首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Vasodilators capable of elevating cAMP or cGMP inhibit the activation of human platelets and stimulate the phosphorylation of a 46-kDa protein (vasodilator-stimulated phosphoprotein, VASP) mediated by cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG). The availability of purified proteins and specific antisera against VASP, PKG and the catalytic subunit of PKA enabled us to measure and estimate the concentration of these regulatory proteins in intact human platelets. In addition, the rate of PKA- and PKG-mediated VASP phosphorylation in intact human platelets was estimated. For these calculations, a homogeneous population of human platelets and a homogeneous intracellular distribution of proteins and second messengers was assumed. Unstimulated washed human platelets contain 4.4 microM cAMP and 3.1 microM catalytic subunit of PKA, which is equivalent to 6.2 microM cAMP-binding sites due to PKA. Unstimulated washed human platelets also contain 0.4 microM cGMP and 7.3 microM PKG monomer, equivalent to 14.6 microM cGMP-binding sites due to the PKG. The intracellular concentration of VASP in platelets was estimated to be 25 microM. Treatment of washed human platelets with 10 microM (or 10 mM) prostaglandin E1 (PGE1) elevated the intracellular cAMP concentration to 27 microM (10 microM with 10 nM PGE1) within 30 s, accompanied by a rapid, up to 55% (35%), conversion of VASP from the dephosphorylated form (46-kDa protein) to the phosphorylated form (50-kDa protein). Treatment of washed human platelets with 100 microM (or 1 microM) sodium nitroprusside elevated the platelet cGMP level to 4 microM (0.9 microM with 1 microM sodium nitroprusside) within 2 min, accompanied by a less-rapid VASP phosphorylation of 45% (27% with 1 microM sodium nitroprusside). PGE1 and sodium nitroprusside had no significant effect on human platelet cGMP or cAMP levels, respectively. The results suggest for human platelets that relatively small increase in cAMP levels are required for activation of most of PKA, whereas even several-fold increases in platelet cGMP levels are capable of stimulating only a small fraction of total PKG. This interpretation was also supported by phosphorylation experiments with purified VASP, PKG and catalytic subunit of PKA. The results also support the hypothesis that in human platelets both cAMP/PKA- and cGMP/PKG-regulated VASP phosphorylation are components of an efficient and sensitive signal-transduction pathway, most likely involved in the inhibition of platelet activation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Recently, we reported the purification of a 46-kDa membrane-associated platelet protein which is phosphorylated in intact platelets and platelet membranes by cGMP- and cAMP-dependent protein kinases (Halbrügge, M., and Walter, U. (1989) Eur. J. Biochem. 185, 41-50). Here we demonstrate that both cGMP- and cAMP-dependent protein kinases catalyze the rapid incorporation of up to 1.4 mol of phosphate/mol of this purified vasodilator-stimulated phosphoprotein (VASP). A specific rabbit antiserum was prepared which recognized both the 46-kDa dephospho form and the 50-kDa phospho form of VASP in Western blots. In untreated washed platelets, VASP was found to be present primarily as a 46-kDa dephosphoprotein. Sodium nitroprusside (100 microM) raised the intracellular platelet cGMP concentration from approximately 0.44 to 4.1 microM, without a significant effect on the cAMP level, and converted up to 50% of VASP to the 50-kDa phospho form. Prostaglandin E1 (10 microM) raised the platelet cAMP concentration from approximately 4.4 to 28.4 microM, without a significant effect on the cGMP level, and shifted up to 67% of VASP to the 50-kDa phospho form. Removal of the vasodilators sodium nitroprusside and prostaglandin E1 from the platelet suspension was followed by a return of the cyclic nucleotide concentration to basal levels and subsequent conversion of the 50-kDa phospho form of VASP to the 46-kDa dephospho form. The results support the hypothesis that VASP phosphorylation is an important component of the intracellular mechanism of action of these vasodilators in human platelets.  相似文献   

