首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heide OM  King RW  Evans LT 《Plant physiology》1986,80(4):1020-1024
Evidence is presented of an endogenous rhythm in flowering response to far-red (FR) irradiation, with a period of about 12 h (hence semidian rhythm), which persists through at least three cycles in constant conditions of continuous light at 27°C and has a marked influence on the flowering response in Pharbitis nil to a subsequent inductive dark period. The phase of the rhythm is not influenced by real time nor by the time from imbibition or from the beginning of the light period. Rather, it is fed forward from the beginning of the FR interruption to the beginning of the inductive dark period. The period of the rhythm is not affected by irradiance but is longer at cooler temperature. When there are two FR interruptions during the preceding light period, it is primarily the later one which determines the phase of the rhythm, although some interactions are evident. There appears to be an abrupt rephasing of the rhythm at the beginning of the inductive dark period. No overt rhythms which could be used as “clock hands” for the semidian rhythm were detected in photosynthesis, stomatal opening, or translocation.  相似文献   

2.
When seedlings of Pharbitis nil Choisy, cv. Violet, are exposed to a single inductive dark period at 27°C, brief interruptions with red light (R) can be promotive after 2–3 h of darkness but increasingly inhibitory to flowering up to the 8–9th h of darkness. This rhythmic response to R interruptions can be advanced in phase by > 1 h when the preceding light period is interrupted with far-red (FR) 2 h before darkness (FR -2 h) or with FR – 15 h, whereas FR –8 h or FR–22 h retard the rhythm. These shifts in the R interruption rhythm are paralleled by equal shifts in the length of the dark period required for flowering. Brief FR interruptions of darkness displayed a similar rhythm which was also advanced by FR –2 h and retarded by FR –8 h. We conclude therefore that the semidian rhythm in the light, which we have previously described, continues through at least the first 12 h of darkness, is manifested in the R interruption rhythm, and determines the critical night length. A circadian rhythm with a marked effect on flowering was also identified, but several lines of evidence suggest that the circadian and semidian rhythms have independent additive effects on flowering and do not appear to show phase interaction.  相似文献   

3.
There is a semidian (≈12 h) rhythm in the flowering response of the short-day plant Pharbitis nil Choisy following 90 min exposure to either far-red light/darkness or a temperature drop (27 °C to 12 °C) given at various times in constant conditions before an inductive dark period. This semidian rhythmic response to the temperature-drop pretreatments in the light is also evident through the inductive dark period without change of phase. Furthermore, those pretreatments which increase flowering also advance the time of maximum sensitivity to red light (R) interruptions of the dark period by up to 1.5 h and shorten the critical night length. Conversely, pretreatments which reduce flowering delay the time of maximum R inhibition by up to 1.5 h and increase the critical night length by the same amount. However the phase of a circadian rhythm of flowering response had no effect on either the time of maximum R inhibition or the critical night length. Thus, the semidian rhythm determines both the time of maximum R inhibition and the critical night length in Pharbitis. Received: 8 November 1997 / Accepted: 7 January 1998  相似文献   

4.
Evans LT  Heide OM  King RW 《Plant physiology》1986,80(4):1025-1029
The semidian (~12 h) periodicity in the effect of far-red (FR) interruptions of the light period preceding inductive darkness on flowering in Pharbitis nil appears to be mediated by phytochrome: (a) promotion by interruptions 2 hours before inductive darkness (−2 hours) and inhibition at −8 hours are greater the higher the proportion of FR/R+FR during the interruption; (b) brief FR exposures followed by darkness are even more effective than FR throughout; (c) the effect of brief FR is reversed by subsequent R; (d) R interruptions of an FR background are most promotive at −8 hours, when FR is most inhibitory. Promotive FR interruptions at −2 or −14 hours shorten the critical dark period whereas inhibitory FR interruptions at −8 hours lengthen it. We conclude that the semidian rhythm is controlled by a `timing pool' of phytochrome FR absorbing form (Pfr) which disappears rapidly in darkness: four different estimates from our experiments indicate that Pfr was reduced to the level set by FR within 20 to 45 minutes in darkness. However, flowering may also be influenced by a `metabolic pool' of Pfr with a delayed loss in darkness, the time of which can be advanced or retarded by shifting the semidian rhythm.  相似文献   

