首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One current hypothesis for the initiation of Ca2+ entry into nonelectrically excitable cells proposes that Ca2+ entry is linked to the state of filling of intracellular Ca2+ stores. In the human T lymphocyte cell line Jurkat, stimulation of the antigen receptor leads to release of Ca2+ from internal stores and influx of extracellular Ca2+. Similarly, treatment of Jurkat cells with the tumor promoter thapsigargin induced release of Ca2+ from internal stores and also resulted in influx of extracellular Ca2+. Initiation of Ca2+ entry by thapsigargin was blocked by chelation of Ca2+ released from the internal storage pool. The Ca2+ entry pathway also could be initiated by an increase in the intracellular concentration of Ca2+ after photolysis of the Ca(2+)-cage, nitr-5. Thus, three separate treatments that caused an increase in the intracellular concentration of Ca2+ initiated Ca2+ influx in Jurkat cells. In all cases, Ca(2+)-initiated Ca2+ influx was blocked by treatment with any of three phenothiazines or W-7, suggesting that it is mediated by calmodulin. These data suggest that release of Ca2+ from internal stores is not linked capacitatively to Ca2+ entry but that initiation is linked instead by Ca2+ itself, perhaps via calmodulin.  相似文献   

2.
Effects of dantrolene, a blocker of intracellular Ca2+ release, on the oscillation of the intracellular Ca2+ ([Ca2+]i) induced by caffeine were studied in bullfrog sympathetic ganglion cells, using a Fura-2 fluorescence technique. Dantrolene blocked the Ca2+ oscillation only in the cell illuminated by ultraviolet light (335-385 nm). Likewise, the blocking effects on rhythmic Ca(2+)-dependent hyperpolarizations, representing Ca2+ oscillations via activation of Ca(2+)-dependent K+ channel, occurred only under the illumination with ultraviolet light (335-385 nm), but not with visible light (404-417 nm). This wavelength dependence differs from the absorbance spectrum of dantrolene. On the other hand, dantrolene preirradiated with ultraviolet light under dark condition or ultraviolet light itself did not affect the [Ca2+]i oscillation. The blocking action was not prevented by the pretreatment of the cells with reducing agents. These results indicate that illumination of the Ca2+ release channel or dantrolene itself with ultraviolet light (possibly the former) is necessary for the drug to exert its blocking effect. Furthermore, dantrolene was found to decrease Fura-2 fluorescence and to increase cell autofluorescence, leading sometimes to a false decrease in the basal [Ca2+]i.  相似文献   

3.
B Cook  B Minke 《Cell calcium》1999,25(2):161-171
Phototransduction in Drosophila is mediated by the ubiquitous phosphoinositide cascade, leading to opening of the TRP and TRPL channels, which are prototypical members of a novel class of membrane proteins. Drosophila mutants lacking the TRP protein display a response to light that declines to the dark level during illumination. It has recently been suggested that this response inactivation results from a negative feedback by calcium-calmodulin, leading to closure of the TRPL channels. It is also suggested that in contrast to other phosphoinositide-mediated systems, Ca2+ release from internal stores is neither involved in channel activation nor in phototransduction in general. We now show that inactivation of the light response in trp photoreceptors is enhanced upon reduction of the intracellular Ca2+ concentration. Furthermore, in Ca(2+)-free medium, when there is no Ca2+ influx into the photoreceptors, we demonstrate a significant elevation of intracellular Ca2+ upon illumination. This elevation correlates with ability of the cells to respond to light. Accordingly, malfunctioning of Ca2+ stores, either by Ca2+ deprivation or by application of the Ca2+ pump inhibitor, thapsigargin, confers a trp phenotype on wild type flies. The results indicate that the response inactivation in trp cells results from Ca2+ deficiency rather than from Ca(2+)-dependent negative feedback. The results also indicate that there is light-induced release of Ca2+ from intracellular stores. Furthermore, the response to light is correlated to Ca2+ release, and normal function of the stores is required for prolonged excitation. We suggest that phototransduction in Drosophila depends on Ca(2+)-release mediated signalling and that TRP is essential for the normal function of this process.  相似文献   

