首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new cataract mutation was discovered in an ongoing program to identify new mouse models of hereditary eye disease. Lens opacity 12 (Lop12) is a semidominant mutation that results in an irregular nuclear lens opacity similar to the human Coppock cataract. Lop12 is associated with a small nonrecombining segment that maps to mouse Chromosome 1 close to the eye lens obsolescence mutation (Cryge(Cat2-Elo)), a member of the gamma-crystallin gene cluster (Cryg). Using a systemic candidate gene approach to analyze the entire Cryg cluster, a G to A transition was found in exon 3 of Crygd associated with the Lop12 mutation and has been designated Crygd(Lop12). The mutation Crygd(Lop12) leads to the formation of an in-frame stop codon that produces a truncated protein of 156 amino acids. It is predicted that the defective gene product alters protein folding of the gamma-crystallin(s) and results in lens opacity.  相似文献   

2.
To date around 140 genetic alleles have been identified as being responsible for mouse cataract pathology, including Crya, Cryb, Cryg, Maf, Pax6, Pitx3, Sox, Connexins, MIP, and Lim-2. We obtained a dominant cataract mouse model from a spontaneous mutation in the F1 hybrids of outbred strain ICR mice crossed to the inbred strain BALB/cJ mice. Heterozygous and homozygous mutants expressed a nuclear cataract in both eyes. In 8-day-old mice, histological analysis showed that polygon epithelial cells were in the equatorial region and cortex underneath, and vacuole and sponge-like degeneration were in the cortical area underneath the posterior lens capsule. The nucleus of the lens was a deeply stained pink, with the shorter fibers losing their normal arrangement. For the entire eye, there was a blank zone in the equatorial region in 8-day-old mice; however, there was a certain degree of atrophy in cornea tension and retina in the lens in 3-month-old mice. The lens had been serious damaged in the homozygous mutants. For mutation mapping, heterozygous carriers were mated to wild-type C3H/HeJ mice, and offspring (F1 generation) with cataracts were backcrossed to the wild-type C3H/HeJ mice again. N2 mice with cataracts were used for genotyping. Using genome-wide linkage analysis, the mutation was mapped to chromosome 1 and the Cryg gene cluster between two markers was confirmed as the candidate gene. After direct sequencing the cDNA of the Cryg gene cluster, a 1-bp deletion was found in exon 3 of the Crygc gene, leading to a stop codon at the 76th amino acid of exon 3 which results in production of a truncated protein in mutant mice (Leu160Stop). Bioinformatic analysis of the mutant γC-crystallin reveals that the COOH-terminal of the mutant protein deletes a β-sheet, which affects the function of the lens proteins and leads to the development of cataracts.  相似文献   

3.
Hfi is a dominant cataract mutation where heterozygotes show hydropic lens fibers and homozygotes show total lens opacity. The Hfi locus was mapped to the distal part of mouse chromosome 10 close to the major intrinsic protein (Mip), which is expressed only in cell membranes of lens fibers. Molecular analysis of Mip revealed a 76-bp deletion that resulted in exon 2 skipping in Mip mRNA. In Hfi/Hfi this deletion resulted in a complete absence of the wildtype Mip. In contrast, Hfi/+ animals had the same amount of wildtype Mip as +/+. Results from pulse–chase expression studies excluded hetero-oligomerization of wildtype and mutant Mip as a possible mechanism for cataract formation in the Hfi/+. We propose that the cataract phenotype in the Hfi heterozygote mutant is due to a detrimental gain of function by the mutant Mip resulting in either cytotoxicity or disruption in processing of other proteins important for the lens. Cataract formation in the Hfi/Hfi mouse is probably a combined result of both the complete loss of wildtype Mip and a gain of function of the mutant Mip.  相似文献   

