首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee EK  Park T 《Bioinformation》2007,1(10):423-428
In microarray experiments many undesirable systematic variations are commonly observed. Often investigators analyzing microarray data need to make subjective decisions about the quality of the experiment, by examining its chip image and a simple scatter plot. Thus, a more rigorous but simple method is desirable to determine the quality of microarray data. We propose two exploratory methods to investigate the quality of microarray experiments with replicated chips. The first method is based on correlations among chips and the second on the actual intensity values for each gene. The proposed methods are illustrated using a real microarray data set. The methods provide an initial estimation for determining the quality of microarray experiments.  相似文献   

2.

Background  

The antibody microarray technique is a newly emerging proteomics tool for differential protein expression analyses that uses fluorescent dyes Cy 3 and Cy 5. Environmental factors, such as light exposure, can affect the signal intensity of fluorescent dyes on microarray slides thus, it is logical to scan microarray slides immediately after the final wash and drying processes. However, no research data are available concerning time-dependent changes of fluorescent signals on antibody microarray slides to this date. In the present study, microarray slides were preserved at -20°C after regular microarray experiments and were rescanned at day 10, 20 and 30 to evaluate change in signal intensity.  相似文献   

3.
Wang Y 《Proteomics》2004,4(1):20-26
The availability of a large number of biological materials such as cDNA, antibodies, recombinant proteins, and tissues has promoted the development of microarray technologies that make use of these materials in high-throughput screening assays. However, because microarray technologies have been less successful in examining proteins than DNA and mRNA, there is a need for improved protein microarray systems. To address this need, we developed an antibody microarray-based immunostaining method that can analyze the properties of a large number of proteins simultaneously. In this method, antibodies are arrayed and immobilized on a solid support and cells bearing antigens of interest are attached to a second support. Apposition of the two supports allows the antibodies to dissociate from the array support and bind to the cellular antigens. After separation of the supports, antigen-bound antibodies can be detected by standard secondary antibody techniques. These "dissociable" antibody arrays were used to detect both the expression and subcellular localization of a large number of specific proteins in various cultured cell types.  相似文献   

4.
We have developed a sensitive method for the detection of recombinant antibody-antigen interactions in a microarray format. The biochip sensor platform used in this study is based on an oriented streptavidin monolayer that provides a biological interface with well-defined surface architecture that dramatically reduces nonspecific binding interactions. All the antibody or antigen probes were biotinylated and coupled onto streptavidin-coated biochip surfaces (1 microL total volume). The detection limits for the immobilized probes on the microarray surface were 0.5 microgram/mL (200 fmol/spot) for the peptide antigen and 0.1 microgram/mL (3 fmol/spot) for the recombinant antibodies. Optimal concentrations for the detection of the Cy5-labeled protein target were in the range of 20 micrograms/mL. Protein microchips were used to measure antibody-antigen kinetics, to find optimal temperature conditions, and to establish the shelf life of recombinant antibodies immobilized on the streptavidin surface. For recombinant antibody fragments with a kDa of 10-100 nM, we have established an easy and direct immunoassay. In addition, we developed an indirect method for antibody detection with no need for expensive and time-consuming antibody purifications and modifications. Such a method was shown to be useful for large-scale screening of recombinant antibody fragments directly after their functional expression in bacteria. Our data demonstrate that recombinant antibody fragments are suitable components in the construction of antibody chips.  相似文献   

5.
A class of nonparametric statistical methods, including a nonparametric empirical Bayes (EB) method, the Significance Analysis of Microarrays (SAM) and the mixture model method (MMM) have been proposed to detect differential gene expression for replicated microarray experiments. They all depend on constructing a test statistic, for example, a t-statistic, and then using permutation to draw inferences. However, due to special features of microarray data, using standard permutation scores may not estimate the null distribution of the test statistic well, leading to possibly too conservative inferences. We propose a new method of constructing weighted permutation scores to overcome the problem: posterior probabilities of having no differential expression from the EB method are used as weights for genes to better estimate the null distribution of the test statistic. We also propose a weighted method to estimate the false discovery rate (FDR) using the posterior probabilities. Using simulated data and real data for time-course microarray experiments, we show the improved performance of the proposed methods when implemented in MMM, EB and SAM.  相似文献   