3.
We have separated multiple small Mr GTP-binding proteins (G proteins) from bovine brain membranes by several column chromatographies and purified to near homogeneity four of them, including a novel Mr 24,000 G protein (smg p25A), a novel Mr 22,000 G protein (smg p21), the rho protein (rho p20), and the c-Ki-ras protein (c-Ki-ras p21). Among these small Mr G proteins, only smg p21 is phosphorylated stoichiometrically by cAMP-dependent protein kinase (protein kinase A), and c-Ki-ras p21 is phosphorylated to a small extent by protein kinase A in a cell-free system. None of smg p25A, rho p20, and other partially purified small Mr G proteins is phosphorylated by protein kinase A. Neither smg p21 nor other small Mr G proteins are phosphorylated by protein kinase C. About 1 mol of phosphate is maximally incorporated into 1 mol of smg p21 by protein kinase A. Only serine residue(s) are phosphorylated. The guanosine 5'-3-O-(thio) triphosphate (GTP gamma S)-bound and GDP-bound forms of smg p21 are phosphorylated with the same reaction velocity. The phosphorylation of smg p21 affects neither its GTP gamma S-binding nor GTPase activity. smg p21 is found in human platelets, and this human platelet smg p21 is also phosphorylated by protein kinase A at the same site(s) as bovine brain smg p21 in a cell-free system. When intact human platelets are stimulated by prostaglandin E1 known to elevate the cAMP level, four proteins with apparent Mr values of 240,000, 50,000, 24,000, and 22,000 are phosphorylated. These four proteins are also phosphorylated by the action of dibutyryl cAMP but not by the action of thrombin, Ca2+ ionophore A23187, or 12-O-tetradecanoylphorbol-13-acetate. Among the four proteins, the Mr 22,000 protein is identified as smg p21. The site(s) of phosphorylation of smg p21 by protein kinase A in a cell-free system are identical to that phosphorylated in response to prostaglandin E1 in intact platelets. These results indicate that among many small Mr G proteins, smg p21 is selectively phosphorylated by protein kinase A and that this G protein is also phosphorylated by this protein kinase in response to prostaglandin E1 in intact human platelets.  相似文献   

4.
A specific 46,000/50,000 molecular weight protein substrate for both cAMP-dependent protein kinase (cAK) and cGMP-dependent protein kinase (cGK) extensively characterized and purified from human platelets was found to be present also in human T-lymphocytes, B-lymphocytes and other cells and tumour cell lines. This protein termed vasodilator-stimulated phosphoprotein (VASP) was present in cytosol and membranes of lymphocytes. Addition of exogenous purified cAK or cGK to lymphocyte cytosol or membranes converted 80-90% of VASP to its phosphoform. Endogenous VASP phosphorylation in both cytosol and membranes was stimulated by the addition of cAMP but not by cGMP. With intact lymphocytes, prostaglandin E1 (PGE1) and prostaglandin E2 (PGE2) induced an increase of cAMP and converted 70% of VASP to its phosphoform. In contrast, an increase of cGMP was not associated with VASP phosphorylation although cGK was detected in lymphocytes. These data support the hypothesis that VASP phosphorylation may be an important component of cAMP-mediated regulation of lymphocyte function.  相似文献   

