin (DOX), utilizing fourth generation (G4), amine terminated poly(amidoamine) {PAMAM} dendrimer as the drug carrier. In vitro kinetic studies of the release of both MTX and DOX in presence and absence of G4, amine terminated PAMAM dendrimers suggest that controlled drug release can be achieved in presence of the dendrimers. The cytotoxicity studies indicated improved cell death by dendrimer-drug combination, compared to the control experiments with dendrimer or drug alone at identical experimental conditions. Furthermore, HeLa 229 cells were imaged for the first time utilizing the intrinsic emission from the PAMAM dendrimers and drugs, without incorporating any conventional fluorophores. Experimental results collectively suggest that the decreased rate of drug efflux in presence of relatively large sized PAMAM dendrimers generates high local concentration of the dendrimer-drug combination inside the cell, which renders an easy way to image cell lines utilizing the intrinsic emission properties of PAMAM dendrimer and encapsulated drug molecule.  相似文献   

2.
A novel dendrimeric compound is designed with the objective of simultaneously addressing issues commonly encountered in drug delivery, i.e., stability in biological milieu as well as targeting. For this purpose, a multifunctional dendrimeric system derived from diaminobutane poly(propylene imine) dendrimers (DAB) is prepared bearing at its external surface poly(ethylene glycol) chains and guanidinium moieties. For these moieties, it has been established that they exhibit protective and targeting properties, respectively. The release of encapsulated compounds is triggered by titration with acids followed by the addition of sodium chloride solution. Specifically for pyrene, the solubilization site of which can be clearly traced, protonation leads to a distribution between the core and the poly(ethylene glycol) chains in the periphery of the dendrimer while it is released to the aqueous bulk solution by the addition of sodium chloride. The release of betamethasone valerate is also triggered by the addition of sodium chloride solution.  相似文献   

3.
The cytotoxicity and time-dependent membrane disruption by polypropylenimine dendrimer conjugates on cultured human umbilical vein endothelial cells (HUVEC) is reported. Fluorescently labeled derivatives of generation 5 polypropylenimine dendrimers were prepared via conversion of amines to acetamides or through the covalent attachment of high molecular weight poly(ethylene glycol) (PEG) chains. Direct interactions between the fluorescent dendrimer conjugates and HUVEC were monitored using confocal fluorescence microscopy to track dendrimer movement across the plasma membrane and the fluorescent staining of cell nuclei. Propidium iodide and lactate dehydrogenase cytotoxicity assays confirmed that chemical modification of the surface amines of the parental dendrimer to neutral acetamide or PEG functionalities eliminated their acute cytotoxicity. Cationic primary-amine-containing dendrimers demonstrated drastic time-dependent changes in the plasma membrane permeability and prominent cytotoxicity. However, complete removal of the primary amines or masking of the cationic surface via PEGylation decreased dendrimer cytotoxicity. Thus, preventing electrostatic interactions of dendrimers with cellular membranes apparently is a necessary step toward minimizing the toxicity of delivery vehicles to the endothelium.  相似文献   

4.
Photodynamic therapy (PDT) is a noninvasive treatment of some diseases including cancer. We have developed poly(ethylene glycol) (PEG)-attached dendrimers as a drug-carrier candidate. In this study, we prepared nanocapsules of photosensitizers using PEG-attached dendrimers for application to PDT. Two PEG-attached dendrimers derived from poly(amido amine) (PAMAM) and poly(propylene imine) (PPI) dendrimers (PEG-PAMAM and PEG-PPI) were synthesized, and rose bengal (RB) and protoporphyrin IX (PpIX) were used as photosensitizers. Results showed that fewer PpIX molecules were encapsulated by both PEG-attached dendrimers than RB, but the complexes were more stable under physiological conditions. Furthermore, we demonstrated that PEG-PPI held photosensitizers in a more stable manner than PEG-PAMAM because of their inner hydrophobicity. We described the cytotoxicity of the complexes of photosensitizers induced by light irradiation in vitro. The complex of PpIX with PEG-PPI exhibited efficient cytotoxicity, compared with free PpIX. It was suggested that the cytotoxicity was caused by the high level of singlet oxygen production and the efficient delivery to mitochondria. Our results suggest that these PEG-attached dendrimers are a promising vehicle for PDT.  相似文献   

