首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydroxylation of l-phenylalanine (Phe) by hydroxyl radical (*OH) yields 4-, 3-, and 2-hydroxyl-Phe (para-, meta-, and ortho-tyrosine, respectively). Phe derivative measurements have been employed to detect *OH formation in cells and tissues, however, the specificity of this assay is limited since Phe derivatives also arise from intracellular Phe hydroxylase. d-Phe, the d-type enantiomer, is not hydroxylated by Phe hydroxylase. We evaluate whether d-Phe reacts with *OH as well as l-Phe, providing a more reliable probe for *OH generation in biological systems. With *OH generated by a Fenton reaction or xanthine oxidase, d- and l-Phe equally gave rise to p, m, o-tyr and this could be prevented by *OH scavengers. Resting human neutrophils (PMNs) markedly converted l-Phe to p-tyr, through non-oxidant-mediated reactions, whereas d-Phe was unaffected. In contrast, when PMNs were stimulated in the presence of redox cycling iron the *OH formed resulted in more significant rise of p-tyr from d-Phe (9.4-fold) than l-Phe (3.6-fold) due to the significant background formation of p-tyr from l-Phe. Together, these data indicated that d- and l-Phe were equally hydroxylated by *OH. Using d-Phe instead of l-Phe can eliminate the formation of Phe derivatives from Phe hydroxylase and achieve more specific, sensitive measurement of *OH in biological systems.  相似文献   

2.
Quantitation of the hydroxyl radical by reaction with dimethyl sulfoxide   总被引:6,自引:0,他引:6  
This investigation was conducted to validate the use of dimethyl sulfoxide (DMSO) as a quantitative molecular probe for the generation of hydroxyl radicals (HO.) in aqueous systems. Reaction of HO. with DMSO produces methane sulfinic acid as a primary product, which can be detected by a simple colorimetric assay. To evaluate this method for estimating total HO. production, we studied three model systems, including the Fenton reaction, gamma irradiation of water, and ultraviolet photolysis of hydrogen peroxide, for which the theoretical maximum yield of HO. could be calculated and compared to measured DMSO oxidation. The results confirm that 0.05 to 1 M DMSO may be used to capture nearly all of the expected HO. radicals formed. Thus, methane sulfinic acid production from DMSO holds promise as an easily measured marker for HO. formation in aqueous systems pretreated with DMSO.  相似文献   

3.
A mixture of xanthine or hypoxanthine and xanthine oxidase generates the superoxide radical, O2?, and H2O2. In the presence of iron salts, O2? and H2O2 can interact to produce the hydroxyl radical, OH·. Superoxide-dependent formation of OH· can be measured by its ability to hydroxylate salicylate as followed by an improved colorimetric assay described in this paper. A more accurate analysis of OH· can be obtained using its ability to hydroxylate phenol, the hydroxylated products being separated and measured after derivatization using gas-liquid chromatography and electron-capture detection. The derivatization and separation techniques are described.  相似文献   

4.
An efficient scavenger for radiolytically generated hydroxyl (OH) radicals, p-nitrosodimethylaniline, was used to try to substantiate the presence of this oxygen radical species in several biochemical systems. Most of these systems which were investigated had previously been assumed to generate OH radicals, e.g. the autoxidation of 6-hydroxydopamine, the hydroxylating system NADH/phenazine methosulfate, and the oxidation of xanthine or acetaldehyde by xanthine oxidase. We did not observe inhibition of the bleaching of p-nitrosodimethylaniline in oxygenated solutions by other scavengers of OH radicals nor, in the case of xanthine/xanthine oxidase, by catalase and superoxide dismutase. We therefore conclude that, under biochemical conditions as opposed to radiolysis or photolysis, no freely diffusable OH radicals are formed. Rather, a strongly oxidizing OH-analogous complex is considered to represent the p-nitrosodimethylaniline-detectable species formed under these conditions.  相似文献   