5.
Purification of a vasodilator-regulated phosphoprotein from human platelets   总被引:17,自引:0,他引:17  
Cyclic-nucleotide-elevating vasodilators such as prostaglandin E1, prostacyclin, sodium nitroprusside and endothelium-derived relaxing factor inhibit both contraction of vascular smooth muscle cells and the aggregation of platelets at an early step of the activation cascade. Previous studies from this laboratory [Waldmann, R., Nieberding, M. and Walter, U. (1987) Eur. J. Biochem. 167, 441-448) established that in human platelets cyclic-nucleotide-elevating vasodilators stimulated a pattern of protein phosphorylation which was mediated by both cAMP- and cGMP-dependent protein kinases. Of particular interest was a membrane-bound 50-kDa protein whose phosphorylation was increased both by cAMP- and cGMP-elevating vasodilators in intact platelets and by endogenous cAMP- and cGMP-dependent protein kinase in platelet membranes. Since the molecular mechanism of action of cyclic-nucleotide-elevating vasodilators is unknown, this 50-kDa phosphoprotein from human platelets was purified to apparent homogeneity by salt extraction, anion, cation and dye-ligand chromatography. The purified protein migrated as a 46-kDa protein in SDS/PAGE, was an excellent substrate for both cAMP- and cGMP-dependent protein kinases and migrated in SDS/PAGE as a 50-kDa protein after phosphorylation by these protein kinases. Analysis by limited proteolysis, tryptic fingerprinting and of phosphoamino acids established that the purified protein is identical with the 50-kDa protein phosphorylated by both cAMP- and cGMP-dependent protein kinases in platelet membranes and in response to cAMP- and cGMP-elevating vasodilators with intact platelets. Evidence is presented that the purified protein contains at least two phosphorylation sites, each of which is preferentially phosphorylated by either cAMP- or cGMP-dependent protein kinase. The availability of this vasodilator-regulated phosphoprotein as a purified protein should now allow new approaches for investigating the function of this protein and its possible role in the mechanism of action of cyclic-nucleotide-elevating vasodilators.  相似文献   

6.
Homogenates, membranes and cytosol of rat and human platelets were found to contain cGMP-dependent protein kinase immunoreactivity. Specific cGMP-dependent protein kinase immunoreactivity was about 1.7 pmol protein kinase/mg protein for homogenates of human platelets and 0.7 pmol/mg for homogenates of rat platelets; the majority appeared to be associated with the membrane fraction. In membranes of platelets low concentrations of cAMP (0.5-2 microM) stimulated the phosphorylation of five major proteins with apparent relative molecular masses, Mr, of 240 000, 130 000, 50 000, 42 000 and 22 000 while low concentrations of cGMP (0.5-2 microM) stimulated the phosphorylation of three major proteins with apparent Mr of 130 000, 50 000 and 46 000. An affinity-purified antibody against the cGMP-dependent protein kinase was prepared which specifically inhibited the activity of cGMP-dependent protein kinase. In membranes of human platelets this affinity-purified antibody inhibited the cGMP-stimulated phosphorylation of the three proteins with Mr of 130 000, 50 000 and 46 000 while it had no effect on the cAMP-dependent and cyclic-nucleotide-independent protein phosphorylation. The results demonstrate that platelets contain a cGMP-dependent protein kinase and at least three specific substrates for this enzyme. Two of these substrates, the proteins with apparent molecular Mr of 130 000 and 50 000, are substrates for both cAMP- and cGMP-dependent protein kinase. The protein with apparent Mr of 130 000 appears to be closely related to an intrinsic plasma membrane protein of vascular smooth muscle cells which is a substrate for a membrane-associated cGMP-dependent protein kinase. Therefore, cGMP-dependent protein kinase and cGMP-regulated phosphoproteins may mediate in platelets the intracellular effects of those hormones, vasodilators and drugs which elevate the level of cGMP and inhibit platelet aggregation.  相似文献   

