首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the potential for mechanical stimulation of skeletal muscle to contribute to the reflex cardiovascular response to static contraction (exercise reflex), we examined the cardiovascular effects caused by either passive stretch or external pressure applied to the triceps surae muscles. First, the triceps surae were stretched to an average developed tension of 4.8 +/- 0.3 kg. This resulted in increases in mean arterial pressure (MAP) of 28 +/- 7 mmHg, dP/dt of 1,060 +/- 676 mmHg/s, and heart rate (HR) of 6 +/- 2 beats/min (P less than 0.05). Additionally, increments of 0.3, 0.5, 1.0, 2.0, 4.0, and 8.0 kg of tension produced by passive stretch elicited pressor responses of -6 +/- 1, 7 +/- 1, 16 +/- 3, 21 +/- 8, 28 +/- 6, and 54 +/- 9 mmHg, respectively. External pressure, applied with a cuff to the triceps surae to produce intramuscular pressures (125-300 mmHg) that were similar to those seen during static contraction, also elicited small increases in MAP (4 +/- 1 to 10 +/- 1 mmHg) but did not alter HR. Transection of dorsal roots L5-L7 and S1 abolished the responses to passive stretch and external pressure. Moreover, when the triceps surae were stretched passively to produce a pattern and amount of tension similar to that seen during static hindlimb contraction, a significant reflex cardiovascular response occurred. During this maneuver, the pressor response averaged 51% of that seen during contraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Although the muscle mechanoreflex is one of the pressor reflexes during exercise, its interaction with dynamic characteristics of the arterial baroreflex remains to be quantitatively analyzed. In anesthetized, vagotomized, and aortic-denervated rabbits (n = 7), we randomly perturbed isolated carotid sinus pressure (CSP) using binary white noise while recording renal sympathetic nerve activity (SNA) and arterial pressure (AP). We estimated the transfer functions of the baroreflex neural arc (CSP to SNA) and peripheral arc (SNA to AP) under conditions of control and muscle stretch of the hindlimb (5 kg of tension). The muscle stretch increased the dynamic gain of the neural arc while maintaining the derivative characteristics [gain at 0.01 Hz: 1.0 +/- 0.2 vs. 1.4 +/- 0.6 arbitrary units (au)/mmHg, gain at 1 Hz: 1.7 +/- 0.6 vs. 2.7 +/- 1.4 au/mmHg; P < 0.05, control vs. stretch]. In contrast, muscle stretch did not affect the peripheral arc. In the time domain, muscle stretch augmented the steady-state response at 50 s (-1.1 +/- 0.3 vs. -1.7 +/- 0.7 au; P < 0.05, control vs. stretch) and negative peak response (-2.1 +/- 0.5 vs. -3.1 +/- 1.5 au; P < 0.05, control vs. stretch) in the SNA step response. A simulation experiment using the results indicated that the muscle mechanoreflex would accelerate the closed-loop AP regulation via the arterial baroreflex.  相似文献   

3.
The exercise pressor reflex is believed to be evoked, in part, by multiple metabolic stimuli that are generated when blood supply to exercising muscles is inadequate to meet metabolic demand. Recently, ATP, which is a P2 receptor agonist, has been suggested to be one of the metabolic stimuli evoking this reflex. We therefore tested the hypothesis that blockade of P2 receptors within contracting skeletal muscle attenuated the exercise pressor reflex in decerebrate cats. We found that popliteal arterial injection of pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS; 10 mg/kg), a P2 receptor antagonist, attenuated the pressor response to static contraction of the triceps surae muscles. Specifically, the pressor response to contraction before PPADS averaged 36 +/- 3 mmHg, whereas afterward it averaged 14 +/- 3 mmHg (P < 0.001; n = 19). In addition, PPADS attenuated the pressor response to postcontraction circulatory occlusion (P < 0.01; n = 11). In contrast, popliteal arterial injection of CGS-15943 (250 micro g/kg), a P1 receptor antagonist, had no effect on the pressor response to static contraction of the triceps surae muscles. In addition, popliteal arterial injection of PPADS but not CGS-15943 attenuated the pressor response to stretch of the calcaneal (Achilles) tendon. We conclude that P2 receptors on the endings of thin fiber muscle afferents play a role in evoking both the metabolic and mechanoreceptor components of the exercise pressor reflex.  相似文献   