5.
Fullerene has a unique structure and notable chemical and physical properties, which have been studied in diverse fields including biological applications. The extremely poor solubility of fullerenes in water limits their usage for biomedical applications. In this study, we synthesized polyamidoamine dendrimers having both beta-cyclodextrin (CD) and poly(ethylene glycol) (PEG) and characterized the resulting dendrimers by (1)H NMR, IR, and gel permeation chromatography. We prepared 2.8 microM of aqueous fullerene solutions using these dendrimers. The clustering effect of CD and PEG at the surface of the dendrimer might be crucial for the solubilization of fullerene.  相似文献   

6.
Surface modification of amine-terminated polyamidoamine (PAMAM) dendrimers by poly(ethylene glycol) (PEG) groups generally enhances water-solubility and biocompatibility for drug delivery applications. In order to provide guidelines for designing appropriate dendritic scaffolds, a series of G3 PAMAM-PEG dendrimer conjugates was synthesized by varying the number of PEG attachments and chain length (shorter PEG 550 and PEG 750 and longer PEG 2000). Each conjugate was purified by size exclusion chromatography (SEC) and the molecular weight (MW) was determined by (1)H NMR integration and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). NOESY experiments performed in D 2O on selected structures suggested no penetration of PEG chains to the central PAMAM domain, regardless of chain length and degree of substitution. CHO cell cultures exposed to PAMAM-PEG derivatives (< or =1 microM) showed a relatively high cell viability. Generally, increasing the degree of PEG substitution reduced cytotoxicity. Moreover, compared to G3 PAMAM dendrimers that were N-acetylated to varying degrees, a lower degree of surface substitution with PEG was needed for a similar cell viability. Interestingly, when longer PEG 2000 was fully incorporated on the surface, cell viability was reduced at higher concentrations (32 muM), suggesting increased toxicity potentially by forming intermolecular aggregates. A similar observation was made for anionic carboxylate G5.5 PAMAM dendrimer at the same dendrimer concentration. Our findings suggest that a lower degree of peripheral substitution with shorter PEG chains may suffice for these PAMAM-PEG conjugates to serve as efficient universal scaffolds for drug delivery, particularly valuable in relation to targeting or other ligand-receptor interactions.  相似文献   

7.
Polyether dendritic compounds bearing folate residues on their surface were prepared as model drug carriers with potential tumor cell specificity. Starting from ester-terminated polyether dendrimers, hydrazide groups were easily introduced to the surface of the dendrimers by reaction with hydrazine. Folate residues were then conjugated to the hydrazide chain ends of the dendrimers by direct condensation with folic acid in the presence of a condensing agent or by reaction with an active ester derivative of folic acid. Essentially complete functionalization of the terminal hydrazide groups was achieved for both the first and the second generation dendrimers with four and eight hydrazide groups. For the G-2 dendrimer with 16 hydrazide groups, an average number of only 12.6 folate residues were attached to each dendrimer. The conjugates are soluble in aqueous medium above pH 7.4. In addition, a similar conjugation of the antitumor drug methotrexate to the dendrimer was also investigated. Once optimized, these molecules may form the basis for a novel family of multivalent drug carriers.  相似文献   