5.
6.
Chloride anions and hydrogen peroxide serve as substrates for myeloperoxidase (MPO) in order to produce hypochlorous acid (HOCl) as one of the major killing agents of phagocytic leukocytes. Apart from this role of being a substrate for the MPO-reaction the chloride anion has been considered as unreactive and has not been implicated in radical reactions which contribute to the killing process. From the inherent reactivities of the pertinent radicals (as determined by pulse radiolysis experiments), the great abundance of chloride, and the most probable distribution of reactants within the phagosome, we deduce estimates for the average life-time and free diffusion path-length in this milieu and arrive at a model according to which chloride ions enter into radical chains and influence the killing of ingested bacteria to an extraordinarily high extent. We propose that hydroxyl radicals—despite some controversial arguments in the literature—may still be considered as important contributors to cell killing especially since we show that their reactions are made more effective by producing chlorine radicals in a cyclic process. We furthermore present arguments how the phagocyte may protect itself from harmful actions of HOCl and H2O2 after the superoxide-generating activity of NADPH oxidase is turned off.  相似文献   

7.
Vanadyl ion (+4 oxidation state) has been shown to be an effective agent for chemoprotection of cancers in animals. For understanding the mechanism, distribution of vanadium was studied. More vanadium was found to accumulate in the nuclei of the liver of rats when it was given as vanadyl sulfate than when it was given as sodium vanadate (+5 oxidation state). The reactivity of vanadyl ion with DNA was investigated by the DNA cleavage technique and the reaction mechanism by ESR spectroscopy. Incubation of double-strand DNA with vanadyl ion and hydrogen peroxide resulted in marked concentration- and pH-dependent DNA cleavage. Studies by the ESR spin-trap method demonstrated that hydroxyl radicals are generated during the reactions of vanadyl ion with hydrogen peroxide. Thus the antineoplastic action of vanadyl ion is proposed to be due to DNA cleavage by hydroxyl radicals generated in the cells.  相似文献   

8.
Reactive oxygen species (ROS), especially hydroxyl radicals are postulated to mediate apoptosis of the cell. Here we demonstrate that hydroxyl radicals generated selectively by photolysis of a photo-Fenton reagent, N,N'-bis(2-hydroperoxy-2-methoxyethyl)-1,4,5,8-naphthaldiimide (NP-III), induce apoptosis in HL-60 (human promyelocytic leukemia) cells involving the activation of caspase-3.  相似文献   

9.
The effects of thiols and thiocarbamides on hydroxyl radical (.OH) formation by the hypoxanthine(HYP)-xanthine oxidase(XOD)-Fe3+ .EDTA system were investigated in the range of 0.5-5 mM by colorimetrically measuring salicylate hydroxylation. Thiocarbamides powerfully inhibited the hydroxylation while thiols showed a paradoxical effect, enhancing it at low concentrations, but inhibiting it at high ones. Thiols in the presence of Fe3+ .EDTA generated superoxide anions (O2-.) and .OH during the oxidation, but thiocarbamides did not. A study of the effect of ergothioneine, a thiocarbamide present in mammals, on the .OH spin adduct of 5,5-dimethyl-1-pyrroline-N-oxide(DMPO) by EPR spectrometry showed that it effectively decreased the .OH spin adduct without causing the appearance of other signals. Reaction mechanisms are proposed for the O2-. evolution and .OH formation by the thiols themselves in the presence of Fe3+ .EDTA and .OH with thiols and thiocarbamides.  相似文献   

10.
Recent interest has focused on the use of exogenous melatonin as an antioxidant, particularly to scavenge the highly cytotoxic hydroxyl radical (HO(z.rad;)) which may be generated in many pathological conditions. However, in vitro and in vivo studies aimed at assessing the antioxidant properties of melatonin have produced conflicting results. While it is known that HO(z.rad;) reacts with melatonin at a diffusion limited rate, very little is known about the products of this reaction. In this investigation it is shown that incubation of melatonin with a Fenton-type HO(z.rad;)-generating system at pH 7.4 forms a complex mixture of primary products. These include 2-hydroxymelatonin, which was isolated as its more stable oxindole tautomer, 4- and 6-hydroxymelatonin, N-acetyl-N(2)-formyl-5-methoxykynurenine and 7,7(')-bi-(5-methoxy-N-acetyltryptamine-4-one). Reaction pathways that might lead to these products are described. The differing biological effects of these products, while currently incompletely understood, might account for the controversy concerning the antioxidant properties of melatonin.  相似文献   