4.
I investigated whether muscular contraction evokes cardiorespiratory increases (exercise pressor reflex) in alpha-chloralose- and chloral hydrate-anesthetized and precollicular, midcollicular, and postcollicular decerebrated rats. Mean arterial pressure (MAP), heart rate (HR), and minute ventilation (Ve) were recorded before and during 1-min sciatic nerve stimulation, which induced static contraction of the triceps surae muscles, and during 1-min stretch of the calcaneal tendon, which selectively stimulated mechanosensitive receptors in the muscles. Anesthetized rats showed various patterns of MAP response to both stimuli, i.e., biphasic, depressor, pressor, and no response. Sciatic nerve stimulation to muscle in precollicular decerebrated rats always evoked spontaneous running, so the exercise pressor reflex was not determined from these preparations. None of the postcollicular decerebrated rats showed a MAP response or spontaneous running. Midcollicular decerebrated rats consistently showed biphasic blood pressure response to both stimulations. The increases in MAP, HR, and Ve were related to the tension developed. The static contractions in midcollicular decerebrated rats (381 +/- 65 g developed tension) significantly increased MAP, HR, and Ve from 103 +/- 12 to 119 +/- 24 mmHg, from 386 +/- 30 to 406 +/- 83 beats/min, and from 122 +/- 7 to 133 +/- 25 ml/min, respectively. After paralysis, sciatic nerve stimulation had no effect on MAP, HR, or Ve. These results indicate that the midcollicular decerebrated rat can be a model for the study of the exercise pressor reflex.  相似文献   

5.
We examined whether ATP stimulation of P2X purinoceptors would raise blood pressure in decerebrate cats. Femoral arterial injection of the P2X receptor agonist alpha,beta-methylene ATP into the blood supply of the triceps surae muscle induced a dose-dependent increase in arterial blood pressure. The maximal increase in mean arterial pressure (MAP) evoked by 0.1, 0.2, and 0.5 mM alpha,beta-methylene ATP (0.5 ml/min injection rate) was 6.2 +/- 2.5, 22.5 +/- 4.4, and 35.2 +/- 3.9 mmHg, respectively. The P2X receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (2 mM ia) attenuated the increase in MAP elicited by intra-arterial alpha,beta-methylene ATP (0.5 mM), whereas the P2Y receptor antagonist reactive blue 2 (2 mM ia) did not affect the MAP response to alpha,beta-methylene ATP. In a second group of experiments, we tested the hypothesis that ATP acting through P2X receptors would sensitize muscle afferents and, thereby, augment the blood pressure response to muscle stretch. Two kilograms of muscle stretch evoked a 26.5 +/- 4.3 mmHg increase in MAP. This MAP response was enhanced when 2 mM ATP or 0.1 mM alpha,beta-methylene ATP (0.5 ml/min) was arterially infused 10 min before muscle stretch. Furthermore, this effect of ATP on the pressor response to stretch was attenuated by 2 mM pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (P < 0.05) but not by the P1 purinoceptor antagonist 8-(p-sulfophenyl)-theophylline (2 mM). These data indicate that activation of ATP-sensitive P2X receptors evokes a skeletal muscle afferent-mediated pressor response and that ATP at relatively low doses enhances the muscle pressor response to stretch via engagement of P2X receptors.  相似文献   