6.
基于总体最小二乘方法的基因表达缺失数据估计   总被引:2,自引:0,他引:2  
在基因芯片实验中,数据缺失客观存在,并在一定程度上影响芯片数据后续分析结果的准确性。在不增加实验次数的情况下,缺失值估计是降低缺失数据对后续分析影响的有效方法。针对基因表达数据含有噪声的特点,提出了基于总体最小二乘估计的基因表达缺失值估计算法。实验结果表明,新的估计算法具有比传统缺失值估计算法更好的稳定性和估计准确度。  相似文献   

7.
Darvish A  Najarian K 《Bio Systems》2006,83(2-3):125-135
We propose a novel technique that constructs gene regulatory networks from DNA microarray data and gene-protein databases and then applies Mason rule to systematically search for the most dominant regulators of the network. The algorithm then recommends the identified dominant regulator genes as the best candidates for future knock-out experiments. Actively choosing the genes for knock-out experiments allows optimal perturbation of the pathway and therefore produces the most informative DNA microarray data for pathway identification purposes. This approach is more practically advantageous in analysis of large pathways where the time and cost of DNA microarray data experiments can be reduced using the proposed optimal experiment design. The proposed method was successfully tested on the galactose regulatory network.  相似文献   

8.
MOTIVATION: The parametric F-test has been widely used in the analysis of factorial microarray experiments to assess treatment effects. However, the normality assumption is often untenable for microarray experiments with small replications. Therefore, permutation-based methods are called for help to assess the statistical significance. The distribution of the F-statistics across all the genes on the array can be regarded as a mixture distribution with a proportion of statistics generated from the null distribution of no differential gene expression whereas the other proportion of statistics generated from the alternative distribution of genes differentially expressed. This results in the fact that the permutation distribution of the F-statistics may not approximate well to the true null distribution of the F-statistics. Therefore, the construction of a proper null statistic to better approximate the null distribution of F-statistic is of great importance to the permutation-based multiple testing in microarray data analysis. RESULTS: In this paper, we extend the ideas of constructing null statistics based on pairwise differences to neglect the treatment effects from the two-sample comparison problem to the multifactorial balanced or unbalanced microarray experiments. A null statistic based on a subpartition method is proposed and its distribution is employed to approximate the null distribution of the F-statistic. The proposed null statistic is able to accommodate unbalance in the design and is also corrected for the undue correlation between its numerator and denominator. In the simulation studies and real biological data analysis, the number of true positives and the false discovery rate (FDR) of the proposed null statistic are compared with those of the permutated version of the F-statistic. It has been shown that our proposed method has a better control of the FDRs and a higher power than the standard permutation method to detect differentially expressed genes because of the better approximated tail probabilities.  相似文献   

9.
A key step in the analysis of microarray data is the selection of genes that are differentially expressed. Ideally, such experiments should be properly replicated in order to infer both technical and biological variability, and the data should be subjected to rigorous hypothesis tests to identify the differentially expressed genes. However, in microarray experiments involving the analysis of very large numbers of biological samples, replication is not always practical. Therefore, there is a need for a method to select differentially expressed genes in a rational way from insufficiently replicated data. In this paper, we describe a simple method that uses bootstrapping to generate an error model from a replicated pilot study that can be used to identify differentially expressed genes in subsequent large-scale studies on the same platform, but in which there may be no replicated arrays. The method builds a stratified error model that includes array-to-array variability, feature-to-feature variability and the dependence of error on signal intensity. We apply this model to the characterization of the host response in a model of bacterial infection of human intestinal epithelial cells. We demonstrate the effectiveness of error model based microarray experiments and propose this as a general strategy for a microarray-based screening of large collections of biological samples.  相似文献   

10.
MOTIVATION: There is currently much interest in reverse-engineering regulatory relationships between genes from microarray expression data. We propose a new algorithmic method for inferring such interactions between genes using data from gene knockout experiments. The algorithm we use is the Sparse Bayesian regression algorithm of Tipping and Faul. This method is highly suited to this problem as it does not require the data to be discretized, overcomes the need for an explicit topology search and, most importantly, requires no heuristic thresholding of the discovered connections. RESULTS: Using simulated expression data, we are able to show that this algorithm outperforms a recently published correlation-based approach. Crucially, it does this without the need to set any ad hoc threshold on possible connections.  相似文献   

11.
12.
Cluster analysis has proven to be a useful tool for investigating the association structure among genes in a microarray data set. There is a rich literature on cluster analysis and various techniques have been developed. Such analyses heavily depend on an appropriate (dis)similarity measure. In this paper, we introduce a general clustering approach based on the confidence interval inferential methodology, which is applied to gene expression data of microarray experiments. Emphasis is placed on data with low replication (three or five replicates). The proposed method makes more efficient use of the measured data and avoids the subjective choice of a dissimilarity measure. This new methodology, when applied to real data, provides an easy-to-use bioinformatics solution for the cluster analysis of microarray experiments with replicates (see the Appendix). Even though the method is presented under the framework of microarray experiments, it is a general algorithm that can be used to identify clusters in any situation. The method's performance is evaluated using simulated and publicly available data set. Our results also clearly show that our method is not an extension of the conventional clustering method based on correlation or euclidean distance.  相似文献   

13.