4.
During the mouse ENU mutagenesis screen, mice were tested for the occurrence of dominant cataracts. One particular mutant was discovered as a progressive opacity (Po). Heterozygotes show opacification of a superficial layer of the fetal nucleus, which progresses and finally forms a nuclear opacity. Since the homozygotes have already developed the total cataract at eye opening, the mode of inheritance is semidominant. Linkage analysis was performed using a set of genome-wide microsatellite markers. The mutation was mapped to chromosome 11 distal of the marker D11Mit242 (9.3 +/- 4.4 cM) and proximal to D11Mit36 (2.3 +/- 2.3 cM). This position makes the betaA3/A1-crystallin encoding gene Cryba1 an excellent candidate gene. Mouse Cryba1 was amplified from lens mRNA. Sequence analysis revealed a mutation of a T to an A at the second base of exon 6, leading to an exchange of Trp by Arg. Computer analysis predicts that the fourth Greek key motif of the affected betaA3/A1-crystallin will not be formed. Moreover, the mutation leads also to an additional splicing signal, to the skipping of the first 3 bp of exon 6, and finally to the deletion of the Trp residue. Both types of mRNA are present in the homozygous mutant lenses. The mutation will be referred to as Cryba1(po1). This particular mouse mutation provides an excellent animal model for a human congenital zonular cataract with suture opacities, which is caused by a mutation in the homologous gene.  相似文献   

5.
6.
Congenital cataract is a major cause of visual impairment and childhood blindness. The solubility and stability of crystallin proteins play critical roles in maintaining the optical transparency of the lens during the life span. Previous studies have shown that approximately 8.3%∼25% of congenital cataracts are inherited, and mutations in crystallins are the most common. In this study, we attempted to identify the genetic defect in a four-generation family affected with congenital cataracts. The congenital cataract phenotype of this four-generation family was identified as membranous cataract by slit-lamp photography. Mutation screening of the candidate genes detected a heterozygous c.465G→C change in the exon6 of the βB2-crystallin gene (CRYBB2) in all family members affected with cataracts, resulting in the substitution of a highly conserved Tryptophan to Cystine (p.W151C). The mutation was confirmed by restriction fragment length polymorphism (RFLP) analysis and found that the transition resulted in the absence of a BslI restriction site in the affected members of the pedigree. The outcome of PolyPhen-2 and SIFT analysis predicted that this W151C mutation would probably damage to the structure and function of βB2-crystallin. Wild type (wt) and W151C mutant βB2-crystallin were expressed in human lens epithelial cells (HLECs), and the fluorescence results showed that Wt-βB2-crystallin was evenly distributed throughout the cells, whereas approximately 34.7% of cells transfected with the W151C mutant βB2-crystallin formed intracellular aggregates. Taken together, these data suggest that the missense mutation in CRYBB2 gene leads to progressive congenital membranous cataract by impacting the solubility and function of βB2-crystallin.  相似文献   

7.
β/γ-Crystallins, the major structural proteins in human lens, are highly conserved in their tertiary structures but distinct in the quaternary structures. The N- and C-terminal extensions have been proposed to play a crucial role in mediating the size of β-crystallin assembly. In this research, we investigated the molecular mechanism underlying the congenital hereditary cataract caused by the recently characterized A2V mutation in βB2-crystallin. Spectroscopic experiments indicated that the mutation did not affect the secondary and tertiary structures of βB2-crystallin. The mutation did not affect the formation of βB2/βA3-crystallin heteromer as well as the stability and folding of the heteromer, suggesting that the mutation might not interfere with the protein interacting network in the lens. However, the tetramerization of βB2-crystallin at high protein concentrations was retarded by the A2V mutation. The mutation slightly decreased the thermal stability and promoted the thermal aggregation of βB2-crystallin. Although it did not influence the stability of βB2-crystallin against denaturation induced by chemical denaturants and UV irradiation, the A2V mutant was more prone to be trapped in the off-pathway aggregation process during kinetic refolding. Our results suggested that the A2V mutation might lead to injury of lens optical properties by decreasing βB2-crystallin stability against heat treatment and by impairing βB2-crystallin assembly into high-order homo-oligomers.  相似文献   

8.
《Gene》1997,185(1):11-17
Whilst searching for a mammalian homologue of the Drosophila glass gene we cloned a mouse cDNA whose deduced sequence encodes a 614 amino acid (aa) protein with ten Cys2-His2 (C2H2) zinc finger (Zf) motifs. Zfp64 is expressed in all developing and mature mouse tissues examined, except the mouse erythroleukemia (MEL) cell line. Zfp64 maps to the distal region of mouse chromosome 2 close to lens opacity 4 (Lop4), a semidominant cataract mutation. Sequence analysis shows that Zfp64 has multiple potential phosphorylation sites for casein kinase II (CK II), protein kinase C (PKC), tyrosine kinase (TK) and c-AMP- and c-GMP-dependent protein kinase (cA/GMPDPK).  相似文献   