11.
Accurate potential energy surfaces for the OH + CH2F2 --> H2O + CHF2 reaction are constructed using hybrid and hybrid meta density functional theory methods (mPW1PW91, B1B95, and mPW1B95) with specific reaction parameters in conjunction with the 6-31 + G(d,p) basis set. The accuracy of a surface is examined by comparing the calculated rate constants with the experimental ones. The rate constants are calculated over the temperature range 200-1,500 K using variational transition state theory with multidimensional tunneling contributions. The hybrid density functional theory methods with specific-reaction-parameter Hartree-Fock exchange contributions (39.2-41.0% for mPW1PW91, 41.0-42.2% for B1B95, and 44.9-46.3% for mPW1B95, respectively) provide accurate rate constants over an extended temperature range. The classical barrier height for the hydrogen abstraction reaction on these potential energy surfaces is determined to be 5.0-5.3 kcal mol(-1), and the best estimate value is 5.14 kcal mol(-1).  相似文献   

12.
The effect of lactic acid (lactate) on Fenton based hydroxyl radical (·OH) production was studied by spin trapping, ESR, and fluorescence methods using DMPO and coumarin-3-carboxylic acid (3-CCA) as the ·OH traps respectively. The ·OH adduct formation was inhibited by lactate up to 0.4mM (lactate/iron stoichiometry = 2) in both experiments, but markedly enhanced with increasing concentrations of lactate above this critical concentration. When the H2O2 dependence was examined, the DMPO-OH signal was increased linearly with H2O2 concentration up to 1 mM and then saturated in the absence of lactate. In the presence of lactate, however, the DMPO-OH signal was increased further with higher H2O2 concentration than 1 mM, and the saturation level was also increased dependent on lactate concentration. Spectroscopic studies revealed that lactate forms a stable colored complex with Fe3+ at lactate/Fe3+ stoichiometry of 2, and the complex formation was strictly related to the DMPO-OH formation. The complex formation did not promote the H2O2 mediated Fe3+ reduction. When the Fe3+-lactate (1:2) complex was reacted with H2O2, the initial rate of hydroxylated 3-CCA formation was linearly increased with H2O2 concentrations. All the data obtained in the present experiments suggested that the Fe3+-lactate (1:2) complex formed in the Fenton reaction system reacts directly with H2O2 to produce additional ·OH in the Fenton reaction by other mechanisms than lactate or lactate/Fe3+ mediated promotion of Fe3+/Fe2+ redox cycling.  相似文献   

13.
The effect of lactic acid (lactate) on Fenton based hydroxyl radical (·OH) production was studied by spin trapping, ESR, and fluorescence methods using DMPO and coumarin-3-carboxylic acid (3-CCA) as the ·OH traps respectively. The ·OH adduct formation was inhibited by lactate up to 0.4mM (lactate/iron stoichiometry = 2) in both experiments, but markedly enhanced with increasing concentrations of lactate above this critical concentration. When the H2O2 dependence was examined, the DMPO-OH signal was increased linearly with H2O2 concentration up to 1 mM and then saturated in the absence of lactate. In the presence of lactate, however, the DMPO-OH signal was increased further with higher H2O2 concentration than 1 mM, and the saturation level was also increased dependent on lactate concentration. Spectroscopic studies revealed that lactate forms a stable colored complex with Fe3+ at lactate/Fe3+ stoichiometry of 2, and the complex formation was strictly related to the DMPO-OH formation. The complex formation did not promote the H2O2 mediated Fe3+ reduction. When the Fe3+-lactate (1:2) complex was reacted with H2O2, the initial rate of hydroxylated 3-CCA formation was linearly increased with H2O2 concentrations. All the data obtained in the present experiments suggested that the Fe3+-lactate (1:2) complex formed in the Fenton reaction system reacts directly with H2O2 to produce additional ·OH in the Fenton reaction by other mechanisms than lactate or lactate/Fe3+ mediated promotion of Fe3+/Fe2+ redox cycling.  相似文献   