7.
Agents such as prostaglandins E1 and I2 which elevate cAMP levels in platelets also increase cAMP phosphodiesterase activity. Since much of the cAMP phosphodiesterase activity in human platelets is due to the cGMP-inhibited isozyme (Macphee, C. H., Harrison, S. A., and Beavo, J. A. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 6600-6663), we examined the regulation of this isozyme by prostaglandins E1 and I2 in intact platelets. Because this isozyme is a minor component of platelet protein, normally requiring several thousand-fold purification to achieve homogeneity, a specific monoclonal antibody (CGI-5) was utilized to identify and isolate the cGMP-inhibited phosphodiesterase activity. Treatment of intact platelets with the prostaglandins promoted an increase in the phosphorylation state of the cGMP-inhibited phosphodiesterase and a corresponding increase in phosphodiesterase activity. The effect on activity and phosphorylation of the cGMP-inhibited phosphodiesterase was observed within 2 min after intact platelets were exposed to the prostaglandins. The half-maximal effective dose for prostaglandin I2 (10 nM) was approximately 10-fold lower than that for prostaglandin E1. The phosphorylated, cGMP-inhibited isozyme migrated as a 110-kDa peptide following sodium dodecyl sulfate gel electrophoresis. Direct in vitro phosphorylation of the platelet cGMP-inhibited phosphodiesterase by the catalytic subunit of cAMP-dependent protein kinase caused a similar increase in phosphodiesterase activity. Treatment with PKI peptide, a specific inhibitor of cAMP-dependent protein kinase, blocked the phosphorylation and the effect on activity. Taken together, the data strongly suggest that the effects of prostaglandins E1 and I2 on platelet phosphodiesterase activity are mediated by a direct cAMP-dependent protein kinase-catalyzed phosphorylation of the cGMP-inhibited phosphodiesterase isozyme.  相似文献   

8.
Agonists elevate the cytosolic calcium concentration in human platelets via a receptor-operated mechanism, involving both Ca(2+) release from intracellular stores and subsequent Ca(2+) entry, which can be inhibited by platelet inhibitors, such as prostaglandin E(1) and nitroprusside which elevate cAMP and cGMP, respectively. In the present study we investigated the mechanisms by which cAMP and cGMP modulate store-mediated Ca(2+) entry. Both prostaglandin E(1) and sodium nitroprusside inhibited thapsigargin-evoked store-mediated Ca(2+) entry and actin polymerization. However, addition of these agents after induction of store-mediated Ca(2+) entry did not affect either Ca(2+) entry or actin polymerization. Furthermore, prostaglandin E(1) and sodium nitroprusside dramatically inhibited the tyrosine phosphorylation induced by depletion of the internal Ca(2+) stores or agonist stimulation without affecting the activation of Ras or the Ras-activated phosphatidylinositol 3-kinase or extracellular signal-related kinase (ERK) pathways. Inhibition of cyclic nucleotide-dependent protein kinases prevented inhibition of agonist-evoked Ca(2+) release but it did not have any effect on the inhibition of Ca(2+) entry or actin polymerization. Phenylarsine oxide and vanadate, inhibitors of protein-tyrosine phosphatases prevented the inhibitory effects of the cGMP and cAMP elevating agents on Ca(2+) entry and actin polymerization. These results suggest that Ca(2+) entry in human platelets is directly down-regulated by cGMP and cAMP by a mechanism involving the inhibition of cytoskeletal reorganization via the activation of protein tyrosine phosphatases.  相似文献   

9.
Platelets have abundant tyrosine kinase activities, and activation of platelets results in the increased tyrosine phosphorylation of numerous protein substrates. The stimulation of tyrosine phosphorylation elicited by thrombin can be completely inhibited by preincubation with 10nm prostacyclin (PGI2), 1 microM PGD2, or 1mM N2,2'-O-dibutyryl-cAMP. In contrast, incubation of platelets with agents that increase cGMP (sodium nitroprusside or with 1mM 8-Bromo-cGMP) was without effect. The inhibition by prostacyclin was dose dependent, with an IC50 of approximately 3nM, corresponding to the dose range necessary to inhibit other platelet activation processes. These results demonstrate a novel pathway by which agents which raise cAMP may inhibit platelet signal transduction and differential mechanism of action between compounds which raise cAMP and those which elevate cGMP.  相似文献   