9.
10.
Under normal conditions, lens aggregates of α-crystallin subunits, αA and αB, are found in the cytoplasm. However, during stress in nonlenticular tissues, αB translocates to the nucleus. A sequence study revealed that both subunits share a consensus sequence with other DNA binding proteins. These observations prompted us to investigate DNA binding with α-crystallin by UV-mediated photo-crosslinking. The data show that both single and double stranded DNA crosslink mainly with tetramers of α-crystallin subunits. The formation of tetramers appears to modify α-crystallin interactive properties and, therefore, its induction may have functional significance. These observations suggest that α-crystallin may have a nuclear function which includes DNA binding.  相似文献   

11.
Non-native protein conformers generated by mutation or chemical damage template aggregation of wild-type, undamaged polypeptides in diseases ranging from amyotrophic lateral sclerosis to cancer. We tested for such interactions in the natively monomeric human eye lens protein γd-crystallin, whose aggregation leads to cataract disease. The oxidation-mimicking W42Q mutant of γd-crystallin formed non-native polymers starting from a native-like state under physiological conditions. Aggregation occurred in the temperature range 35–45 °C, in which the mutant protein began to lose the native conformation of its N-terminal domain. Surprisingly, wild-type γd-crystallin promoted W42Q polymerization in a catalytic manner, even at mutant concentrations too low for homogeneous nucleation to occur. The presence of wild-type protein also downshifted the temperature range of W42Q aggregation. W42Q aggregation required formation of a non-native intramolecular disulfide bond but not intermolecular cross-linking. Transient WT/W42Q binding may catalyze this oxidative misfolding event in the mutant. That a more stable variant in a mixture can specifically promote aggregation of a less stable one rationalizes how extensive aggregation of rare damaged polypeptides can occur during the course of aging.  相似文献   

12.
βA3/A1-crystallin is an abundant structural protein of the lens that is very critical for lens function. Many different genetic mutations have been shown to associate with different types of cataracts in humans and in animal models. βA3/A1-crystallin has four Greek key-motifs that organize into two crystallin domains. It shown to bind calcium with moderate affinity and has putative calcium-binding site. Other than in the lens, βA3/A1 is also expressed in retinal astrocytes, retinal pigment epithelial (RPE) cells, and retinal ganglion cells. The function of βA3/A1-crystallin in the retinal cell types is well studied; however, a clear understanding of the function of this protein in the lens has not yet been established. In the current study, we generated the βA3/A1-crystallin knockout (KO) mouse and explored the function of βA3/A1-crystallin in lens development. Our results showed that βA3-KO mice develop congenital nuclear cataract and exhibit persistent fetal vasculature condition. At the cellular level KO lenses show defective lysosomal clearance and accumulation of nuclei, mitochondria, and autophagic cargo in the outer cortical region of the lens. In addition, the calcium level and the expression and activity of calpain-3 were increased in KO lenses. Taken together, these results suggest the lack of βA3-crystallin function in lenses, alters calcium homeostasis which in turn causes lysosomal defects and calpain activation. These defects are responsible for the development of nuclear cataract in KO lenses.  相似文献   

13.
Cataracts, named for any opacity in the ocular lens, remain the leading cause of vision loss in the world. Non-surgical methods for cataract prevention are still elusive. We have genetically tested whether enhanced lens gap junction communication, provided by increased α3 connexin (Cx46) proteins expressed from α8(Kiα3) knock-in alleles in Gja8tm1(Gja3)Tww mice, could prevent nuclear cataracts caused by the γB-crystallin S11R mutation in CrygbS11R/S11R mice. Remarkably, homozygous knock-in α8(Kiα3/Kiα3) mice fully prevented nuclear cataracts, while single knock-in α8(Kiα3/−) allele mice showed variable suppression of nuclear opacities in CrygbS11R/S11R mutant mice. Cataract prevention was correlated with the suppression of many pathological processes, including crystallin degradation and fiber cell degeneration, as well as preservation of normal calcium levels and stable actin filaments in the lens. This work demonstrates that enhanced intercellular gap junction communication can effectively prevent or delay nuclear cataract formation and suggests that small metabolites transported through gap junction channels protect the stability of crystallin proteins and the cytoskeletal structures in the lens core. Thus, the use of an array of small molecules to promote lens homeostasis may become a feasible non-surgical approach for nuclear cataract prevention in the future.  相似文献   

14.