6.
The effects of the muscle mechanoreflex on the arterial baroreflex neural control have not previously been analyzed over the entire operating range of the arterial baroreflex. In anesthetized, vagotomized, and aortic-denervated rabbits (n = 8), we isolated carotid sinuses and changed intracarotid sinus pressure (CSP) from 40 to 160 mmHg in increments of 20 mmHg every minute while recording renal sympathetic nerve activity (SNA) and arterial pressure (AP). Muscle mechanoreflex was induced by passive muscle stretch (5 kg of tension) of the hindlimb. Muscle stretch shifted the CSP-SNA relationship (neural arc) to a higher SNA, whereas it did not affect the SNA-AP relationship (peripheral arc). SNA was almost doubled [from 63 +/- 15 to 118 +/- 14 arbitrary units (au), P < 0.05] at the CSP level of 93 +/- 8 mmHg, and AP was increased approximately 50% by muscle stretch. When the baroreflex negative feedback loop was closed, muscle stretch increased SNA from 63 +/- 15 to 81 +/- 21 au (P < 0.05) and AP from 93 +/- 8 to 109 +/- 12 mmHg (P < 0.05). In conclusion, the muscle mechanoreflex resets the neural arc to a higher SNA, which moves the operating point towards a higher SNA and AP under baroreflex closed-loop conditions. Analysis of the baroreflex equilibrium diagram indicated that changes in the neural arc induced by the muscle mechanoreflex might compensate for pressure falls resulting from exercise-induced vasodilatation.  相似文献   

7.
In thirteen cats anesthetized with alpha-chloralose, we compared the cardiovascular and ventilatory responses to both static contraction and tendon stretch of a hindlimb muscle group, the triceps surae, with those to contraction and stretch of a forelimb muscle group, the triceps brachii. Static contraction and stretch of both muscle groups increased mean arterial pressure and heart rate, and the responses were directly proportional to the developed tension. The cardiovascular increases, however, were significantly greater (P < 0.05) when the triceps brachii muscles were contracted or stretched than when the triceps surae muscles were contracted or stretched, even when the tension developed by either maneuver was corrected for muscle weight. Likewise, the ventilatory increases were greater when the triceps brachii muscles were stretched than when the triceps surae muscles were stretched. Contraction of either muscle group did not increase ventilation. Our results suggest that in the anesthetized cat the cardiovascular responses to both static contraction and tendon stretch are greater when arising from forelimb muscles than from hindlimb muscles.  相似文献   

8.
To test the hypothesis that a muscle mechanosensitive reflex is suppressed in the conscious condition, we examined the effect of anesthesia on the cardiovascular responses to passive mechanical stretch of the hindlimb triceps surae muscle in six conscious cats. The triceps surae muscle was manually stretched for 30 s by extending the hip and knee joints and subsequently by dorsiflexing the ankle joint; the lateral gastrocnemius muscle was lengthened by 19 +/- 2.6 mm. Heart rate (HR) and mean arterial blood pressure (MAP) did not change significantly during passive stretch of the muscle in the conscious condition. At 10-40 min after intravenously administering pentobarbital sodium (20-25 mg/kg), the identical passive stretch of the triceps surae muscle was able to induce the cardiovascular responses; HR and MAP were increased by 14 +/- 1.3 beats/min and 14 +/- 1.4 mmHg, respectively, and the cardiovascular responses were sustained throughout the passive stretch. In contrast, stretching skin on the triceps surae muscle evoked no significant changes in HR and MAP in the anesthetized condition. When anesthesia became light 40-90 min after injection of pentobarbital and the animals started to show spontaneous body movement, the cardiovascular response to passive muscle stretch tended to be blunted again. It is therefore concluded that passive mechanical stretch of skeletal muscle is capable of evoking the reflex cardiovascular response, which is suppressed in the conscious condition but exaggerated by anesthesia.  相似文献   

9.
We directly measured cardiac vagal efferent nerve activity (CVNA) and cardiac sympathetic efferent nerve activity (CSNA) in cats decerebrated at the level of the precollicular-premammillary body while the hindlimb or the triceps surae muscle was passively stretched. CVNA gradually decreased during passive stretch of the hindlimb, and this decrease was sustained throughout the stretch. CSNA increased at the onset of passive stretch, but this increase was not sustained. CVNA and CSNA responded differentially to graded passive stretches of the triceps surae muscle as well as the hindlimb. The sustained decrease in CVNA but not the initial increase in CSNA became greater depending on muscle length and developed tension. The time course and direction of the cardiac autonomic responses to muscle stretch were not affected by partial sinoaortic denervation, although the magnitude of the CSNA response was augmented. We conclude that the muscle mechanoreflex contributes to differential regulation of cardiac parasympathetic and sympathetic efferent discharges during passive stretch of skeletal muscle irrespective of arterial baroreceptor input.  相似文献   

