首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary A 3D1H–15N–13C triple resonance experiment is presented that contains exclusively cross peaks between the1HN and15N nuclei of one residue with the H of the preceding residue. The pulse sequence, designed to minimize the time coherence, is transverse on nuclei with short T2 values. The experiment consists of coherence transfers via one-bond couplings from the HN via N, CO, C to the H and back to the HN for detection; it is called HN(COCA)HA. The experiment was tested on uniformly15N- and13C-enriched T4 lysozyme.  相似文献   

2.
A triad of tyrosine residues (Y152–154) in the cytochrome c1 subunit (C1) of the Rhodobacter capsulatus cytochrome bc1 complex (BC1) is ideally positioned to interact with cytochrome c2 (C2). Mutational analysis of these three tyrosines showed that, of the three, Y154 is the most important, since its mutation to alanine resulted in significantly reduced levels, destabilization, and inactivation of BC1. A second-site revertant of this mutant that regained photosynthetic capacity was found to have acquired two further mutations—A181T and A200V. The Y152Q mutation did not change the spectral or electrochemical properties of C1, and showed wild-type enzymatic C2 reduction rates, indicating that this mutation did not introduce major structural changes in C1 nor affect overall activity. Mutations Y153Q and Y153A, on the other hand, clearly affect the redox properties of C1 (e.g. by lowering the midpoint potential as much as 117 mV in Y153Q) and the activity by 90% and 50%, respectively. A more conservative Y153F mutant on the other hand, behaves similarly to wild-type. This underscores the importance of an aromatic residue at position Y153, presumably to maintain close packing with P184, which modeling indicates is likely to stabilize the sixth heme ligand conformation.  相似文献   

3.
It has been suggested that the cause of disagreements between molecular dynamics (MD) and NMR N–H bond order parameters is the fact that the NMR order parameter is determined for different amino acid residues at different time intervals, while the MD one is derived for all residues from the same MD trajectory of the same time interval. Therefore, it has been proposed for correct comparison with NMR data to calculate the MD order parameter for different amino acid residues separately for trajectory ranges close to NMR correlation time. The MD simulation of the human immunodeficiency virus type-1 protease (HIV-1 PR) with monoprotonated active centre was performed for verification of the proposition. It has been shown that the protease in aqueous solution adopts a set of conformations, which are intermediate between semiopen and closed ones. The calculated MD N–H bond order parameters are in agreement with literature NMR data in confidence interval limits.  相似文献   

4.
《BBA》2006,1757(9-10):1133-1143
In cytochrome c oxidase, oxido-reductions of heme a/CuA and heme a3/CuB are cooperatively linked to proton transfer at acid/base groups in the enzyme. H+/e cooperative linkage at Fea3/CuB is envisaged to be involved in proton pump mechanisms confined to the binuclear center. Models have also been proposed which involve a role in proton pumping of cooperative H+/e linkage at heme a (and CuA). Observations will be presented on: (i) proton consumption in the reduction of molecular oxygen to H2O in soluble bovine heart cytochrome c oxidase; (ii) proton release/uptake associated with anaerobic oxidation/reduction of heme a/CuA and heme a3/CuB in the soluble oxidase; (iii) H+ release in the external phase (i.e. H+ pumping) associated with the oxidative (R  O transition), reductive (O  R transition) and a full catalytic cycle (R  O  R transition) of membrane-reconstituted cytochrome c oxidase. A model is presented in which cooperative H+/e linkage at heme a/CuA and heme a3/CuB with acid/base clusters, C1 and C2 respectively, and protonmotive steps of the reduction of O2 to water are involved in proton pumping.  相似文献   