Purpose

To investigate the expression of αA- and αB-crystallin and the unfolded protein response in the lens epithelium of patients with high myopia-related cataracts.

Methods and Materials

The central portion of the human anterior lens capsule together with the adhering epithelial cells, approximately 5 mm in diameter, were harvested and processed within two hours after cataract surgery from high myopia-related (spherical equivalent ≥-10.00 diopters) and age-related cataract patients or from high myopia but non-cataractous patients (tissue were collected from ocular trauma patients with high myopia and lens trauma). Anterior lens samples from fresh cadaver normal human eyes were used as normal control (collected within 6 hours from death). Real-time PCR was performed to detect the mRNA levels of α-crystallins as well as unfolded protein response (UPR)-related GRP78, spliced-XBP1, ATF4 and ATF6. Western blot analysis was used to determine the protein level of α-crystallin, GRP78, p-IRE1α, p-eIF2α and ATF6.

Results

In the lens epithelium of the high myopia-related cataract group and the age related cataract group, the mRNA and soluble protein expression of αA- and αB-crystallin were both decreased; additionally, the protein levels of ATF6, p-eIF2α and p-IRE1α and the gene expression levels of spliced XBP1, GRP78, ATF6 and ATF4 were greatly increased relative to the normal control.

Conclusion

These results suggest the significant loss of soluble α-crystallin and the activation of the UPR in the lens epithelium of patients with high myopia-related cataract, which may be associated with the cataractogenesis of high myopia-related cataract.  相似文献   

15.
A novel ENU-induced mutation in the mouse leading to a nuclear and zonular opacity of the eye lens (Aey1) was mapped to chromosome 1 between the markers D1Mit303 and D1Mit332. On the basis of the chromosomal position, the gamma-crystallin encoding gene cluster (Cryg) and the betaA2-crystallin encoding gene Cryba2 were tested as candidate genes. An A --> T mutation destroys the start codon of the Cryge gene in the mutants; this mutation was confirmed by the absence of a restriction site for NcoI in the corresponding genomic fragment of homozygous mutants. The next in-frame start codon is 129 bp downstream; this predicted truncated gammaE-crystallin consists of 131 amino acids, resulting in a molecular mass of 14 kD. However, another open reading frame was observed just 19 bp downstream of the regular Cryge start codon, resulting in a protein of 119 amino acids and a calculated molecular weight of 13 kD. Western blot analysis using polyclonal antibodies against gamma-crystallins or the novel Aey1-specific protein demonstrated the specific expression of the Aey1 protein in the cataractous lenses only; the truncated form of the gammaE-crystallin could not be detected. Therefore, it is concluded that the novel protein destroys the sensitive cellular structure of the eye lens.  相似文献   

16.
A novel ENU-induced mutation in the mouse leading to a nuclear and cortical opacity of the eye lens (ENU418) was mapped to proximal chromosome 1 by a genome-wide mapping approach. It suggests that the cluster of gamma-crystallin encoding genes (Cryg) and the betaA2-crystallin encoding gene Cryba2 are excellent candidate genes. An A --> G exchange in the middle of intron 1 of the Cryge gene was found as the only alteration cosegregating with the cataractous phenotype. The mutation was confirmed by the presence of a novel restriction site for ApaI in the corresponding genomic DNA fragment. The mutation represses splicing of intron 1; the additional 92 bp in the corresponding cDNA leads to a frameshift and the expression of a novel hybrid protein containing 3 amino acids of the gammaE-crystallin at the N terminus, but 153 novel amino acids. The Cryge(ENU418) protein has a calculated molecular mass of approximately 15.6 kD and an alkaline isoelectric point (pH 10.1) and is predicted to have two hydrophobic domains. Western blot analysis using a polyclonal antibody against the hydrophilic C-terminal part of the Cryge(ENU418)-specific protein demonstrated its stable expression in the cataractous lenses; it was not found in the wild types. Histological analysis of the cataractous lenses indicated that the expression of the new protein disrupts the cellular structure of the eye lens.  相似文献   