4.
Emission spectra of the photolabile Ca2+ chelators DM-nitrophen, nitr-5, and diazo-2 were studied alone, and in the presence of indo-1, to investigate potential interactions that would make the simultaneous manipulation and ratiometric measurement of the intracellular Ca2+ concentration difficult. Neither diazo-2 nor its photoproduct were found to be significantly fluorescent, and consequently concentrations of diazo-2 up to 20 times that of indo-1 did not distort the emission spectra of indo-1. DM-nitrophen was scarcely fluorescent, but its fluorescence did increase upon photolysis. In contrast to diazo-2 and DM-nitrophen, nitr-5 itself was found to be quite fluorescent, and this fluorescence was significantly increased upon photolysis. Thus, combined use of nitr-5 and indo-1 poses the most difficulty. The emission spectra of all the investigated compounds were used to define experimental conditions and calibration procedures that make possible simultaneous measurement and manipulation of the intracellular Ca2+ concentration.  相似文献   

5.
Nifedipine reversibly arrests mitosis in stamen hair cells of tradescantia   总被引:6,自引:0,他引:6  
Mitotic stamen hair cells of Tradescantia virginiana (cv. Zwanenburg Blue) become arrested in metaphase following a 30-min treatment with 10 to 100 microM nifedipine, a Ca2+-channel entry blocker. The time interval between nuclear envelope breakdown and anaphase onset in untreated cells is approximately 33 min +/- 4 min; nifedipine extends this "metaphase transit time" beyond 70 min. Nifedipine can be photoreversed in situ by exposure to 365 nm light. UV illumination inactivates the drug, its inhibitory effect on Ca2+ is abolished, and cells arrested in metaphase enter anaphase within 3 to 18 min of UV exposure if CaCl2 is present in the medium. The interval between UV illumination and anaphase onset is inversely related to the extracellular concentration of CaCl2. If CaCl2 is not added to the medium, the interval between UV exposure and anaphase onset is usually longer than 18 min. The sole addition of 100 microM CaCl2 to the medium is insufficient to reverse nifedipine inhibition; unless the cells are exposed to UV light, anaphase will not commence. The threshold concentration of free Ca2+ for rapid anaphase onset (less than 10 min after UV photoreversal) is between 1 and 10 microM. These results suggest that an influx of Ca2+ from the extracellular medium to the cytosolic compartment is necessary for normal progression from metaphase to anaphase and that this influx may serve as a trigger for chromosome separation.  相似文献   

6.
The changes in cytosol Ca2+ concentration associated with the shrinkage of Arabidopsis cells induced by the inhibitor of Ca(2+)-ATPase, cyclopiazonic acid and the Ca2+ ionophore ionomycin were monitored using the fluorescence of Ca(2+)-sensitive probe chlortetracycline hydrochloride. It was found that these compounds elicited a substantial decrease in fluorescence intensity closely associated with Ca(2+)-release from the intracellular stores to the cytoplasm. The release of Ca2+ from the intracellular depots was accompanied by decrease of plant cell volume. Thapsigargin and 2,5'-ditert-butyl-1,4-benzohydroquinone (highly specific inhibitors of Ca(2+)-ATPase of endoplasmic reticulum) resulted in much weaker changes than cyclopiazonic acid did. It was also found with the help of the same technique that red light (lambda = 660 nm) illumination induced a similar Ca2+ release from the intracellular stores. Moreover, the amplitudes of light-induced fluorescence responses registered in mutant plants differing in the content of phytochrome A (phyAOX) and phytochrome B (phyBOX) were much higher than those registered in wild-type of Arabidopsis.  相似文献   

7.
Modulation of M-current by intracellular Ca2+   总被引:1,自引:0,他引:1  
IM is a voltage- and time-dependent K+ current that is suppressed by muscarinic receptor activation. IM augmentation following agonist washout was blocked by heavily buffering [Ca2+]i using BAPTA. Although IM is not primarily Ca2+ dependent, small increases in [Ca2+]i by photolysis of the "caged" Ca2+ chelator nitr-5 or by evoking action potentials augmented, while larger increases inhibited, IM. Raising [Ca2+]i for prolonged periods, by nitr-5 photolysis, reduced its sensitivity to agonist, leaving a poorly reversible response. These results suggest that IM can be regulated by physiologically relevant changes in [Ca2+]i, placing IM in a unique position to modulate cell excitability.  相似文献   