5.
For dark-grown seedlings of Pharbitis nil capacity to flower in response to a single inductive dark period was established by 24 h white, far-red (FR) or ruby-red (BCJ) light and by a skeleton photoperiod of 10 min red (R)-24 h dark-10 min R. FR alone was ineffective without a brief terminal (R) irradiation, confirming that the form of phytochrome immediately prior to darkness is a crucial factor for flowering in Pharbitis. The magnitude of the flowering response was significantly greater after 24 h FR or white light (WL) (at 18° C and 27° C) than after two brief skeleton R irradiations, but the increased flowering response was not attributable to photosynthetic CO2 uptake because this could not be detected in seedlings exposed to 24 h WL at 18° C. Photophosphorylation could have contributed to the increased flowering response as photosystem I fluorescence was detectable in plants exposed to FR, BCJ, or WL, but there were large differences between flowering response and photosystem I capacity as indicated by fluorescence. We conclude that phytochrome plays a major role in photoresponses regulating flowering. There was no simple correlation between developmental changes, such as cotyledon expansion and chlorophyll formation during the 24-h irradiation period, and the capacity to flower in response to a following inductive dark period. Changes in plastid ultrastructure were considerable in light from fluorescent lamps and there was complete breakdown of the prolamellar body with or without lamellar stacking at 27 or 18° C, respectively, but plastid reorganization was minimal in FR-irradiated seedlings.Abbreviations BCJ irradiation from photographic ruby-red lamps - FR far-red light - Pfr far-red-absorbing from of phytochrome - P total phytochrome content - R red light - WL white light from fluorescent lamps  相似文献   

6.
Rhythmicity of Flowering in Pharbitis nil   总被引:1,自引:0,他引:1  
When young seedlings of Pharbitis nil are grown under continuous light, except for a single inductive dark period, they flower to a varying degree, depending on when this dark period is given. Plants become sensitive to this induction approximately three days after the seedlings emerge from the soil. The expression of flowering varies in a rhythmic fashion for three or more cycles, when an inductive dark period is given at progressively later times. The time between maximum expression of flowering is 24 hours or somewhat longer. It appears necessary that the inductive dark period be of sufficient duration, to only partially induce the plants to flower for this rhythm to be expressed. Under the conditions employed in this study, this duration is 12 hours. If this rhythm is endogenous, it exists at least from when the plants emerged from the soil since no environmental cues are given after that time, and it raises questions of the interpretations of data from previous studies with this organism.  相似文献   

7.
Lemna paucicostata Hegelm. T-101, a short-day plant, flowers when plants preirradiated with red light (R) for 24 h are subjected to inductive darkness for 72 h followed by two short-day cycles (6 h R+ 18 h dark). However, flowering is inhibited by blue-or far-red-light pulses applied at the beginning of the inductive dark period. These inhibitory light effects are fully reversible by a R pulse. The action spectra for the inhibitory light effect and for its reversal show that the light pulses act exclusively through phytochrome. It is concluded that a low level of Pfr at the beginning of the inductive dark period prevents flowering.Abbreviations R red (light) - B blue (light) - FR far-red (light)  相似文献   

8.
When seedlings of Pharbitis nil are presented with an inductive dark period at varying times, they show a circadian fluctuation in the number of flower buds initiated. This study determines if this fluctuation is due to the plant's perception, at the time of the inductive dark period, of either a rhythmic, external, environmental stimulus or of an endogenous rhythm. Using experimental designs in which the time of planting, the time of seedling emergence from the soil, and the time at which the presentation of an inductive dark period are varied, this fluctuation in flower bud formation is shown to be due to an endogenous rhythm initiated or synchronized by some event associated with the emergence of the seedlings from the soil. The results are inconsistent with the hypothesis that the plants are responding to rhythmic external stimuli.  相似文献   