10.
We investigated whether selective muscle mechanoreceptor activation in the lower limb opposes arm muscle metaboreceptor activation-mediated limb vasoconstriction. Seven subjects completed two trials: one control trial and one stretch trial. Both trials included 2 min of handgrip and 2 min of posthandgrip exercise muscle ischemia (PEMI). In the stretch trial, a 2-min sustained triceps surae stretch, by brief passive dorsiflexion of the right foot, was performed simultaneously during PEMI. Mean arterial pressure, heart rate, and forearm blood flow (FBF) in the nonexercised arm and forearm vascular conductance (FVC) in the nonexercised arm were measured. During PEMI in the control trial, mean arterial pressure was significantly greater and FBF and FVC were significantly lower than baseline values (P < 0.05 for each). In contrast, FBF and FVC during PEMI in the stretch trial exhibited different responses than in the control trial. FBF and FVC were significantly greater in the stretch trial than in the control trial (FBF, 5.5 +/- 0.4 vs. 3.8 +/- 0.4 ml x 100 ml(-1) x min(-1); FVC, 0.048 +/- 0.004 vs. 0.033 +/- 0.003 unit, respectively; P < 0.05). These results indicate that passive triceps surae stretch can inhibit vasoconstriction in the nonexercised forearm mediated via muscle metaboreceptor activation in the exercised arm.  相似文献   

11.
It has been suggested that the midbrain periaqueductal gray (PAG) is a neural integrating site for the interaction between the muscle pressor reflex and the arterial baroreceptor reflex. The underlying mechanisms are poorly understood. The purpose of this study was to examine the roles of GABA and nitric oxide (NO) in modulating the PAG integration of both reflexes. To activate muscle afferents, static contraction of the triceps surae muscle was evoked by electrical stimulation of the L7 and S1 ventral roots of 18 anesthetized cats. In the first group of experiments (n = 6), the pressor response to muscle contraction was attenuated by bilateral microinjection of muscimol (a GABA receptor agonist) into the lateral PAG [change in mean arterial pressure (DeltaMAP) = 24 +/- 5 vs. 46 +/- 8 mmHg in control]. Conversely, the pressor response was significantly augmented by 0.1 mM bicuculline, a GABAA receptor antagonist (DeltaMAP = 65 +/- 10 mmHg). In addition, the effect of GABAA receptor blockade on the reflex response was significantly blunted after sinoaortic denervation and vagotomy (n = 4). In the second group of experiments (n = 8), the pressor response to contraction was significantly attenuated by microinjection of L-arginine into the lateral PAG (DeltaMAP = 26 +/- 4 mmHg after L-arginine injection vs. 45 +/- 7 mmHg in control). The effect of NO attenuation was antagonized by bicuculline and was reduced after denervation. These data demonstrate that GABA and NO within the PAG modulate the pressor response to muscle contraction and that NO attenuation of the muscle pressor reflex is mediated via arterial baroreflex-engaged GABA increase. The results suggest that the PAG plays an important role in modulating cardiovascular responses when muscle afferents are activated.  相似文献   

12.
The purpose of this study was to determine the effect of blocking synaptic transmission in the dorsal horn on the cardiovascular responses produced by activation of muscle afferent neurons. Synaptic transmission was blocked by applying the GABA(A) agonist muscimol to the dorsal surface of the spinal cord. Cats were anesthetized with alpha-chloralose and urethane, and a laminectomy was performed. With the exception of the L(7) dorsal root, the dorsal and ventral roots from L(5) to S(2) were sectioned on one side, and static contraction of the ipsilateral triceps surae muscle was evoked by electrically stimulating the peripheral ends of the L(7) and S(1) ventral roots. The dorsal surface of the L(4)--S(3) segments of the spinal cord were enclosed within a "well" created by applying layers of vinyl polysiloxane. Administration of a 1 mM solution of muscimol (based on dose-response data) into this well abolished the reflex pressor response to contraction (change in mean arterial blood pressure before was 47 +/- 7 mmHg and after muscimol was 3 +/- 2 mmHg). Muscle stretch increased mean arterial blood pressure by 30 +/- 8 mmHg before muscimol, but after drug application stretch increased MAP by only 3 +/- 2 mmHg. Limiting muscimol to the L(7) segment attenuated the pressor responses to contraction (37 +/- 7 to 24 +/- 11 mmHg) and stretch (28 +/- 2 to 16 +/- 8 mmHg). These data suggest that the dorsal horn of the spinal cord contains an obligatory synapse for the pressor reflex. Furthermore, these data support the hypothesis that branches of primary afferent neurons, not intraspinal pathways, are responsible for the multisegmental integration of the pressor reflex.  相似文献   