14.
Sunlight mediated hydroxyl radical production from aqueous ferric perchlorate at low pH has been investigated using deoxyribose-thiobarbituric acid assay. The rate of production of hydroxyl radical was found to be dependent on the time of irradiation. Hydroxyl radical scavengers can compete with deoxyribose for hydroxyl radicals produced in the system leading to a decreased yield of thiobarbituric acid chromogen. The second-order rate constants of the added scavengers can be determined using a simple competition kinetic method. The rate constants for the reaction of hydroxyl radical with a number of purine and pyrimidine derivatives were determined using this method. The rate constants obtained (1-7 x 10(9) dm(3) mol(-1) s(-1)) were found to be in good agreement with those reported using pulse radiolysis technique. The rate constants of dimethyluracil, xanthosine, amino and methyl substituted pyrimidines, cytidine monophosphate and uridine monophosphate were also determined by this method. It is proposed that sunlight mediated production of hydroxyl radical coupled with deoxyribose-thiobarbituric acid assay is a simple and efficient method for the determination of rate constants for the reaction of hydroxyl radical with a wide range of biomolecules.  相似文献   

15.
To develop a molecular probe for detection of hydroxyl radicals in the vicinity of DNA, the coumarin-polyamine complexes, N(1),N(12)-bis[2-oxo-2H-chromene-3-carbonyl]-1,12-diamine-4,9-diazadodecane (5) and tris[2-(2-oxo-2H-chromene-3-carboxamido)ethyl]amine (7), and their hydroxylated derivatives, N(1),N(12)-bis[7-hydroxy-2-oxo-2H-chromene-3-carbonyl]-1,12-diamine-4,9-diazadodecane (6) and tris[2-(7-hydroxy-2-oxo-2H-chromene-3-carboxamido)ethyl]amine (8), have been synthesized. Using computer-generated molecular modeling, the derivatives have been docked onto DNA dodecamer d(CGCGAATTCGCG)(2), the ligand-DNA complexes have been minimized, and the free binding energies (DeltaG(binding)) and inhibition constants (K(i)) have been calculated. Compound 7 is not water-soluble at the concentrations required for the project. When aqueous solutions of 5 are irradiated with gamma rays, the relationship between induced fluorescence and dose is linear in the range of 0 to 10 Gy. The fluorescence emission spectrum of irradiated 5 is similar to that of its dihydroxy derivative 6, indicating conversion of 5 to 6, and induction of fluorescence records formation of hydroxyl radicals in aqueous solution. The dicoumarin-polyamine 5, a novel compound for the detection of hydroxyl radicals close to DNA, is a sensitive and quantitative probe with potential for applications in biological systems.  相似文献   

16.
Dichloroacetonitrile (DCAN), is a member of haloacetonitrile group and detected in drinking water supplies as a by-product of chlorination process. The mechanism of DCAN-induced carcinogenesis is believed to be mediated by oxidative bioactivation of DCAN molecules. The present study was designed to investigate if reactive oxygen species (ROS), similar to that generated in biological systems, are capable of oxidative activation of DCAN. A model ROS generation system (Fenton-like reaction; Fe2+ and H2O2) that predominantly produces hydroxyl radical (OH*) was used. DCAN oxidation was monitored by the extent of cyanide (CN-) release. The results indicate that DCAN was markedly oxidized by this system, and the rate of oxidation was dependent on DCAN concentration. Four-fold increase in H2O2 concentration (50-200 mM) resulted in a 35-fold increase in CN- release. The rates of DACN oxidation in presence of various transition metals were in the following order; iron>copper>titanium. DCAN oxidation was enhanced significantly by the addition of vitamin C and sulfhydryl compounds such as glutathione, N-acetyl-L- cysteine, and dithiothreitol (10 mM) to 140, 130, 145 and 136% of control, respectively. Addition of H2O2 scavenger; catalase or iron chelator; desferrioxamine (DFO) resulted in a significant decrease in CN- release 47 and 41% of control, respectively. Addition of various concentrations of the free radical scavengers, DMSO, or mannitol, to the incubation mixtures caused a significant decrease in DCAN oxidation, 32 and 50% of control, respectively. Michaelis-Menten kinetic analysis of the rates of this reaction, with or without inhibitors, indicated that ROS mediated oxidation of DCAN was inhibited by catalase (Ki = 0.01 mM)>DFO (0.02 mM) > mannitol (0.09 mM) > DMSO (0.12 mM). In conclusion, our results indicate that DCAN is oxidized by a ROS-mediated mechanism. This mechanism may have an important role in DCAN bioactivation and DCAN-induced genotoxicity at target organs where multiple forms of ROS generating systems are abundant.  相似文献   