5.
Summary The 15N relaxation rates of the -aminoisobutyric acid (Aib)-rich peptide alamethicin dissolved in methanol at 27°C and 5°C, and dissolved in aqueous sodium dodecylsulfate (SDS) at 27°C, were measured using inverse-detected one-and two-dimensional 1H–15N NMR spectroscopy. Measurements of 15N longitudinal (RN(Nz)) and transverse (RN(Nx,y)) relaxation rates and the {1H} 15N nuclear Overhauser enhancement (NOE) at 11.7 Tesla were used to calculate (quasi-) spectral density values at 0, 50, and 450 MHz for the peptide in methanol and in SDS. Spectral density mapping at 0, 50, 450, 500, and 550 MHz was done using additional measurements of the 1H–15N lingitudinal two-spin order, RNH(2H infZ supN NZ), two-spin antiphase coherence, RNH(2H infN supZ Nx,y), and the proton longitudinal relaxation rate, RH(H infN supZ ), for the peptide dissolved in methanol only. The spectral density of motions was also modeled using the three-parameter Lipari-Szabo function. The overall rotational correlation times were determined to be 1.1, 2.5, and 5.7 ns for alamethicin in methanol at 27°C and 5°C, and in SDS at 27°C, respectively. From the rotational correlation time determined in SDS the number of detergent molecules associated with the peptide was estimated to be about 40. The average order parameter was about 0.7 and the internal correlation times were about 70 ps for the majority of backbone amide 15N sites of alamethicin in methanol and in SDS. The relaxation data, spectral densities, and order parameters suggest that the peptide N-H vectors of alamethicin are not as highly constrained as the core regions of folded globular proteins. However, the peptide backbone is clearly not as mobile as the most unconstrained regions of folded proteins, such as those found in the frayed C-and N-termini of some proteins, or in randomcoil peptides. The data also suggest significant mobility at both ends of the peptide dissolved in methanol. In SDS the mobility in the middle and at the ends of the peptide is reduced. The implications of the results with respect to the sterically hindered Aib residues and the biological activities of the peptide are discussed.To whom correspondence should be addressed.  相似文献   

6.
Summary 2D 1H NMR spectroscopy of two -helical peptides which differ in their amphipathicity has been used to investigate the relationships between amide-proton chemical shifts, amide-proton exchange rates, temperature, and trifluoroethanol (TFE) concentration. In 50% TFE, in which the peptides are maximally helical, the amide-proton chemical shift and temperature coefficient patterns are very similar to each other in each peptide. Temperature coefficients from –10 to –6 ppb/K, usually indicative of the lack of intramolecular hydrogen bonds, were observed even for hydrophobic amino acids in the center of the -helices. However, slow hydrogen isotope exchange for residues from 4 to 16 in both 18-mer helices indicates intact intramolecular hydrogen bonds over most of the length of these peptides. Based on these anomalous observations, we suggest that the pattern of amide-proton shifts in -helices in H2O/TFE solvents is dominated by bifurcated intermolecular hydrogen-bond formation between the backbone carbonyl groups and TFE. The amide-proton chemical shift changes with increasing temperature may be interpreted by a disruption of intermolecular hydrogen bonds between carbonyl groups and the TFE in TFE/water rather than by the length of intramolecular hydrogen bonds in -helices. Supplementary Material is available upon request, comprising seven pages with listings of experimental details and the NMR shift data for the two peptides.  相似文献   

7.
《BBA》2022,1863(8):148595
The cytochrome c oxidase complex, complex VI (CIV), catalyzes the terminal step of the mitochondrial electron transport chain where the reduction of oxygen to water by cytochrome c is coupled to the generation of a protonmotive force that drive the synthesis of ATP. CIV evolution was greatly accelerated in humans and other anthropoid primates and appears to be driven by adaptive selection. However, it is not known if there are significant functional differences between the anthropoid primates CIV, and other mammals. Comparison of the high-resolution structures of bovine CIV, mouse CIV and human CIV shows structural differences that are associated with anthropoid-specific substitutions. Here I examine the possible effects of these substitutions in four CIV peptides that are known to affect proton pumping: the mtDNA-coded subunits I, II and III, and the nuclear-encoded subunit VIa2. I conclude that many of the anthropoid-specific substitutions could be expected to modulate the rate and/or the efficiency of proton pumping. These results are compatible with the previously proposed hypothesis that the accelerated evolution of CIV in anthropoid primates is driven by selection pressure to lower the mitochondrial protonmotive force and thus decrease the rate of superoxide generation by mitochondria.  相似文献   