10.
To identify the protein kinase that is responsible for catalyzing phosphorylation of actin-binding protein (ABP) in platelets, we have examined the effects of protein kinase C and cAMP-dependent protein kinase on this process. We found that purified platelet protein kinase C from platelets was unable to phosphorylate ABP in vitro. However, a crude platelet kinase preparation phosphorylated ABP in the presence of cAMP, but not in the presence of Ca2+/phosphatidylserine. Fresh platelet plasma membranes incubated with [gamma-32P]ATP phosphorylated ABP in the presence of cAMP and the process was blocked by a cAMP-dependent protein kinase inhibitor; ABP phosphorylation induced by prostaglandin E1 (PGE1) appeared to be reduced by the subsequent addition of thrombin. These results strongly suggest that in situ ABP is phosphorylated by activated cAMP-dependent protein kinase when platelet function is inhibited by PGE1. Furthermore, in the PGE1-treated platelets, ABP was proteolyzed at a slower rate than in control platelets when they were lysed with Triton in the absence of EGTA. Partially purified ABP was proteolyzed by calpain in vitro at a slower rate as well. It was demonstrated that ABP from PGE1-treated platelets recovered its sensitivity to calpain after ABP was incubated with a protein phosphatase that had been purified from platelets. We postulate that ABP is stabilized against proteolysis in response to cAMP-elevating agents and that this blocks cytoskeleton reorganization.  相似文献   

11.
The atrial natriuretic peptide (ANP) stimulates cGMP production and protein phosphorylation in a particulate fraction of cultured rat aortic smooth muscle cells. Three proteins of 225, 132, and 11 kDa were specifically phosphorylated in response to ANP treatment, addition of cGMP (5 nM), or addition of purified cGMP-dependent protein kinase. The cAMP-dependent protein kinase inhibitor had no effect on the cGMP-stimulated phosphorylation of the three proteins but inhibited cAMP-dependent phosphorylation of a 17-kDa protein. These results demonstrate that the particulate cGMP-dependent protein kinase mediates the phosphorylation of the 225-, 132-, and 11-kDa proteins. The 11-kDa protein is phospholamban based on the characteristic shift in apparent Mr from 11,000 to 27,000 on heating at 37 degrees C rather than boiling prior to electrophoresis. ANP (1 microM) increased the cGMP concentration approximately 4-fold in the particulate fractions, from 4.3 to 17.7 nM, as well as the phosphorylation of the 225-, 132-, and 11-kDa proteins. In contrast, the biologically inactive form of ANP, carboxymethylated ANP (1 microM), did not stimulate phosphorylation of any proteins nor did the unrelated peptide hormone, angiotensin II (1 microM). These results demonstrate the presence of the cGMP-mediated ANP signal transduction pathway in a particulate fraction of smooth muscle cells and the specific phosphorylation of three proteins including phospholamban, which may be involved in ANP-dependent relaxation of smooth muscle.  相似文献   

12.
Five protein kinases were used to study the phosphorylation pattern of the purified skeletal muscle receptor for calcium-channel blockers (CaCB). cAMP kinase, cGMP kinase, protein kinase C, calmodulin kinase II and casein kinase II phosphorylated the 165-kDa and the 55-kDa proteins of the purified CaCB receptor. The 130/28-kDa and the 32-kDa protein of the receptor are not phosphorylated by these protein kinases. Among these protein kinases only cAMP kinase phosphorylated the 165-kDa subunit with 2-3-fold higher initial rate than the 55-kDa subunit. Casein kinase II phosphorylated the 165-kDa and the 55-kDa protein of the receptor with comparable rates. cGMP kinase, protein kinase C and calmodulin kinase II phosphorylated preferentially the 55-kDa protein. The 55-kDa protein is phosphorylated 50 times faster by cGMP kinase and protein kinase C than by calmodulin kinase II or casein kinase II and about 10 times faster by these enzymes than by cAMP kinase. Two-dimensional peptide maps of the 165-kDa subunit yielded a total of 11 phosphopeptides. Four or five peptides are phosphorylated specifically by cAMP kinase, cGMP kinase, casein kinase II and protein kinase C, whereas the other peptides are modified by several kinases. The same kinases phosphorylate 11 peptides in the 55-kDa subunit. Again, some of these peptides are modified specifically by each kinase. These results suggest that the 165-kDa and the 55-kDa subunit contain specific phosphorylation sites for cAMP kinase, cGMP kinase, casein kinase II and protein kinase C. Phosphorylation of these sites may be relevant for the in vivo function of the CaCB receptor.  相似文献   