17.
Although the presence of free radicals has been indicated in ischemic-reperfused heart, the exact nature and source of these free radicals are not known. The present study utilized a chemical trap, salicylic acid, to trap hydroxyl radical which could be detected as hydroxylated benzoic acid using high pressure liquid chromatography. Since the hydroxylated product is extremely stable, heart was subjected to subcellular fractionation after ischemia and reperfusion, and each fraction was separately examined for the presence of hydroxyl radical. The results indicated for the first time the presence of hydroxyl radical in the mitochondrial fraction during early reperfusion, which decreased in intensity as the reperfusion progressed.  相似文献   

18.
The influence of limited oxidation of glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12), alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) and myoglobin by singlet oxygen and by hydroxyl radicals was investigated. The intrinsic fluorescence of glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase decreased rapidly during oxidation, indicating a conformational change of the protein molecules. The free energy of isothermal unfolding in urea solutions was increased by singlet oxygen, but decreased by hydroxyl radical attack. The velocity of refolding of the denatured protein after dilution of the denaturant was increased by exposure to either singlet oxygen or hydroxyl radicals, with one exception: the velocity of refolding of myoglobin, oxidized by singlet oxygen, was strongly decreased. Hydroxyl radicals produced covalently crosslinked protein aggregates and some fragmentation, whereas singlet oxygen produced only crosslinked aggregates with glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase. All oxidized proteins were more susceptible to proteolysis by elastase and proteinase K, as compared to the undamaged proteins. Singlet oxygen-induced crosslinked aggregates were degraded very rapidly by elastase. Hydroxyl radical-induced aggregates of glyceraldehyde-3-phosphate dehydrogenase were also degraded very rapidly by this enzyme, but hydroxyl radical-induced aggregates of alcohol dehydrogenase were resistent to enzymatic degradation. The results indicate that limited protein oxidation may have a pronounced influence on several properties of the protein. The effects vary, however, with varying proteins and with the oxidizing species.  相似文献   

19.
The generation of hydroxyl radicals by the xanthine-xanthine oxidase reaction (C. Beauchamp and I. Fridovich (1970) J. Biol. Chem. 245, 4641-1616) has been shown to be increased by iron-saturated lactoferrin isolated from pig neutrophils. Hydroxyl radical production, measured by EPR spin trapping and by ethylene production from alpha-keto-gamma-methiol butyric acid, has been demonstrated to be produced by a Fenton-type Haber-Weiss reaction catalysed by lactoferrin. The possibility that lactoferrin catalyses such a reaction in vivo is considered.  相似文献   

20.
The pineal secretory product, melatonin, is a potent, endogenous hydroxyl radical (HO.) scavenger. When melatonin was incubated in different in vitro cell-free HO.-generating systems, a novel melatonin adduct was formed. The molecular weight of this new compound is 248. Its structure was found to be cyclic 3-hydroxymelatonin (3-OHM). A proposed reaction pathway suggests that 3-OHM is the footprint product of the interaction between melatonin with HO. 3-OHM was also detected in the urine of both rats and humans. This urinary metabolite is identical to the compound generated in the in vitro chemical reaction between HO. and melatonin. This provides direct evidence that melatonin, under physiological conditions, functions as an antioxidant to detoxify the most reactive and cytotoxic endogenous HO. When exogenous melatonin was administered to young rats, urinary 3-OHM levels increased significantly in the treated rats compared to those in controls. This indicates that even in young animals there is insufficient endogenously produced melatonin to detoxify the basal levels of the toxic HO. The accumulated damage induced by the escaped HO. that results when the HO. avoids detoxification over the course of a life time may directly or indirectly accelerate aging and aging-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号