13.
Congestive heart failure (CHF) induces abnormal regulation of peripheral blood flow during exercise. Previous studies have suggested that a reflex from contracting muscle is disordered in this disease. However, there has been very little investigation of the muscle reflex regulating sympathetic outflows in CHF. Myocardial infarction (MI) was induced by the coronary artery ligation in rats. Echocardiography was performed to determine fractional shortening (FS), an index of the left ventricular function. We examined renal and lumbar sympathetic nerve activities (RSNA and LSNA, respectively) during 1-min repetitive (1- to 4-s stimulation to relaxation) contraction or stretch of the triceps surae muscles. During these interventions, the RSNA and LSNA responded synchronously as tension was developed. The RSNA and LSNA responses to contraction were significantly greater in MI rats (n = 13) with FS <30% than in control animals (n = 13) with FS >40% (RSNA: +49 +/- 7 vs. +19 +/- 4 a.u., P < 0.01; LSNA: +28 +/- 7 vs. +8 +/- 2 a.u., P < 0.01) at the same tension development. Stretch also increased the RSNA and LSNA to a larger degree in MI (n = 13) than in control animals (n = 13) (RSNA: +36 +/- 6 vs. +19 +/- 3 a.u., P < 0.05; LSNA: +24 +/- 3 vs. +9 +/- 2 a.u., P < 0.01). The data demonstrate that CHF exaggerates sympathetic nerve responses to muscle contraction as well as stretch. We suggest that muscle afferent-mediated sympathetic outflows contribute to the abnormal regulation of peripheral blood flow seen during exercise in CHF.  相似文献   

14.
Vanilloid type 1 (VR-1) receptors are stimulated by capsaicin and hydrogen ions, the latter being a by-product of muscular contraction. We tested the hypothesis that activation of VR-1 receptors during static contraction contributes to the exercise pressor reflex. We established a dose of iodoresinaferatoxin (IRTX), a VR-1 receptor antagonist, that blocked the pressor response to capsaicin injected into the arterial supply of muscle. Specifically, in eight decerebrated cats, we compared pressor responses to capsaicin (10 mug) injected into the right popliteal artery, which was subsequently injected with IRTX (100 mug), with those to capsaicin injected into the left popliteal artery, which was not injected with IRTX. The pressor response to capsaicin injected into the right popliteal artery averaged 49 +/- 9 mmHg before IRTX and 9 +/- 2 mmHg after IRTX (P < 0.05). In contrast, the pressor response to capsaicin injected into the left popliteal artery averaged 46 +/- 10 mmHg "before" and 43 +/- 6 mmHg "after" (P > 0.05). We next determined whether VR-1 receptors mediated the pressor response to contraction of the triceps surae. During contraction without circulatory occlusion, the pressor response before IRTX (100 mug) averaged 26 +/- 3 mmHg, whereas it averaged 22 +/- 3 mmHg (P > 0.05) after IRTX (n = 8). In addition, during contraction with occlusion, the pressor responses averaged 35 +/- 3 mmHg before IRTX injection and 49 +/- 7 mmHg after IRTX injection (n = 7). We conclude that VR-1 receptors play little role in evoking the exercise pressor reflex.  相似文献   