8.
Rapid release of 45Ca from an occluded state of the Na,K-pump   总被引:2,自引:0,他引:2  
45Ca is bound to the occluded state of the Na,K-pump, apparently at K+ sites. Only one 45Ca ion is bound in place of two K+ ions, with an affinity approximately 0.08 mM; K+ competes with an apparent affinity approximately 0.04 mM. 45Ca is released rapidly from Na,K-ATPase in the presence of ATP or ADP, presumably to the intracellular medium. The rate constant of 45Ca release with ATP is greater than 100 s-1 at 20 degrees C, more than twice as fast as the rate of release of 42K from the occluded state. Phosphorylation of Na,K-ATPase with MgPi, which would lead to release of occluded K+ or Rb+ to the extracellular face of the membrane, stabilizes occluded 45Ca. 45Ca release is slower immediately after exposure to MgPi than after a rinse in the absence of Pi indicating that in the former circumstance the rate of 45Ca release is limited by dephosphorylation; 45Ca release is even slower after exposure to Mg2+ arsenate, consistent with dearsenylation being slower than dephosphorylation. When limited by dephosphorylation, the rate of 45Ca release is dependent on the species of monovalent cation present, increasing in the order N-methylglucamine less than Cs+ less than Li+ less than Na+ less than Rb+ less than K+. When the 45Ca occluded state is exposed to K + Mg + Pi and then to Na+ + Mg2+ + ATP, the exposure to K+ is "remembered," indicating simultaneous occlusion of 45Ca and K+. The apparent affinity for K+ in formation of this state is 10-50 mM, and the rate of release of K+ is approximately 2 s-1. Ca2+ has effects on the release of 86Rb from the occluded state: With ATP, Ca2+ acts like Mg2+ by stimulating 86Rb release at low concentrations and inhibiting at high concentrations; with MgPi, Ca2+ inhibits 86Rb release, presumably by preventing phosphorylation. Thus, Ca2+ has two actions on the Na,K-pump as studied here: one as a Mg2+ congener, and another as a K+ congener at transport sites. In the latter role Ca2+ is unusual in that it appears to be able to bind to the transport sites from the intracellular face of the pump and to become occluded, but unable to be released from extracellular sites.  相似文献   

9.
Helothermine, a protein from the venom of the Mexican beaded lizard (Heloderma horridum horridum), was found to inhibit [3H]ryanodine binding to cardiac and skeletal sarcoplasmic reticulum, to block cardiac and skeletal ryanodine receptor channels incorporated into planar bilayers, and to block Ca(2+)-induced Ca2+ release triggered by photolysis of nitr-5 in saponin-permeabilized trabeculae from rat ventricle. Cloning of the helothermine cDNA revealed that the protein is composed of 223 amino acids with a molecular mass of 25,376 daltons, and apparently is stabilized by eight disulfide bridges. The peptide sequence showed significant homology with a family of cysteine-rich secretory proteins found in the male genital tract and in salivary glands. The interaction of helothermine and ryanodine receptors should serve to define functional domains within the channel structure involved in the control of Ca2+ release from sarcoplasmic reticulum.  相似文献   

10.
Mercury is a non-essential heavy metal affecting intracellular Ca2+ dynamics. We studied the effects of Hg2+ on [Ca2+]i in trout hepatoma cells (RTH-149). Confocal imaging of fluo-3-loaded cells showed that Hg2+ induced dose-dependent, sustained [Ca2+]i transient, triggered intracellular Ca2+ waves, stimulated Ca2+-ATPase activity, and promoted InsP3 production. The effect of Hg2+ was reduced by the Ca2+ channel blocker verapamil and totally abolished by extracellular GSH, but was almost unaffected by cell loading with the heavy metal chelator TPEN or esterified GSH. In a Ca2+-free medium, Hg2+ induced a smaller [Ca2+]i transient, that was unaffected by TPEN, but was abolished by U73122, a PLC inhibitor, and by cell loading with GDP-betaS, a G protein inhibitor, or heparin, a blocker of intracellular Ca2+ release. Data indicate that Hg2+ induces Ca2+ entry through verapamil-sensitive channels, and intracellular Ca2+ release via a G protein-PLC-InsP3 mechanism. However, in cells loaded with heparin and exposed to Hg2+ in the presence of external Ca2+, the [Ca2+]i rise was maximally reduced, indicating that the global effect of Hg2+ is not a mere sum of Ca2+ entry plus Ca2+ release, but involves an amplification of Ca2+ release operated by Ca2+ entry through a CICR mechanism.  相似文献   