8.
Summary The influence of the internal dynamics of two polypeptides comprising transmembrane -helix A or two -helices A and B of bacterioopsin on experimentally accessible 15N NMR relaxation rates was investigated by molecular dynamics (MD) simulations, combined with more simple mechanic considerations. Model-free order parameters and correlation times of internal motions [Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546–4559] were calculated for these models. It was found that both peptides exhibit two types of internal motions of the amide bonds, on the pico- and nanosecond time scales, affecting 15N NMR relaxation. The fast fluctuations are local and correspond to the librational motions of the individual N–H vectors in an effective potential of atoms of the surrounding matrix. In contrast, the motions on the nanosecond time scale imply concerted collective vibrations of a large number of atoms and could be represented as bending oscillation of -helices, strongly overdamped by the ambient solvent. A few other molecular mechanisms of slow internal motion were found, such as local distortions of the -helices (e.g., -aneurysm), delocalized distortions of the -helical backbone, as well as oscillations of the tilt angle between the axes of the -helices A and B. The results are compared with 15N NMR relaxation data measured for the (1–36)bacterioopsin and (1–71)bacterioopsin polypeptides in chloroform-methanol (1:1) and in SDS micelles [Orekhov, V.Yu., Pervushin, K.V. and Arseniev, A.S. (1994) Eur. J. Biochem., 219, 887–896].Abbreviations C2 baeterioopsin-(7–63)-peptide - sA bacterioopsin-(7–32)-peptide - CPMG Carr-Purcell-Meiboom-Gill - MD molecular dynamics - rmsd root-mean-square deviation  相似文献   

9.
Summary The divalent metal ion binding site and binding constant of ribonuclease HI fromEscherichia coli were investigated by observing chemical shift changes using1H–15N heteronuclear NMR. Chemical shift changes were monitored during the titration of the enzyme with salts of the divalent cations. The enzyme was uniformly labeled by15N, which facilitated the monitoring of the chemical shift change of each cross peak between the backbone amide proton and the amide15N. The chemical shifts of several amide groups were affected upon the addition of a divalent metal ion: Mg2+, Ca2+, or Ba2+. These amide groups resided close to the active site, consistent with the previous X-ray crystallographic studies. From the titration analysis, a single divalent ion binding site was observed with a weak binding constant (KD=2–4 mM for the current divalent ions).  相似文献   

10.
The processes of dehydration and rehydration of β-cyclodextrin were studied by analysis of the (1)H NMR (nuclear magnetic resonance) line shape. Dehydration was carried in an open ampoule as a function of temperature and above 400 K total dehydration of β-cyclodextrin was observed. This result was confirmed by the thermogravimetry (TG) measurements. Rehydration was studied as a function of time at room temperature. After 40 days, β-cyclodextrin was found to absorb eight water molecules. The analysis of temperature changes in the shape of the (1)H NMR line of β-cyclodextrin kept in a closed ampoule and its dielectric measurements provided information on the mobility of water molecules. The water molecules were found to perform complex molecular motions, that is, reorientational jumps below 200K and additionally, translational motion (diffusion) above 200K.  相似文献   

11.
The temperature dependence of the mean square displacement of the iron atom in reduced and oxidized cytochrome c has been studied by Mössbauer spectroscopy. The flexibility of the protein, labeled by the modes coupling to the iron, is diminished upon reduction. The differences in flexibility are sufficient to explain the differences in physicochemical properties between the oxidized and the reduced forms.  相似文献   

12.
13.
Summary A 3D NMR technique is described which correlates the amide proton and nitrogen resonances of an amino acid residue with the C chemical shift of its preceding residue. The technique uses a relay mechanism, transferring magnetization from15N to13C via the intervening carbonyl nucleus. This method for obtaining sequential connectivity is less sensitive to large line widths than the alternative HNCA experiment. The technique is demonstrated for the protein calmodulin, complexed with a 26 amino acid fragment of skeletal muscle myosin light chain kinase.Abbreviations CaM Calmodulin - HCACO -proton to -carbon to carbonyl correlation - H(CA)NHN -proton (via -carbon) to nitrogen to amide proton correlation - HMQC heteronuclear multiple quantum correlation - HNCA amide proton to nitrogen to C -carbon correlation - M13 a 26-residue fragment of the CaM-binding domain of skeletal muscle myosin light chain kinase comprising residues 577–602.  相似文献   

14.
Cytochrome c′ of Methylococcus capsulatus Bath is involved in electron flow from the enzyme responsible for hydroxylamine oxidation, cytochrome P460, to cytochrome c 555. This cytochrome is spectrally similar to other cytochromes c′ but is larger (16,000 Da) and has a lower midpoint potential (–205 mV). By a combination of Edman degradation, mass spectroscopy, and gene sequencing, we have obtained the primary structure of cytochrome c′ from M. capsulatus Bath. The cytochrome shows low sequence similarity to other cytochromes c′, only residues R12, Y53, G56, and the C-terminal heme-binding region (GXXCXXCHXXXK) being conserved. In contrast, cytochrome c′ from M. capsulatus Bath shows considerable sequence similarity to cytochromes P460 from M. capsulatus Bath (31% identity) and from Nitrosomonas europaea (18% identity). This suggests that P460-type cytochromes may have originated from a c′-type cytochrome which developed a covalent cross-link between a lysine residue and the c′-heme. Received: 26 May 1999 / Accepted: 9 September 1999  相似文献   