13.
Platelet function is inhibited by prostaglandin E1, prostaglandin I2, or forskolin, agents that increase the intracellular concentration of cyclic AMP. The inhibition appears to result from cyclic AMP-stimulated phosphorylation of specific intracellular proteins. One of the major increases in phosphorylation occurs in a polypeptide of Mr = 24,000 (P24). In this study, an effort was made to identify P24. Platelets prelabeled with [32P]phosphate were incubated with prostaglandin E1, prostaglandin I2, or forskolin. Proteins that became phosphorylated were detected by autoradiography of sodium dodecyl sulfate-polyacrylamide gels. Several lines of evidence indicated that P24 was the beta-subunit of the plasma membrane glycoprotein (GP) Ib, a glycoprotein that is essential for the adhesion of platelets to damaged subendothelium, for the rapid response of platelets to thrombin, and for the attachment of the membrane skeleton to the cytoplasmic face of the plasma membrane. P24 co-migrated with GP Ib beta on reduced gels (Mr = 24,000) and also on nonreduced gels (when GP Ib beta is disulfide-linked to GP Ib alpha and migrates with Mr = 170,000). Like GP Ib beta, P24 was associated with actin filaments in Triton X-100 lysates. Like GP Ib beta, it was selectively associated with filaments of the membrane skeleton and was released from filaments when the Ca2+-dependent protease was active. Antibodies against GP Ib immunoprecipitated P24 from platelet lysates. Finally, exposure of Bernard-Soulier platelets (which lack GP Ib) to prostaglandin E1 resulted in phosphorylation of other polypeptides, but not of P24. These studies show that P24, one of the major polypeptides phosphorylated when platelets are exposed to agents that inhibit platelet function by increasing the concentration of cyclic AMP, is the beta-subunit of GP Ib.  相似文献   

14.
We reported previously that a 46/50-kDa membrane-associated vasodilator-stimulated phosphoprotein (VASP) is phosphorylated in intact human platelets in response to both cGMP- and cAMP-elevating vasodilator drugs and presented evidence that this is mediated by cGMP- and cAMP-dependent protein kinases, respectively. VASP was recently purified and an antibody against it was developed which detects a phosphorylation-induced mobility change of VASP in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Halbrügge, M., Friedrich, C., Eigenthaler, M., Schanzenb?cher, P., and Walter, U. (1990) J. Biol. Chem. 265, 3088-3093). We have now used these methods for the quantitative analysis of VASP phosphorylation during coincubations of human endothelial cells and human platelets. Endothelial cell-derived factors caused the rapid, stoichiometric, and reversible phosphorylation of platelet VASP during these coincubations. Other experiments indicated that the endothelium-derived factors which stimulate VASP phosphorylation are prostacyclin and endothelium-derived relaxing factor whose effects are mediated by cAMP/cAMP-dependent protein kinase and cGMP/cGMP-dependent protein kinase, respectively. The results suggest that VASP phosphorylation is an important component of the inhibitory effects of prostacyclin and endothelium-derived relaxing factor on platelet activation and that VASP phosphorylation is a useful biochemical marker for the interaction of endothelial cells and platelets.  相似文献   