9.
Lemna paucicostata 441 exposed to a single dark period of variouslengths showed a rhythmic flowering response with a 22- to 24-hperiod, even when the dark period was preceded by continuouslight. The critical night length (about 12 h) was scarcely influencedby pretreatment with 8D–4L (8 h of darkness followed by4 h of light), 8D–8L or 8D–12L. However, the rhythmof the response in the second cycle was markedly damped by thepretreatment with 8D–4L or 8D–12L, and was slightlyamplified by 8D–8L. The flowering response to a red-light interruption given atdifferent times in the inductive dark period also showed circadianrhythmicity even when the dark period was preceded by continuouslight, and this rhythmicity was scarcely influenced by a dark-lighttreatment given prior to the inductive dark period. A red-lightinterruption given at the 6th or 14th hour of the dark periodmarkedly shifted the phase of the rhythm of the response tothe length of the following dark period (the former delayedand the latter advanced), but that given at the same phase markedlyweakened and disturbed the rhythmicity of the response to ared-light interruption given in the following dark period. (Received March 21, 1992; Accepted June 12, 1992)  相似文献   

10.
Fluctuation in levels of endogenous free IAA has been followed in the SD plant Chenopodium rubrum under photoperiodic conditions inductive or not inductive of flowering. Endogenous IAA was measured fluorimetrically as -pyrone. The level of IAA shows little fluctuation under continuous illumination. An endogenous rhythm of IAA fluctuation was found in plants transferred from light to continuous darkness, with a natural period of 30 hrs. The troughs of minimum IAA level within the endogenous rhythm coincided with the peaks in the endogenous rhythm of flowering response, which possessed the same period length. The concentration of IAA in the shoot always decreased at the end of cycles of dark period that induce flowering. The results are discussed in relation to the role of IAA in flowering of SD plants.  相似文献   

11.
Under the conditions applied in our laboratory 4 1/2 days old plants ofChenopodium rubrum require 2–3 photoperiodic cycles for maximal flowering response, whereas 2 1/2 days old plants are able to flower after having obtained a single inductive cycle. The period length of the free-running rhythm of flowering observed in 2 1/2 days old plants after a single transfer from light to darkness is 30h and the first peak of flowering occurs at about hour 12 in darkness. When a cycle consisting of 16h darkness and 8h light or of 8h darkness and 8h light precedes the long dark period the rhythm is rephased. Rephasing is greater when the light commenced to act on the positive slope of the first peak of the free running rhythm than when it impinged on the negative slope. With an 8h interruption of darkness by light rhythm phase is controlled by the light-on, as well as by the light-off signal. Feeding 0.4 M glucose during the long period of darkness enhanced the amplitude of the flowering response and, moreover, substituted for one photoperiodic cycle.  相似文献   

12.
Induction of flowering of etiolated Lemna paucicostata Hegelm. T-101, a short-day plant, was inhibited by far-red (FR) or blue light (BL) applied at the beginning of a 72-h inductive dark period which was followed by two short days. In either case the inhibition was reversed by a subsequent exposure of the plants to near-ultraviolet radiation (NUV), with a peak of effectiveness near 380 nm. Inhibition by BL or FR and its reversion by NUV are repeatable, i.e., NUV is acting in these photoresponses like red light although with much lower effectiveness. Thus, it is considered that NUV acts through phytochrome and no specific BL and NUV photoreceptor is involved in photocontrol of floral induction on this plant.Abbreviations BL blue light - FR far-red light - NUV near ultraviolet radiation - P red-absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome - R red light  相似文献   

13.
Ribonuclease (RNAse) activity was investigated in cotyledons ofChenopodium rubrum plants subjected to various conditions of illumination (photoperiodic induction, continuous light, induction cancelled by interrupting the dark period by a light-break). At the end of the dark period of the single inductive cycles RNAse activity of induced plants was inferior to that of plants grown in continuous light. At the end of the first two cycles the activity was lowest after the interruption of the dark period by light. The investigation of the enzyme in 6h intervals showed rhythmic changes in activity to occur in induced plants. Enzyme activity followed a pattern opposed to this of nucleic acid (NA) synthesis in the cotyledons. In plants from continuous light the enzyme activity did not show any rhythm and in plants having obtained a light-break during the inductive period the rhythm was less distinct than in the induced ones. The period length of the endogenous rhythm of NA synthesis in the cotyledons is about half as long as this of flowering and the peaks of flowering coincide with the throughs of NA synthesis.  相似文献   