15.
The interaction of cytochrome c with ubiquinol-cytochrome c oxidoreductase (bc1 complex) has been studied for >30 years, yet many aspects remain unclear or controversial. We report the first molecular dynamic simulations of the cyt c-bc1 complex interaction. Contrary to the results of crystallographic studies, our results show that there are multiple dynamic hydrogen bonds and salt bridges in the cyt c-c1 interface. These include most of the basic cyt c residues previously implicated in chemical modification studies. We suggest that the static nature of x-ray structures can obscure the quantitative significance of electrostatic interactions between highly mobile residues. This provides a clear resolution of the discrepancy between the structural data and functional studies. It also suggests a general need to consider dynamic interactions of charged residues in protein-protein interfaces. In addition, a novel structural change in cyt c is reported, involving residues 21-25, which may be responsible for cyt c destabilization upon binding. We also propose a mechanism of interaction between cyt c1 monomers responsible for limiting the binding of cyt c to only one molecule per bc1 dimer by altering the affinity of the cytochrome c binding site on the second cyt c1 monomer.  相似文献   

16.
Cytochrome c1aa3 from Thermus thermophilus has optical and EPR properties similar to bovine cytochrome c oxidase. We have studied 87Fe-enriched samples with M?ssbauer spectroscopy in the fully oxidized and fully reduced states and in the oxidized state complexed with cyanide. The cytochromes a and c1 yielded spectra quite similar to those reported for the cytochromes c and b5; in the oxidized state the spectra reflect noninteracting, low spin ferric hemes, whereas the a- and c1-sites of the reduced enzyme are typical of low spin ferrous hemochromes. The spectra of the reduced enzyme show that reduced cytochrome a3 is high spin ferrous, with M?ssbauer parameters quite similar to those of deoxymyoglobin. Upon addition of cyanide to the oxidized enzyme, the a3-site exhibits in the absence of an applied magnetic field and at temperatures down to 1.3 K a quadrupole doublet with parameters typical of low spin ferric heme-CN complexes. The low temperature spectra taken in applied magnetic fields show that the electronic ground state of the a3-CN complex has integer electronic spin, suggesting ferromagnetic coupling of the low spin ferric heme (S = 1/2) to Cu2+ (S = 1/2) to yield as S = 1 ground state. We have examined the oxidized enzyme from two different preparations. Both had good activity and identical optical and EPR spectra. The M?ssbauer spectra, however, revealed that the a3-site had a substantially different electronic structure in the two preparations. Neither configuration had properties in accord with the widely accepted spin-coupling model proposed for the bovine enzyme.  相似文献   

17.
In cells, mitochondria, endoplasmic reticulum, and peroxisomes are the major sources of reactive oxygen species (ROS) under physiological and pathophysiological conditions. Cytochrome c (cyt c) is known to participate in mitochondrial electron transport and has antioxidant and peroxidase activities. Under oxidative or nitrative stress, the peroxidase activity of Fe3+cyt c is increased. The level of NADH is also increased under pathophysiological conditions such as ischemia and diabetes and a concurrent increase in hydrogen peroxide (H2O2) production occurs. Studies were performed to understand the related mechanisms of radical generation and NADH oxidation by Fe3+cyt c in the presence of H2O2. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with NADH, Fe3+cyt c, and H2O2 in the presence of methyl-β-cyclodextrin. An EPR spectrum corresponding to the superoxide radical adduct of DMPO encapsulated in methyl-β-cyclodextrin was obtained. This EPR signal was quenched by the addition of the superoxide scavenging enzyme Cu,Zn-superoxide dismutase (SOD1). The amount of superoxide radical adduct formed from the oxidation of NADH by the peroxidase activity of Fe3+cyt c increased with NADH and H2O2 concentration. From these results, we propose a mechanism in which the peroxidase activity of Fe3+cyt c oxidizes NADH to NAD, which in turn donates an electron to O2, resulting in superoxide radical formation. A UV-visible spectroscopic study shows that Fe3+cyt c is reduced in the presence of both NADH and H2O2. Our results suggest that Fe3+cyt c could have a novel role in the deleterious effects of ischemia/reperfusion and diabetes due to increased production of superoxide radical. In addition, Fe3+cyt c may play a key role in the mitochondrial “ROS-induced ROS-release” signaling and in mitochondrial and cellular injury/death. The increased oxidation of NADH and generation of superoxide radical by this mechanism may have implications for the regulation of apoptotic cell death, endothelial dysfunction, and neurological diseases. We also propose an alternative electron transfer pathway, which may protect mitochondria and mitochondrial proteins from oxidative damage.  相似文献   

18.