Background

Processing cDNA microarray images is a crucial step in gene expression analysis, since any errors in early stages affect subsequent steps, leading to possibly erroneous biological conclusions. When processing the underlying images, accurately separating the sub-grids and spots is extremely important for subsequent steps that include segmentation, quantification, normalization and clustering.

Results

We propose a parameterless and fully automatic approach that first detects the sub-grids given the entire microarray image, and then detects the locations of the spots in each sub-grid. The approach, first, detects and corrects rotations in the images by applying an affine transformation, followed by a polynomial-time optimal multi-level thresholding algorithm used to find the positions of the sub-grids in the image and the positions of the spots in each sub-grid. Additionally, a new validity index is proposed in order to find the correct number of sub-grids in the image, and the correct number of spots in each sub-grid. Moreover, a refinement procedure is used to correct possible misalignments and increase the accuracy of the method.

Conclusions

Extensive experiments on real-life microarray images and a comparison to other methods show that the proposed method performs these tasks fully automatically and with a very high degree of accuracy. Moreover, unlike previous methods, the proposed approach can be used in various type of microarray images with different resolutions and spot sizes and does not need any parameter to be adjusted.  相似文献   

14.
Park T  Yi SG  Lee S  Lee JK 《BioTechniques》2005,38(3):463-471
Different sources of systematic and random error variations are often observed in cDNA microarray experiments. A simple scatter plot is commonly used to examine outlying slides that have unusual expression patterns or larger variability than other slides. These outlying slides tend to have large impacts on the subsequent analyses, such as identification of differentially expressed genes and clustering analysis. However, it is difficult to select outlying slides rigorously and consistently based on subjective human pattern recognition on their scatter plots. A graphical method and a rigorous diagnostic measure are proposed to detect outlying slides. The proposed graphical method is easy to implement and shown to be quite effective in detecting outlying slides in real microarray data sets. This diagnostic measure is also informative to compare variability among slides. Two cDNA microarray data sets are carefully examined to illustrate the proposed approach. A 3840-gene microarray experiment for neuronal differentiation of cortical stem cells and a 2076-gene microarray experiment for anticancer compound time-course expression of the NCI-60 cancer cell lines.  相似文献   

15.
Identifying differentially expressed (DE) genes across conditions or treatments is a typical problem in microarray experiments. In time course microarray experiments (under two or more conditions/treatments), it is sometimes of interest to identify two classes of DE genes: those with no time-condition interactions (called parallel DE genes, or PDE), and those with time-condition interactions (nonparallel DE genes, NPDE). Although many methods have been proposed for identifying DE genes in time course experiments, methods for discerning NPDE genes from the general DE genes are still lacking. We propose a functional ANOVA mixed-effect model to model time course gene expression observations. The fixed effect of (the mean curve) of the model decomposes bivariate functions of time and treatments (or experimental conditions) as in the classic ANOVA method and provides the associated notions of main effects and interactions. Random effects capture time-dependent correlation structures. In this model, identifying NPDE genes is equivalent to testing the significance of the time-condition interaction, for which an approximate F-test is suggested. We examined the performance of the proposed method on simulated datasets in comparison with some existing methods, and applied the method to a study of human reaction to the endotoxin stimulation, as well as to a cell cycle expression data set.  相似文献   

16.
Haab BB 《Proteomics》2003,3(11):2116-2122
Antibody microarrays have great potential for significant value in biological research. Cancer research in particular could benefit from the unique experimental capabilities of this technology. This article examines the current state of antibody microarray technological developments and assay formats, along with a review of the demonstrated applications to cancer research. Work is ongoing in the refinement of various aspects of the protocols and the development of robust methods for routine use. Antibody microarray experimental formats can be broadly categorized into two classes: (1) direct labeling experiments, and (2) dual antibody sandwich assays. In the direct labeling method, the covalent labeling of all proteins in a complex mixture provides a means for detecting bound proteins after incubation on an antibody microarray. If proteins are labeled with a tag, such as biotin, the signal from bound proteins can be amplified. In the sandwich assay, proteins captured on an antibody microarray are detected by a cocktail of detection antibodies, each antibody matched to one of the spotted antibodies. Each format has distinct advantages and disadvantages. Several applications of antibody arrays to cancer research have been reported, including the analysis of proteins in blood serum, resected frozen tumors, cell lines, and on membranes of blood cells. These demonstrations clearly show the utility of antibody microarrays for cancer research and signal the imminent expansion of this platform to many areas of biological research.  相似文献   