15.
The exercise pressor reflex is evoked by both mechanical and metabolic stimuli. Tendon stretch does not increase muscle metabolism and therefore is used to investigate the mechanical component of the exercise pressor reflex. An important assumption underlying the use of tendon stretch to study the mechanical component of the exercise pressor reflex is that stretch stimulates the same group III mechanosensitive muscle afferents as does static contraction. We have tested the veracity of this assumption in decerebrated cats by comparing the responses of group III and IV muscle afferents to tendon stretch with those to static contraction. The tension-time indexes as well as the peak tension development for both maneuvers did not significantly differ. We found that static contraction of the triceps surae muscles stimulated 18 of 30 group III afferents and 8 of 11 group IV afferents. Similarly, tendon stretch stimulated 14 of 30 group III afferents and 3 of 11 group IV afferents. However, of the 18 group III afferents that responded to static contraction and the 14 group III afferents that responded to tendon stretch, only 7 responded to both stimuli. On average, the conduction velocities of the 18 group III afferents that responded to static contraction (11.6 +/- 1.6 m/s) were significantly slower (P = 0.03) than those of the 14 group III afferents that responded to tendon stretch (16.7 +/- 1.5 m/s). We have concluded that tendon stretch stimulated a different population of group III mechanosensitive muscle afferents than did static contraction. Although there is some overlap between the two populations of group III mechanosensitive afferents, it is not large, comprising less than half of the group III afferents responding to static contraction.  相似文献   

16.
Static contraction of skeletal muscle evokes increases in blood pressure and heart rate. Previous studies suggested that the dorsal horn of the spinal cord is the first synaptic site responsible for those cardiovascular responses. In this study, we examined the role of ATP-sensitive P2X receptors in the cardiovascular responses to contraction by microdialyzing the P2X receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) into the L7 level of the dorsal horn of nine anesthetized cats. Contraction was elicited by electrical stimulation of the L7 and S1 ventral roots. Blockade of P2X receptor attenuated the contraction induced-pressor response [change in mean arterial pressure (delta MAP): 16 +/- 4 mmHg after 10 mM PPADS vs. 42 +/- 8 mmHg in control; P < 0.05]. In addition, the pressor response to muscle stretch was also blunted by PPADS (delta MAP: 27 +/- 5 mmHg after PPADS vs. 49 +/- 8 mmHg in control; P < 0.05). Finally, activation of P2X receptor by microdialyzing 0.5 mM alpha,beta-methylene into the dorsal horn significantly augmented the pressor response to contraction. This effect was antagonized by prior PPADS dialysis. These data demonstrate that blockade of P2X receptors in the dorsal horn attenuates the pressor response to activation of muscle afferents and that stimulation of P2X receptors enhances the reflex response, indicating that P2X receptors play a role in mediating the muscle pressor reflex at the first synaptic site of this reflex.  相似文献   

17.
The present study was undertaken to test the hypothesis that activation of the muscle reflex elicits less sympathetic activation in skeletal muscle than in internal organs. In decerebrate rats, we examined renal and lumbar (mainly innervating hindlimb blood vessels) sympathetic nerve activities (RSNA and LSNA, respectively) during 1 min of 1) repetitive (1- to 4-s stimulation-to-relaxation) contraction of the triceps surae muscle, 2) repetitive tendon stretch, and 3) repetitive contraction with hindlimb circulatory occlusion. During these interventions, RSNA and LSNA responded synchronously as tension developed. The increase was greater in RSNA than in LSNA [+51 +/- 14 vs. +24 +/- 5% (P < 0.05) with contraction, +46 +/- 8 vs. +17 +/- 4% (P < 0.05) with stretch, +76 +/- 20 vs. 39 +/- 7% (P < 0.05) with contraction during occlusion] during all three interventions: repetitive contraction (n = 10, +508 +/- 48 g tension from baseline), tendon stretch (n = 12, +454 +/- 34 g), and contraction during occlusion (n = 9, +473 +/- 33 g). Additionally, hindlimb circulatory occlusion significantly enhanced RSNA and LSNA responses to contraction. These data demonstrate that RSNA responses to muscle contraction and stretch are greater than LSNA responses. We suggest that activation of the muscle afferents induces the differential sympathetic outflow that is directed toward the kidney as opposed to the limbs. This differential outflow contributes to the distribution of cardiac output observed during exercise. We further suggest that as exercise proceeds, muscle metabolites produced in contracting muscle sensitize muscle afferents and enhance sympathetic drive to limbs and renal beds.  相似文献   