8.
Poly(N,N-bisethylamine) dendrimers with high content of poly(ethylene glycol) were synthesized on 3-(Acryloyloxy)-2-hydroxypropylmethacrylate-crosslinked polystyrene (PS-AHMA) resin and tested in various conditions of solid phase peptide synthesis. The dendritic templates were generated to the second generation on cross-linker active site of 3-(Acryloyloxy)-2-hydroxypropylmethacrylate (AHMA). First generation dendrimer was designed by series of four-stage reactions, such as Schiff base incorporation, acidolytic cleavage, diazotization and thionyl chloride treatment and same synthetic routes were followed for second generation also. Poly(ethylene glycol) (PEG1000) has been grafted to second-generation dendrimer and used to check various physico-chemical parameters in Fmoc/Boc peptide synthetic conditions. The utility of PEGylated dendrimer support was demonstrated by synthesizing biologically potent linear as well as disulfide-bonded peptide by Fmoc method.  相似文献   

9.
Based on fourth generation diaminobutane poly(propylene imine) dendrimer, a novel targeted drug nanocarrier was prepared, bearing protective PEG chains and a folate targeting ligand. As a control a PEGylated derivative without folate was also synthesized. The encapsulation and release properties of these PEGylated derivatives were investigated employing etoposide, an anticancer hydrophobic drug. Enhanced solubility of etoposide was achieved inside the dendrimeric scaffold which was subsequently released in a controlled manner. These properties coupled with specificity towards the folate receptor and the low toxicity render folate functionalized PEGylated poly(propylene imine) dendrimer promising candidate for targeted drug delivery.  相似文献   

10.
Ligand-mediated targeting of drugs especially in anticancer drug delivery is an effective approach. Dendrimers, due to unique surface topologies, can be a choice in this context. In the present study, PAMAM (polyamidoamine) dendrimers up to fourth generation were synthesized and characterized through infrared (IR), nuclear magnetic resonance (NMR), electrospray ionization (ESI) mass spectrometric, and transmission electron microscopic (TEM) techniques. Primary amines present on the dendritic surface were conjugated through folic acid and folic acid-PEG (poly(ethylene glycol))-NHS (N-hydroxysuccinimide) conjugates. Tumor in mice was induced through the use of KB cell culture. Prepared dendritic conjugates were evaluated for the anticancer drug delivery potential using 5-FU (5-fluorouracil) in tumor-bearing mice. Approximately 31% of 5-FU was loaded in folate-PEG-dendritic conjugates. Results indicated that folate-PEG-dendrimer conjugate was significantly safe and effective in tumor targeting compared to a non-PEGylated formulation. Tailoring of dendrimers via PEG-folic acid reduced hemolytic toxicity, which led to a sustained drug release pattern as well as highest accumulation in the tumor area.  相似文献   

11.
Single-triggered disassemble dendrimers were recently developed and introduced as a potential platform for a multi-prodrug. These unique structural dendrimers can release all of their tail units through a self-immolative chain fragmentation initiated by a single cleavage at the dendrimer's core. There are several examples for the bioactivation of first-generation self-immolative dendritic prodrugs. However, enzymatic activation failed for second-generation self-immolative dendrimers. The hydrophobic large molecular structure of the dendritic prodrugs results in aggregation under aqueous conditions and prevented the enzyme from reaching the triggering substrate. Here we show a simple solution for the enzymatic activation of second-generation self-immolative dendrimers. Poly(ethylene glycol) (PEG) was conjugated to the dendritic platform via click chemistry. The poly(ethylene glycol) tails significantly decreased the hydrophobic properties of the dendrimers and thereby prevented aggregate formation. We designed and synthesized a dendritic prodrug with four molecules of the anticancer agent camptothecin and a trigger that can be activated by penicillin-G-amidase. The PEG5000-conjugated, self-immolative dendritic prodrug was effectively activated by penicillin-G-amidase under physiological conditions and free camptothecin was released to the reaction media. Cell-growth inhibition assays demonstrated increased toxicity of the dendritic prodrug upon incubation with the enzyme.  相似文献   