15.
Membrane proteins of Mr 240,000, 130,000, and 85,000 (GS-proteins) were rapidly and selectively phosphorylated in particulate fractions of rabbit aortic smooth muscle in the presence of [Mg-32P]ATP and low concentrations of cGMP (Ka = 0.01 microM) or cAMP (Ka = 0.2 microM). The effects of both cyclic nucleotides in this preparation were mediated entirely by an endogenous, membrane-bound form of cGMP-dependent protein kinase (G-kinase). The GS-proteins were also phosphorylated by the soluble form of G-kinase purified from bovine lung; this effect was most evident following removal of endogenous G-kinase from the membranes using Na2CO3 and high salt washes. The membrane-bound and cytosolic forms of G-kinase phosphorylated the Mr 130,000 GS-protein with the same specificity as determined by two-dimensional peptide mapping. Despite this functional homology between the two forms of G-kinase, only the particulate enzyme appears to play a role in phosphorylating the GS-proteins. Although little endogenous cAMP-dependent protein kinase (A-kinase) activity was detected in washed aortic smooth muscle membranes, the GS-proteins could be phosphorylated when purified A-kinase catalytic subunit was added to this preparation. Peptide mapping of the Mr 130,000 GS-protein indicated that A-kinase phosphorylated a subset of the same peptides labeled by the two forms of G-kinase. The endogenous A-kinase of rabbit aortic smooth muscle homogenates was also found to phosphorylate the GS-proteins. Since the intracellular concentrations of cGMP or cAMP can be selectively elevated by different stimuli, these results suggest several possible mechanisms by which the phosphorylation state of the GS-proteins may be regulated by cyclic nucleotides: activation of the membrane-bound G-kinase by cGMP or cAMP; and activation of cytosolic A-kinase by cAMP.  相似文献   

16.
The effects of prostaglandin E1 and prostaglandin G2, the prostaglandin endoperoxide, on platelet cyclic nucleotide concentrations were measured in platelet rich plasma (PRP), and in washed intact platelets. PGE1 was found to be a potent stimulator of platelet cAMP levels in both PRP and washed cells, and to inhibit aggregation in both systems. PGE1 did not change platelet cGMP levels in either PRP or washed cells. PGG2 which is a potent inducer of platelet aggregation, did not affect either the basal cAMP or the basal cGMP concentration. However, PGG2 was found to antagonize the increases in cAMP content in response to PGE1 in both PRP and washed platelets. The addition to our system of a cyclic nucleotide phosphodiesterase inhbitor, theophylline, did not change our findings. It is suggested that PGG2 may induce platelet aggregation by inhibiting PGE1-stimulated cAMP accumulation.  相似文献   

17.
Platelet function is inhibited by agents such as prostaglandin E1 (PGE1) that elevate the cytoplasmic concentration of cyclic AMP. Inhibition presumably results from the cyclic AMP-stimulated phosphorylation of intracellular proteins. Polypeptides that become phosphorylated are actin-binding protein, P51 (Mr = 51,000), P36 (Mr = 36,000), P24 (Mr = 24,000), and P22 (Mr = 22,000). Recently, we identified P24 as the beta-chain of glycoprotein (GP) Ib, a component of the plasma membrane GP Ib.IX complex. The existence of Bernard-Soulier syndrome, a hereditary disorder in which platelets selectively lack the GP Ib.IX complex, enabled us to examine whether the phosphorylation of GP Ib beta (P24) is responsible for any of the inhibitory effects of elevated cyclic AMP on platelet function. Exposure of control platelets to PGE1 increased phosphorylation of actin-binding protein, P51, P36, GP Ib beta, and P22. Prostaglandin E1 induced the same phosphorylation reactions in Bernard-Soulier platelets, except that of GP Ib beta, which is absent. In control platelets, PGE1 inhibited collagen-induced phosphorylation of myosin light chain, phosphorylation of P47 (an unidentified Mr 47,000 cytoplasmic protein that is phosphorylated by protein kinase C in stimulated platelets), aggregation, and the secretion of granule contents. Despite the absence of GP Ib beta, PGE1 also inhibited these collagen-induced responses in Bernard-Soulier platelets. However, while PGE1 inhibited collagen-induced polymerization of actin in control platelets, it did not inhibit actin polymerization in Bernard-Soulier platelets. These results suggest that cyclic AMP-induced phosphorylation of GP Ib inhibits collagen-induced actin polymerization in platelets. Because actin polymerization is required for at least some of the functional responses of platelets to an agonist, phosphorylation of Gp Ib beta may be one way in which cyclic AMP inhibits platelet function.  相似文献   