18.
Reflex cardiovascular responses to muscle contraction are mediated by mechanical and metabolic stimulation of thin muscle afferent fibers. Metabolic stimulants and receptors involved in responses are uncertain. Capsaicin depolarizes thin sensory afferent nerves that have vanilloid type 1 receptors (VR1). Among potential endogenous ligands of thin fibers, H+ has been suggested as a metabolite mediating the reflex muscle response as well as a potential stimulant of VR1. It has also been suggested that acid-sensing ion channels (ASIC) mediate H+, evoking afferent nerve excitation. We have examined the roles of VR1 and ASIC in mediating cardiovascular reflex responses to acid stimulation of muscle afferents in a rat model. In anesthetized rats, injections of capsaicin into the arterial blood supply of triceps surae muscles evoked a biphasic response (n = 6). An initial fall in mean arterial pressure (from baseline of 95.8 +/- 9.5 to 70.4 +/- 4.5 mmHg, P < 0.05 vs. baseline) was followed by an increase (to 131.6 +/- 11.3 mmHg, P < 0.05 vs. baseline). Anandamide (an endogenous substance that activates VR1) induced the same change in blood pressure as did capsaicin. The pressor (but not depressor) component of the response was blocked by capsazepine (a VR1 antagonist) and section of afferent nerves. In decerebrate rats (n = 8), H+ evoked a pressor response that was not blocked by capsazepine but was attenuated by amiloride (an ASIC blocker). In rats (n = 12) pretreated with resiniferatoxin to destroy muscle afferents containing VR1, capsaicin and H+ responses were blunted. We conclude that H+ stimulates ASIC, evoking the reflex response, and that ASIC are likely to be frequently found on afferents containing VR1. The data also suggest that VR1 and ASIC may play a role in processing of muscle afferent signals, evoking the muscle pressor reflex.  相似文献   

19.
Five healthy men carried out a program of head-down bed rest (BR) for 20 days. Before and after BR, a series of cross-sectional scans of the thigh were performed using magnetic resonance imaging, from which volumes of the quadriceps muscles were determined and physiological cross-sectional areas (PCSA) were calculated. Muscle thickness and pennation angles of the triceps brachii, vastus lateralis, and triceps surae muscles were also determined by ultrasonography. During BR, subjects performed unilateral isokinetic knee extension exercises every day. The contralateral limb served as a control. Decrease in PCSA after BR was greater in the control (-10.2 +/- 6.3%) than in the trained limb (-5.2 +/- 4.2%). Among the quadriceps, vastus intermedius in the control limb was predominantly atrophied by BR with respect to the volume and PCSA, and the rectus femoris showed the greatest training effect and retained its size in the trained limb. Decreases in muscle thicknesses in leg muscles were not prevented by the present exercise protocol, suggesting a need for specific exercise training for these muscles. Neither trained nor control muscles showed significant changes in pennation angles in any muscles after BR, suggesting that muscle architecture does not change remarkably by muscle atrophy by up to 10%.  相似文献   

20.
The finding that pyridoxalphosphate-6-azophenyl-2,4-disulfonic acid (PPADS), a P2 antagonist, attenuated the pressor response to calcaneal tendon stretch, a purely mechanical stimulus, raises the possibility that P2 receptors sensitize mechanoreceptors to static contraction of the triceps surae muscles. The mechanical component of the exercise pressor reflex, which is evoked by static contraction, can be assessed by measuring renal sympathetic nerve activity during the first 2-5 s of this maneuver. During this period of time, group III mechanoreceptors often discharge explosively in response to the sudden tension developed at the onset of contraction. In decerebrated cats, we, therefore, examined the effect of PPADS (10 mg/kg) injected into the popliteal artery on the renal sympathetic and pressor responses to contraction and stretch. We found that PPADS significantly attenuated the renal sympathetic response to contraction, with the effect starting 2 s after its onset and continuing throughout its 60-s period. PPADS also significantly attenuated the renal sympathetic nerve response to stretch, but did so after a latency of 10 s. Our findings lead us to conclude that P2 receptors sensitize group III muscle afferents to contraction. The difference in the onset latency between the PPADS-induced attenuation of the renal sympathetic response to contraction and the renal sympathetic response to stretch is probably due to the sensitivities of different populations of group III afferents to ATP released during contraction and stretch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号