11.
Oscillations of Ca2+ in heart cells are a major underlying cause of important cardiac arrhythmias, and it is known that Ca2+-induced release of Ca2+ from intracellular stores (the sarcoplasmic reticulum) is fundamental to the generation of such oscillations. There is now evidence that cADP-ribose may be an endogenous regulator of the Ca2+ release channel of the sarcoplasmic reticulum (the ryanodine receptor), raising the possibility that cADP-ribose may influence arrhythmogenic mechanisms in the heart. 8-Amino-cADP-ribose, an antagonist of cADP-ribose, suppressed oscillatory activity associated with overloading of intracellular Ca2+ stores in cardiac myocytes exposed to high doses of the beta-adrenoreceptor agonist isoproterenol or the Na+/K+-ATPase inhibitor ouabain. The oscillations suppressed by 8-amino-cADP-ribose included intracellular Ca2+ waves, spontaneous action potentials, after-depolarizations, and transient inward currents. Another antagonist of cADP-ribose, 8-bromo-cADP-ribose, was also effective in suppressing isoproterenol-induced oscillatory activity. Furthermore, in the presence of ouabain under conditions in which there was no arrhythmogenesis, exogenous cADP-ribose was found to be capable of triggering spontaneous contractile and electrical activity. Because enzymatic machinery for regulating the cytosolic cADP-ribose concentration is present within the cell, we propose that 8-amino-cADP-ribose and 8-bromo-cADP-ribose suppress cytosolic Ca2+ oscillations by antagonism of endogenous cADP-ribose, which sensitizes the Ca2+ release channels of the sarcoplasmic reticulum to Ca2+.  相似文献   

12.
Gonadotropin-releasing hormone (GnRH) stimulates pituitary gonadotrope cells to release luteinizing hormone (LH). Previous studies have indicated a role for Ca+2 in this process; however, the present study provides the first measurements of an increased intracellular Ca+2 concentration. Pituitary cell cultures enriched for gonadotropes were loaded with quin 2, a fluorescent Ca+2-sensitive molecule. Subsequent addition of GnRH to these cells produced a rapid (within 10 sec) increase in fluorescence (indicating an increase in intracellular free Ca+2). In contrast, two GnRH analogs, des1 GnRH (a very low-affinity binder to the GnRH receptor) and Ac[D-pCl-Phe1,2] DTrp3 DLys6 DAla10-GnRH (a pure GnRH antagonist) produced no such Ca+2 change, thus showing a correlation between increased intracellular Ca+2 and LH release. A functional relationship between increased Ca+2 and LH release was suggested by experiments in which LH release was inhibited from cells loaded with high levels of intracellular quin 2 (in order to chelate intracellular Ca+2). Since this inhibition was completely reversed by addition of the Ca+2 ionophore A23187, quin 2 was not toxic at the concentrations used and apparently inhibited LH release by buffering intracellular Ca+2. The results presented here are consistent with the hypothesis that GnRH-stimulated LH release is mediated by increased intracellular Ca+2 and support the notion that the rate-limiting step in GnRH-stimulated LH release is distal to Ca+2 mobilization.  相似文献   