17.
In addition to being refractive proteins in the vertebrate lens, the two α-crystallin polypeptides (αA and αB) are also molecular chaperones that can protect proteins from thermal aggregation. The αB-crystallin polypeptide, a functional member of the small heat shock family, is expressed in many tissues in a developmentally regulated fashion, is stress-inducible, and is overexpressed in many degenerative diseases and some tumors indicating that it plays multiple roles. One possible clue to α-crystallin functions is the fact that both polypeptides are phosphorylated on serine residues by cAMP-dependent and cAMP-independent mechanisms. The cAMP-independent pathway is an autophosphorylation that has been demonstrated in vitro, depends on magnesium and requires cleavage of ATP. Disaggregation of αA-, but not αB-crystallin into tetramers results in an appreciable increase in autophosphorylation activity, reminiscent of other heat shock proteins, and suggests the possibility that changes in the aggregation state of αA-crystallin are involved in yet undiscovered signal transduction pathways. The α-crystallin polypeptides differ with respect to their abilities to undergo cAMP-dependent phosphorylation, with preference given to the αB-crystallin chain. These differences and complexities in α-crystallin phosphorylations, coupled with the differences in expression patterns of the two α-crystallin polypeptides, are consistent with the idea that each polypeptide has distinctive structural and metabolic roles.  相似文献   

18.
Elucidation of the structure of α-crystallin, the major protein in all vertebrate lenses, is important for understanding its role in maintaining transparency and its function in other tissues under both normal and pathological conditions. Progress toward a unified consensus concerning the tertiary and quaternary structures of α-crystallin depends, in part, on an accurate estimation of its secondary structure. For the first time, three algorithms, SELCON, K2D and CONTIN were used to analyze far ultra-violet circular dichroism (UV–CD) spectra of bovine lens α-crystallin to estimate the secondary structure and to determine the effects of temperature and concentration. Under all experimental conditions tested, the analyses show that α-crystallin contains 14% α-helix, 35% β-sheet and the remainder, random coil and turns. The results suggest that α-crystallin is best classified as a mixed protein. In addition, increased temperature and concentration of α-crystallin result in increased α-helices with a compensatory decrease in β-sheets. Such structural alterations in α-crystallin may be functionally important during terminal differentiation of the lens fiber cells that is accompanied by increased protein concentrations and its role as a chaperone-like protein.  相似文献   

19.

Background

The eye lens is composed of fiber cells that are filled with α-, β- and γ-crystallins. The primary function of crystallins is to maintain the clarity of the lens through ordered interactions as well as through the chaperone-like function of α-crystallin. With aging, the chaperone function of α-crystallin decreases, with the concomitant accumulation of water-insoluble, light-scattering oligomers and crystallin-derived peptides. The role of crystallin-derived peptides in age-related lens protein aggregation and insolubilization is not understood.

Methodology/Principal Findings

We found that αA-crystallin-derived peptide, 66 SDRDKFVIFLDVKHF 80, which accumulates in the aging lens, can inhibit the chaperone activity of α-crystallin and cause aggregation and precipitation of lens crystallins. Age-related change in the concentration of αA-(66-80) peptide was estimated by mass spectrometry. The interaction of the peptide with native crystallin was studied by multi-angle light scattering and fluorescence methods. High molar ratios of peptide-to-crystallin were favourable for aggregation and precipitation. Time-lapse recordings showed that, in the presence of αA-(66-80) peptide, α-crystallin aggregates and functions as a nucleus for protein aggregation, attracting aggregation of additional α-, β- and γ-crystallins. Additionally, the αA-(66-80) peptide shares the principal properties of amyloid peptides, such as β-sheet structure and fibril formation.

Conclusions/Significance

These results suggest that crystallin-derived peptides such as αA-(66-80), generated in vivo, can induce age-related lens changes by disrupting the structure and organization of crystallins, leading to their insolubilization. The accumulation of such peptides in aging lenses may explain a novel mechanism for age-related crystallin aggregation and cataractogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号