18.
In human platelets stimulated by thrombin and collagen, diacylglycerol is rapidly produced from phosphatidylinositol. Concurrently, an endogenous protein having a molecular weight of about 40,000 (40K protein) is phosphorylated, and serotonin is released. These reactions are all inhibited by a prior treatment of platelets with prostaglandin E1, dibutyryl cyclic AMP, sodium nitroprusside, or with 8-bromo-cyclic GMP, which are known as potent inhibitors for platelet activation. Ca2+-activated phospholipid-dependent protein kinase (protein kinase C) preferentially phosphorylates 40K protein. As judged by fingerprint analysis, the sites in 40K protein that are phosphorylated during the platelet activation appear to be identical with those phosphorylated by protein kinase C in a purified cell-free system. 12-O-Tetradecanoylphorbol-13-acetate, which directly activates protein kinase C by substituting for diacylglycerol, stimulates 40K protein phosphorylation and release reaction without inducing diacylglycerol formation. Tetracaine, which inhibits protein kinase C by competing with phospholipid, blocks 40K protein phosphorylation and serotonin release without inhibiting the receptor-linked diacylglycerol formation. The results indicate that thrombin and collagen activate platelets in almost similar mechanisms and that protein kinase C may lie on a common pathway which leads to the release of serotonin. However, analysis with indomethacin indicates that the role of thromboxane A2 appears to be more predominant for the action of collagen, and it is suggestive that this arachidonate metabolite activates platelets in an analogous mechanism to thrombin.  相似文献   

19.
The phosphorylation of the membrane skeleton components protein 4.1 and protein 4.9 in intact erythrocytes is shown to increase in the presence of either 1 microM 12-O-tetradecanoyl phorbol 13-acetate or 2 mM dibutyryl cAMP. The phosphorylation induced by these protein kinase activators is compared by two-dimensional tryptic peptide mapping. In both proteins, the pattern of peptides phosphorylated in the presence of 12-O-tetradecanoyl phorbol 13-acetate differs from the pattern of peptides phosphorylated in the presence of dibutyryl cAMP. The relative locations of the phosphorylated sites on protein 4.1 have been determined using limited proteolysis by alpha-chymotrypsin.  相似文献   

20.
Stimulation of platelets by thrombin causes an increase in the amount of cytoskeleton proteins insoluble in 1% Triton X-100, i.e. myosin, actin, actin-binding protein, an alpha-actinin-like protein of Mr = 105,000, unidentified polypeptides of Mr = 150,000, 31,00, and under some conditions, 56,000. Concurrently the Mr = 20,000 light chains of myosin and a cytoplasmic Mr = 42,000 polypeptide are phosphorylated, presumably by calmodulin-Ca2+-dependent myosin light chain kinase and a phospholipid-Ca2+-dependent kinase, respectively. The adenylate cyclase stimulators prostaglandin D2 (PGD2) and forskolin increased platelet cyclic AMP and prevented the phosphorylation of these polypeptides and the increase in Triton-insoluble cytoskeleton proteins. When added to platelets after stimulation by thrombin they caused rapid complete reversal of myosin light chain and Mr = 42,000 polypeptide phosphorylation; simultaneously the association of myosin with the cytoskeleton proteins and the increase in the content of each of the Triton-insoluble cytoskeleton proteins (except the Mr = 56,000 polypeptide) was reversed. The amount of Triton-insoluble myosin was affected more readily by PGD2 or forskolin than were the other proteins. Increasing thrombin from 0.1 to 1.0 unit/ml inhibited all the responses to PGD2 and forskolin possibly due to concentration-dependent effects of thrombin that inhibit adenylate cyclase. These results suggest that cytoskeleton assembly and activation of the contractile apparatus in intact platelets are readily reversible by cyclic AMP-dependent reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号