13.
A principal step in the process leading to muscle contraction is the intracellular release of Ca2+. We have detected and compared some physical and chemical events that reflect Ca2+ release in contracting frog skeletal muscle cells, described the effects of some agents that are believed to alter intracellular Ca2+ release during contraction, and speculated about the role of Ca2+ release in influencing some of the mechanical properties of frog muscle. The specific physical features recorded were changes in striation spacing, myofibrillar orientation, and force development. The chemical feature was the relative change in intracellular [Ca2+] recorded as light emission from cells microinjected with the Ca2+-sensitive protein aequorin. The presence or absence of a correlation among these variables has been used (i) to evaluate the action of some agents thought to change intracellular Ca2+ release in excitation--contraction (E--C) coupling, (ii) to further substantiate the effects of cell length on Ca2+ release, and (iii) to examine some details of models for E--C coupling. The results showed that potentiating agents enhance and prolong intracellular Ca2+ release without changing the rate of Ca2+ removal during E--C coupling. This extra Ca2+ does not produce the same effect on contractions at all lengths. Contractility is inversely related to cell length, and Ca2+-induced activation is normally less than maximum not only at short lengths but also at optimal striation spacings.  相似文献   

14.
The mechanisms of H2O2-induced Ca2+ release from intracellular stores were investigated in human umbilical vein endothelial cells. It was found that U73122, the selective inhibitor of phospholipase C, could not inhibit the H2O2-induced cytosolic Ca2+ mobilization. No elevation of inositol 1,4,5-trisphosphate (IP3) was detected in cells exposed to H2O2. By loading mag-Fura-2, a Ca2+ indicator, into intracellular store, the H2O2-induced Ca2+ release from intracellular calcium store was directly observed in the permeabilized cells in a dose-dependent manner. This release can be completely blocked by heparin, a well-known antagonist of IP3 receptor, indicating a direct activation of IP3 receptor on endoplasmic reticulum (ER) membrane by H2O2. It was also found that H2O2 could still induce a relatively small Ca2+ release from internal stores after the Ca2+-ATPase on ER membrane and the Ca2+ uptake to mitochondria were simultaneously inhibited by thapsigargin and carbonyl cyanide p-trifluoromethoxyphenyl hydrazone. The later observation suggests that a thapsigargin-insensitive non-mitochondrial intracellular Ca2+ store might be also involved in H2O2-induced Ca2+ mobilization.  相似文献   

15.
细胞内贮存钙释放的机制   总被引:13,自引:0,他引:13  
细胞内贮存钙的释放主要由1,4,5-三磷酸肌醇(IP3)受体系统和ryanodine受体系统调控。前通过IP3与其受体结合后,诱发细胞内钙释放;后通过复杂的机制调节环腺苷二磷酸核糖含量,由cADPR直接或间接作用于ryanodine受体,进而启动由Ca^2+诱发的Ca^2+释放机制。上述两系统之间相互作用,共同调节细胞内贮存钙的释放。  相似文献   

16.
Global Ca2+ transients have been observed to precede nuclear envelope breakdown and the onset of anaphase in Swiss 3T3 fibroblasts in 8% (vol/vol) FBS. The occurrence of these Ca2+ transients was dependent on intracellular stores. These Ca2+ transients could be (a) abolished by serum removal without halting mitosis, and (b) eliminated by increasing intracellular Ca2+ buffering capacity through loading the cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) buffer, via the tetra(acetoxymethyl) ester, without hindering the transition into anaphase. Microinjection of sufficient concentrations of BAPTA buffer could block nuclear envelope breakdown. Pulses of Ca2+ generated by flash photolysis of intracellularly trapped nitr-5, a "caged" Ca2+, could precipitate precocious nuclear envelope breakdown in prophase cells. In metaphase cells, photochemically generated Ca2+ pulses could cause changes in the appearance of the chromosomes, but the length of time required for cells to make the transition from metaphase to anaphase remained essentially unchanged regardless of whether a Ca2+ pulse was photoreleased during metaphase. The results from these photorelease experiments were not dependent on the presence of serum in the medium. Discharging intracellular Ca2+ stores with ionomycin in the presence of 1.8 mM extracellular Ca2+ doubled the time for cells to pass from late metaphase into anaphase, whereas severe Ca2+ deprivation by treatment with ionomycin in EGTA-containing medium halted mitosis. Our results collectively indicate that Ca2+ is actively involved in nuclear envelope breakdown, but Ca2+ signals are likely unnecessary for the metaphase-anaphase transition in Swiss 3T3 fibroblasts. Additional studies of intracellular Ca2+ concentrations in mitotic REF52 and PtK1 cells revealed that Ca2+ transients are not observed at all mitotic stages in all cells. The absence of observable global Ca2+ transients, where calcium buffers can block and pulses of Ca2+ can advance mitotic stages, may imply that the relevant Ca2+ movements are too local to be detected.  相似文献   