12.
Poly(amidoamine) (PAMAM) dendrimer derivatives have been investigated for their biological applications, especially for delivery of drugs, including antimicrobial drugs to eukaryotic cells, but their effects on bacterial cells are largely unexplored. Herein we report that amino-terminated PAMAM dendrimers are highly toxic to the common Gram-negative pathogen Pseudomonas aeruginosa. The concentration that kills 50% of the bacteria (EC50) was in the range of approximately 0.9-1.5 microg/mL for the generation 5, amino-terminated dendrimers with or without partial (43%) coating of poly(ethylene glycol) (PEG). These EC50 values were lower than that ( approximately 1.9-2.8 microg/mL) for LL-37, a potent antimicrobial peptide expressed in a variety of epithelia. On the contrary, the dendrimers were far less toxic (EC50 > 21 microg/mL) to the Gram-positive pathogen Staphylococcus aureus than LL-37 (EC50 = approximately 1.9 microg/mL). In agreement with the previous studies on other cell types, the dendrimers were not cytotoxic to human corneal epithelial cells at the concentrations that were toxic to P. aeruginosa. Our findings indicate that amino-terminated PAMAM dendrimers and their partially PEG-coated derivatives possess attractive antimicrobial properties, particularly against Gram-negative bacteria, thus expanding the potential biological application of the dendrimers.  相似文献   

13.
The membrane disruption properties of high generation (G4 to G7) poly(amidoamine) (PAMAM) dendrimers are evaluated and compared to linear poly(lysine). The G6 and G7 dendrimers are unusually effective at inducing leaky fusion of anionic, large unilamellar vesicles, as determined by standard fluorescence assays for lipid mixing, leakage, and contents mixing. Both G7 dendrimer and poly(lysine) are able to disrupt sterically stabilized vesicles that are coated with poly(ethylene glycol). A G7 dendrimer/DNA complex with a 1:1 concentration ratio of dendrimer surface amines to DNA phosphate groups is unable to induce leakage of 3:7 POPA-PE vesicles; however, extensive leakage is observed when the surface amine to phosphate stoichiometry is >/=3:1. Thus, the DNA/dendrimer complexes that typically induce high levels of cell transfection are also able to induce high levels of vesicle leakage. The G7 dendrimer does not induce membrane phase separation in 3:7 POPA-PE vesicles, but an inverse hexagonal phase is observed by (31)P NMR. The enhanced membrane disruption is interpreted in terms of a membrane bending model. A rigid, polycationic dendrimer sphere uses electrostatic forces to bend a malleable, anionic membrane and induce bilayer packing stresses. This bending model is biomimetic in the sense that protein-induced membrane bending is currently thought to be an important factor in the fusion mechanism of influenza virus.  相似文献   

14.
Glioblastoma multiforme (GBM) is a highly advanced and invasive brain tumor due to which current treatments cannot completely treat GBM or prevent recurrence. Therefore, adjunctive treatments are required. As part of the invasive and angiogenic nature of GBM, it has been well established that matrix metalloprotease-2 (MMP-2) and MMP-9 are overactive. To better treat GBM using chemotherapy, we have designed a hydrogel-based delivery system that can control the release of drugs based on the activity of MMPs. A model chemotherapeutic agent, cisplatin (CDDP), complexed to an MMP substrate (peptide-linker) was incorporated into poly(ethylene glycol) diacrylate hydrogel wafers having different poly(ethylene glycol) chain lengths (M(n) approximately 574 and 4000). Hydrogel wafers were studied for physical characteristics and drug release in the presence and absence of MMPs. There was a substantial increase in CDDP release for the poly(ethylene glycol) 4000 hydrogel indicating that this chain length provides a mesh size that is sufficient to permit MMP activity within the hydrogel. CDDP bioactivity increased when the cell media was spiked with MMPs (0% cell survival) in case of the longer chain length as compared to in the absence of MMPs (approximately 50% cell survival). The results suggest that this system can be used for selective, local delivery of drugs where higher amounts of the drug are released in response to metastasis, angiogenesis, and invasion-promoting proteases. This strategy may prove to be a novel and effective method to overcome inadequacies in current controlled drug release systems.  相似文献   