Background

Annual seasonal influenza outbreaks are associated with high morbidity and mortality.

Objective

To index and document evolutionary changes among influenza A H1N1 and H3N2 viruses isolated from Thailand during 2006–2009, using complete genome sequences.

Methods

Nasopharyngeal aspirates were collected from patients diagnosed with respiratory illness in Thailand during 2006–2009. All samples were screened for Influenza A virus. A total of 13 H1N1 and 21 H3N2 were confirmed and whole genome sequenced for the evolutionary analysis using standard phylogenetic approaches.

Results

Phylogenetic analysis of HA revealed a clear diversification of seasonal from vaccine strain lineages. H3N2 seasonal clusters were closely related to the WHO recommended vaccine strains in each season. Most H1N1 isolates could be differentiated into 3 lineages. The A/Brisbane/59/2007 lineage, a vaccine strain for H1N1 since 2008, is closely related with the H1N1 subtypes circulating in 2009. HA sequences were conserved at the receptor-binding site. Amino acid variations in the antigenic site resulted in a possible N-linked glycosylation motif. Recent H3N2 isolates had higher genetic variations compared to H1N1 isolates. Most substitutions in the NP protein were clustered in the T-cell recognition domains.

Conclusion

In this study we performed evolutionary genetic analysis of influenza A viruses in Thailand between 2006–2009. Although the current vaccine strain is efficient for controlling the circulating outbreak subtypes, surveillance is necessary to provide unambiguous information on emergent viruses. In summary, the findings of this study contribute the understanding of evolution in influenza A viruses in humans and is useful for routine surveillance and vaccine strain selection.  相似文献   

19.

Background

The majority of emerging infectious diseases are zoonotic (transmissible between animals and humans) in origin, and therefore integrated surveillance of disease events in humans and animals has been recommended to support effective global response to disease emergence. While in the past decade there has been extensive global surveillance for highly pathogenic avian influenza (HPAI) infection in both animals and humans, there have been few attempts to compare these data streams and evaluate the utility of such integration.

Methodology

We compared reports of bird outbreaks of HPAI H5N1 in Egypt for 2006–2011 compiled by the World Organisation for Animal Health (OIE) and the UN Food and Agriculture Organization (FAO) EMPRESi reporting system with confirmed human H5N1 cases reported to the World Health Organization (WHO) for Egypt during the same time period.

Principal Findings

Both human cases and bird outbreaks showed a cyclic pattern for the country as a whole, and there was a statistically significant temporal correlation between the data streams. At the governorate level, the first outbreak in birds in a season usually but not always preceded the first human case, and the time lag between events varied widely, suggesting regional differences in zoonotic risk and/or surveillance effectiveness. In a multivariate risk model, lower temperature, lower urbanization, higher poultry density, and the recent occurrence of a bird outbreak were associated with increased risk of a human case of HPAI in the same governorate, although the positive predictive value of a bird outbreak was low.

Conclusions

Integrating data streams of surveillance for human and animal cases of zoonotic disease holds promise for better prediction of disease risk and identification of environmental and regional factors that can affect risk. Such efforts can also point out gaps in human and animal surveillance systems and generate hypotheses regarding disease transmission.  相似文献   

20.
We describe here, adaptation of the HNN pulse sequence for multiple nuclei detection using two independent receivers by utilizing the detectable 13Cα transverse magnetization which was otherwise dephased out in the conventional HNN experiment. It enables acquisition of 2D 13Cα15N sequential correlations along with the standard 3D 15N–15N–1H correlations, which provides directionality to sequential walk in HNN, on one hand, and enhances the speed of backbone assignment, on the other. We foresee that the implementation of dual direct detection opens up new avenues for a wide variety of modifications that would further enhance the value and applications of the experiment, and enable derivation of hitherto impossible information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号