17.
Rat brain slices, prelabeled with [3H]noradrenaline, were superfused and exposed to K+ depolarization (10-120 mM K+) or to veratrine (1-25 microM). In the absence of extracellular Ca2+ veratrine, in contrast to K+-depolarization, caused a substantial release of [3H]noradrenaline, which was completely blocked by tetrodotoxin (0.3 microM). The Ca2+ antagonist Cd2+ (50 microM), which strongly reduced K+-induced release in the presence of 1.2 mM Ca2+, did not affect release induced by veratrine in the absence of extracellular Ca2+. Ruthenium red (10 microM), known to inhibit Ca2+-entry into mitochondria, enhanced veratrine-induced [3H]noradrenaline release. Compared with K+ depolarization in the presence of 1.2 mM Ca2+, veratrine in the absence of Ca2+ caused a somewhat delayed release of [3H]noradrenaline. Further, in contrast to the fractional release of [3H]noradrenaline induced by continuous K+ depolarization in the presence of 1.2 mM Ca2+, that induced by prolonged veratrine stimulation in the absence of Ca2+ appeared to be more sustained. The data strongly suggest that veratrine-induced [3H]noradrenaline release in the absence of extracellular Ca2+ is brought about by a mobilization of Ca2+ from intracellular stores, e.g., mitochondria, subsequent to a strongly increased intracellular Na+ concentration. This provides a model for establishing the site of action of drugs that alter the stimulus-secretion coupling process in central noradrenergic nerve terminals.  相似文献   

18.
Using an intracellularly trapped dye, quin 2, effects of K+-depolarization on cytosolic free calcium concentrations were recorded microfluorometrically in rat aorta vascular smooth muscle cells in primary culture. When the cells were exposed to high extracellular K+ in Ca+-free media containing 2mM EGTA, there was a transient and dose-dependent elevation of cytosolic Ca2+ concentrations. However, the concentration of the cytosolic Ca2+ was not elevated when the intracellularly stored Ca2+ was depleted by the repetitive treatment with caffeine prior to the application of high K+. Thus depolarization of plasma membrane, per se, directly induces a release of Ca2+ from intracellular storage sites in vascular smooth muscle cells, and the main fraction of this released Ca2+ is derived from the caffeine sensitive storage sites; perhaps from the sarcoplasmic reticulum.  相似文献   

19.
B-16 melanoma cells in culture were prelabeled with (3H)-arachidonate, and exposed to UV radiation. Immediately after irradiation the cells released labeled materials. This UV-stimulated release was inhibited by mepacrine (20 microM) and calmodulin inhibitor W7 (0.5 microM). To determine the influence of extracellular Ca2+ on the UV-stimulated release, experiments were made with media containing various concentrations of Ca2+. The release decreased significantly at lower Ca2+ concentrations. These results suggest that Ca2+-calmodulin-dependent phospholipase A2 was involved in UV-stimulated release of radiolabeled materials, possibly arachidonic acid and its metabolites, from the cells.  相似文献   

20.
R C Hardie  B Minke 《Neuron》1992,8(4):643-651
Invertebrate phototransduction is an important model system for studying the ubiquitous inositol-lipid signaling system. In the transient receptor potential (trp) mutant, one of the most intensively studied transduction mutants of Drosophila, the light response quickly declines to baseline during prolonged intense light. Using whole-cell recordings from Drosophila photoreceptors, we show that the wild-type response is mediated by at least two functionally distinct classes of light-sensitive channels and that both the trp mutation and a Ca2+ channel blocker (La3+) selectively abolish one class of channel with high Ca2+ permeability. Evidence is also presented that Ca2+ is necessary for excitation and that Ca2+ depletion mimics the trp phenotype. We conclude that the recently sequenced trp protein represents a class of light-sensitive channel required for inositide-mediated Ca2+ entry and suggest that this process is necessary for maintained excitation during intense illumination in fly photoreceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号