15.
Poly(ethylene glycol)–chitosan hybrids of various molecular weights having different degree of substitution were synthesized, by reductive N-alkylation of chitosan with poly(ethylene glycol) aldehyde, to study their bioactivities. The influence of these chitosan derivatives on the reactive oxygen species generation from canine polymorphonuclear leukocyte cells was investigated in vitro by chemiluminescence response. Reactive oxygen species generation by the influence of poly(ethylene glycol)–chitosan hybrids was decreased with the increase of degree of substitution. The reduction of interaction of poly(ethylene glycol)–chitosan hybrids with polymorphonuclear leukocyte cells might be caused by the decrease of amino group in chitosan main chain and increase of the steric hindrance by poly(ethylene glycol) chain. The influence of the poly(ethylene glycol)–chitosan hybrids on complement component C3 activation was investigated by single radial immunodiffusion method. Influence on complement component C3 activation by poly(ethylene glycol)–chitosan hybrids was almost same as chitosan.  相似文献   

16.
The interactions between dendrimers and different types of drugs are nowadays one of the most actively investigated areas of the pharmaceutical sciences. The interactions between dendrimers and drugs can be divided into: internal encapsulation, external electrostatic interaction, and covalent conjugation. In the present study, we investigated the potential of poly(amidoamine) (PAMAM) dendrimers for solubility of four iminodiacetic acid derivatives. We reported that PAMAM dendrimers contribute to significant solubility enhancement of iminodiacetic acid analogues. The nature of the dendrimer–drug complexes was investigated by 1H NMR and 2D-NOESY spectroscopy. The 1H NMR analysis proved that the water-soluble supramolecular structure of the complex was formed on the basis of ionic interactions between terminal amine groups of dendrimers and carboxyl groups of drug molecules, as well as internal encapsulation. The 2D-NOESY analysis revealed interactions between the primary amine groups of PAMAM dendrimers and the analogues of iminodiacetic acid. The results of solubility studies together with 1H NMR and 2D-NOESY experiments suggest that the interactions between PAMAM dendrimers of generation 1–4 and derivatives of iminodiacetic acid are based on electrostatic interactions and internal encapsulation.  相似文献   

17.
Novel polyester-co-polyether dendrimers consisting of a hydrophilic core were synthesized by a combination of convergent and divergent syntheses. The core was synthesized from biocompatible moieties, butanetetracarboxylic acid and aspartic acid, and the dendrons from PEO (poly(ethylene oxide)), dihydroxybenzoic acid or gallic acid, and PEG monomethacrylate. The dendrimers, Den-1-(G 2) (second generation dendrimer-1) and Den-2-(G 2) (second generation dendrimer-2) consisting of 16 and 24 allyl surface groups, respectively, were obtained by coupling the dendrons to the core. The dendrimer (Den-1-(G 2)-OH) with hydroxyl groups at the surface was synthesized by oxidation of the allyl functional groups of Den-1-(G 2), which was divergently coupled to the dendrons to obtain the third generation dendrimer Den-1-(G 3) consisting of 32 surface groups. The modifications in surface groups and generation of dendrimers were shown to influence the shape of dendrimers in the AFM studies. The aggregation as well as self-assembly of dendrimers was observed at high concentration in water by light scattering studies; however, it was reduced on dilution and in the presence of sodium chloride. Dendrimers demonstrated good ability to encapsulate the guest molecule, with loading of 15.80 and 6.47% w/w for rhodamine and beta-carotene, respectively. UV spectroscopy proved the absence of any pi-pi complexation between the dendrimer and encapsulated compounds. (1)H NMR and FTIR studies showed that the physical entrapment and/or hydrogen bonding by PEO in the interior and branch of the dendrimer are the mechanisms of encapsulation. The release of the encapsulated compounds was found to be slow and sustained, suggesting that these dendrimers can serve as potential drug delivery vehicles.  相似文献   