14.
The mechanism of photoperiodic regulation of regeneration in Begonia leaves has been studied by the night interruption technique in 24, 48, and 72-h cycles. The response to 30 min red light interruptions in 48 and 72-h cycles indicated a circadian rhythm in red light sensitivity with typical photophile and scotophile phases. In 24-h cycles two types of response patterns were observed. With a main photoperiod of 3 h the usual response pattern with only one light-sensitive phase near the middle of the dark period was found, whereas with 8-h photoperiods two light-sensitive phases were observed as previously reported by Zimmer in Begonia flowering studies (Gartenbauwissenschaft 38: 57, 1973). Reversion studies with FR indicate that the reactions are mediated by phytochrome. The results are discussed in relation to alternative hypotheses for photoperiodic timing.  相似文献   

15.
Summary The possibility that phytochrome is involved in the promotion of flowering by far-red light was investigated. The addition of far-red (FR) to a day extension with red (R) light promotes inflorescence initiation in Lolium. A 2-hour interruption with darkness also promoted flowering compared with the uninterrupted red light control; apex length was further increased by a 10-minute FR irradiation given before the 2-hour dark interruption and was decreased by 10-minutes of R light given in the middle: both FR promotion and R inhibition were reversed by R and FR respectively. Apex length increased approximately linearly with increasing duration of dark interruption up to at least 2 1/2 hours. When varying ratios of R:FR light were substituted for a 2-hour dark period, apex length was increasingly depressed as the % R was increased above 25%; no difference between 25% R/75% FR and 100% FR could be detected. Apex length was inversely linearly related to the calculated [Pfr]/[P] ratios above about 40% Pfr.FR promoted flowering when given during a 5-hour interruption of a day extension with R light but, between 0.25 and 0.90 J m2 s-1, there was no effect of intensity of FR; at 0.11 J m-2 s-1 apex length was shorter than at 0.25 J m-2 s-1 but longer than in darkness. When the duration of FR (from the beginning of a dark interruption of a day extension with R) was varied, apex length increased with increasing duration of FR up to 1 1/4 to 2 hours but further increasing the duration of FR did not promote flowering more.The results implicate phytochrome in the promotion of flowering by FR light. It has been demonstrated that a low [Pfr]/[P] ratio (less than present in 25% R/75% FR) is needed over a relatively long period of time: this explains why a relatively high proportion of FR light must be added to R for several hours in order to give maximum promotion of flowering. It is concluded that, in Lolium, the increased flowering response to FR light is brought about by a reduction of [Pfr]/[P] ratio at the appropriate time, although the possibility that another effect of far-red is also involved has not been rigorously excluded.  相似文献   

16.
R. W. King  Bruce G. Cumming 《Planta》1972,103(4):281-301
Summary In C. rubrum, the amount of flowering that is induced by a single dark period interrupting continuous light depends upon the duration of darkness. A rhythmic oscillation in sensitivity to the time that light terminates darkness regulates the level of flowering. The period length of this oscillation is close to 30 hours, peaks of the rhythm occurring at about 13, 43 and 73 h of darkness.Phasing of the rhythm by 6-, 12- and 18-h photoperiods was studied by exposing plants to a given photoperiod at different phases of the free-running oscillation in darkness. The shift in phase of the rhythm was then determined by varying the length of the dark period following the photoperiod; this dark period was terminated by continuous light.With a 6-h photoperiod the timing of both the light-on and light-off signals is shown to control rhythm phasing. However, when the photoperiod is increased to 12 or 18 h, only the light-off signal determines phasing of the rhythm. In prolonged periods of irradiation-12 to 62 h light—a durational response to light overrides any interaction between the timing of the light period and the position of the oscillation at which light is administered. Such prolonged periods of irradiation apparently suspend or otherwise interact with the rhythm so that, in a following dark period, it is reinitiated at a fixed phase relative to the time of the light-off signal to give a peak of the rhythm 13 h after the dusk signal.In daily photoperiodic cycles rhythm phasing by a 6-h photocycle was also estimated by progressively increasing the number of cycles given prior to a single dark period of varied duration.In confirmation of Bünning's (1936) hypothesis, calculated and observed phasing of the rhythm controlling flowering in c. rubrum accounts for the photoperiodic response of this species. Evidence is also discussed which indicates that the timing of disappearance of phytochrome Pfr may limit flowering over the early hours of darkness.  相似文献   