18.
Chitosan-dendrimer hybrids having various functional groups such as carboxyl, ester, and poly(ethylene glycol) groups were prepared successfully using dendrimer acetal by reductive N-alkylation. The synthetic procedure could be accomplished by one-step reaction without organic solvent. The degree of substitution of dendrimer was 0.13-0.18 evaluated by (1)H NMR. A perfectly or partially water-soluble chitosan-dendrimer hybrid could be obtained. By standard activated sludge, good biodegradation was observed in these hybrids.  相似文献   

19.
We designed poly(amidoamine) dendrimers with phenylalanine or leucine residues at their chain ends. Thereby, we achieved efficient gene transfection of cells through synergy of the proton sponge effect, which is induced by the internal tertiary amines of the dendrimer, and hydrophobic interaction by the hydrophobic amino acid residues in the dendrimer periphery. Dendrimers having 16, 29, 46, and 64 terminal phenylalanine residues were prepared by the reaction of the amine-terminated poly(amidoamine) G4 dendrimer and L-phenylalanine using condensing reagent 1,3-dicyclohexylcarbodiimide. Transfection activity of these phenylalanine-modified dendrimers for CV1 cells, an African green monkey kidney cell line, increased concomitant with the increasing number of the terminal phenylalanine residues, except for the dendrimer with 64 phenylalanine residues, which showed poor water solubility and hardly formed a complex with DNA at neutral pH. However, under weakly acidic conditions, the dendrimer with 64 phenylalanine residues formed a complex with DNA, thereby achieving highly efficient transfection. In contrast, the attachment of L-leucine residues was unable to improve the transfection activity of the parent dendrimer, probably because of the relatively lower hydrophobicity of this amino acid. The phenylalanine-modified dendrimer exhibited a higher transfection activity and a lower cytotoxicity than some widely used transfection reagents. For that reason, the phenylalanine-modified dendrimers are considered to be promising gene carriers.  相似文献   

20.
Successful treatment of cancer by boron neutron capture therapy (BNCT) requires the selective delivery of (10)B to constituent cells within a tumor. The expression of the folate receptor is amplified in a variety of human tumors and potentially might serve as a molecular target for BNCT. In the present study we have investigated the possibility of targeting the folate receptor on cancer cells using folic acid conjugates of boronated poly(ethylene glycol) (PEG) containing 3rd generation polyamidoamine dendrimers to obtain (10)B concentrations necessary for BNCT by reducing the uptake of these conjugates by the reticuloendothelial system. First we covalently attached 12-15 decaborate clusters to 3rd generation polyamidoamine dendrimers. Varying quantities of PEG units with varying chain lengths were then linked to these boronated dendrimers to reduce hepatic uptake. Among all prepared combinations, boronated dendrimers with 1-1.5 PEG(2000) units exhibited the lowest hepatic uptake in C57BL/6 mice (7.2-7.7% injected dose (ID)/g liver). Thus, two folate receptor-targeted boronated 3rd generation polyamidoamine dendrimers were prepared, one containing approximately 15 decaborate clusters and approximately 1 PEG(2000) unit with folic acid attached to the distal end, the other containing approximately 13 decaborate clusters, approximately 1 PEG(2000) unit, and approximately 1 PEG(800) unit with folic acid attached to the distal end. In vitro studies using folate receptor (+) KB cells demonstrated receptor-dependent uptake of the latter conjugate. Biodistribution studies with this conjugate in C57BL/6 mice bearing folate receptor (+) murine 24JK-FBP sarcomas resulted in selective tumor uptake (6.0% ID/g tumor), but also high hepatic (38.8% ID/g) and renal (62.8% ID/g) uptake, indicating that attachment of a second PEG unit and/or folic acid may adversely affect the pharmacodynamics of this conjugate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号