17.
Summary To follow changes in the status of phytochrome in green tissue and to relate these changes to the photoperiodic control of flowering, we have used a null response technique involving 1.5-min irradiations with mixtures of different ratios of R and FR radiation.Following a main photoperiod of light from fluorescent lamps that was terminated with 5 min of R light, the proportion of Pfr in Chenopodium rubrum cotyledons was high and did not change until the 3rd hour in darkness; at this time, Pfr disappeared rapidly. When the dark period began with a 5-min irradiation with BCJ or FR light to set the proportion of Pfr low Pfr gradually reappeared during the first 3 h of darkness and then disappeared again.The timing of disappearance of Pfr is consistent with the involvement of phytochrome in photoperiodic time measurement. Reappearance of Pfr after an initial FR irradiation explains why FR irradiations sometimes fail to influence photoperiodic time measurement or only slightly hasten time measurement. A R light interruption to convert Pr to Pfr delayed, the timer by 3 h but only for interruptions after and not before the time of Pfr disappearance. Such 5-min R-light interruptions did not influence the operation of the rhythmic timekeeping mechanism. Continuous or intermittent-5 min every 1.5 h-irradiations of up to 6 h in duration were required to rephase the rhythm controlling flowering. A skeleton photoperiod of 6 h that was began and terminated by 5 or 15 min of light failed to rephase the rhythm.The shape of the curves for the rhythmic response of C. rubrum to the length of the dark period are sometimes suggestive of clocks operating on the principle of a tension-relaxation mechanism. Such a model allows for separate timing action of a rhythm and of Pfr disappearance over the early hours of darkness. Separate timing action does not, however, preclude an interaction between the rhythm and phytochrome in controlling flowering.Abbreviations FR far-red - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - R red - BCJ photographic ruby-red irradiation A grant in aid of research from the National Research Council of Canada to B. G. Cumming is gratefully acknowledged.  相似文献   

18.
Halaban R 《Plant physiology》1969,44(7):973-977
Studies were made of the effects of blue, green, red and far-red (FR) light on the circadian rhythm of leaf movement of Coleus blumei × C. frederici, a short day plant. Under continuous illumination with blue light, there was a significant lengthening of the period of the rhythm to about 24.0 hr, as compared to 22.5 hr in continuous darkness. Under continuous red light, the period length was significantly shortened to 20.5 hr. Under continuous green or FR, the period length was not significantly different from the dark control. It was observed that under continuous FR illumination, the leaves tended to oscillate in a more downward position. Eight-hr red light signals were effective in advancing the phase of the rhythm as compared to a control under continuous green light. Blue light signals were effective in delaying the phase of the rhythm. FR light signals were ineffective in producing either delay or advance phase shifts. Far-red light did not reverse the effects of either red or blue light signals. On the basis of these results it is suggested, that pigments which absorb blue or red light, rather than phytochrome, mediate the effect of light on the circadian rhythm of leaf movement.  相似文献   

19.
The vertical migration, motility and cell division rhythms of the diatom Amphora ovalis Kütz from Lake Kinneret, Israel, have been studied under laboratory conditions and results compared with comparable rhythms of other unicellular algae. The vertical migration rhythm exhibits two peaks during the light period, both when the cells are kept in continuous light or continuous dark. There is a single peak of motility occurring in the first half of the natural light period and a single peak of cell division in the latter half of the dark period. Rephasing of the rhythm by means of delayed start up time is illustrated and the possible interaction of phototactic and geotactic rhythms discussed.  相似文献   

20.
A far-red effect exists in 4 marine phytoplankton species: the diatom Ditylum brightwelli, the coccolithophorid Coccolithus huxleyi, the green flagellate Dunaliella tertiolecta, and the dinoflagellate Pyrocystis lunula. The effect is reversible and is manifested through a change in cell division rate. Cultures of algae which received 30-min far-red (FR) light (750 nm) prior to the dark period were compared to controls which received, no FR. Reversal of the FR effect was studied by exposing experimental cultures to 30 min FR followed by 5-min red (R) light (650 nm) prior to the dark period. Controls received only FR. Cultures were exposed to light at 6 different enumerated wavelengths between 460 and 750 nm. A decrease in division rate runs evident only with light at 750 nm. These results give evidence for the presence of the phytochrome system in these phytoplankton species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号