17.
The major goal of two-color cDNA microarray experiments is to measure the relative gene expression level (i.e., relative amount of mRNA) of each gene between samples in studies of gene expression. More specifically, given an N-sample experiment, we need all N(N - 1)/2 relative expression levels of all sample pairs of each gene for identification of the differentially expressed genes and for clustering of gene expression patterns. However, the intensities observed from two-color cDNA microarray experiments do not simply represent the relative gene expression level. They are composed of signal (gene expression level), noise, and other factors. In discussions on the experimental design of two-color cDNA microarray experiments, little attention has been given to the fact that different combinations of test and control samples will produce microarray intensities data with varying intrinsic composition of factors. As a consequence, not all experimental designs for two-color cDNA microarray experiments are able to provide all possible relative gene expression levels. This phenomenon has never been addressed. To obtain all possible relative gene expression levels, a novel method for two-color cDNA microarray experimental design evaluation is necessary that will allow the making of an accurate choice. In this study, we propose a model-based approach to illustrate how the factor composition of microarray intensities changed with different experimental designs in two-color cDNA microarray experiments. By analyzing 12 experimental designs (including 5 general forms), we demonstrate that not all experimental designs are able to provide all possible relative gene expression levels due to the differences in factor composition. Our results indicate that whether an experimental design can provide all possible relative expression levels of all sample pairs for each gene should be the first criterion to be considered in an evaluation of experimental designs for two-color cDNA microarray experiments.  相似文献   

18.
Microarrays are a powerful tool for comparison and understanding of gene expression levels in healthy and diseased states. The method relies upon the assumption that signals from microarray features are a reflection of relative gene expression levels of the cell types under investigation. It has previously been reported that the classical fluorescent dyes used for microarray technology, Cy3 and Cy5, are not ideal due to the decreased stability and fluorescence intensity of the Cy5 dye relative to the Cy3, such that dye bias is an accepted phenomena necessitating dye swap experimental protocols and analysis of differential dye affects. The incentive to find new fluorophores is based on alleviating the problem of dye bias through synonymous performance between counterpart dyes. Alexa Fluor 555 and Alexa Fluor 647 are increasingly promoted as replacements for CyDye in microarray experiments. Performance relates to the molecular and steric similarities, which will vary for each new pair of dyes as well as the spectral integrity for the specific application required. Comparative analysis of the performance of these two competitive dye pairs in practical microarray applications is warranted towards this end. The findings of our study showed that both dye pairs were comparable but that conventional CyDye resulted in significantly higher signal intensities (P < 0.05) and signal minus background levels (P < 0.05) with no significant difference in background values (P > 0.05). This translated to greater levels of differential gene expression with CyDye than with the Alexa Fluor counterparts. However, CyDye fluorophores and in particular Cy5, were found to be less photostable over time and following repeated scans in microarray experiments. These results suggest that precautions against potential dye affects will continue to be necessary and that no one dye pair negates this need.  相似文献   

19.
To obtain predictive genes with lower redundancy and better interpretability, a hybrid gene selection method encoding prior information is proposed in this paper. To begin with, the prior information referred to as gene-to-class sensitivity (GCS) of all genes from microarray data is exploited by a single hidden layered feedforward neural network (SLFN). Then, to select more representative and lower redundant genes, all genes are grouped into some clusters by K-means method, and some low sensitive genes are filtered out according to their GCS values. Finally, a modified binary particle swarm optimization (BPSO) encoding the GCS information is proposed to perform further gene selection from the remainder genes. For considering the GCS information, the proposed method selects those genes highly correlated to sample classes. Thus, the low redundant gene subsets obtained by the proposed method also contribute to improve classification accuracy on microarray data. The experiments results on some open microarray data verify the effectiveness and efficiency of the proposed approach.  相似文献   

20.
The sandwich microarray immunoassay (SMI) is a powerful technique for the analysis and characterization of environmental samples, from the identification of microorganisms to specific bioanalytes. As the number of antibodies increases, however, unspecific binding and cross-reactivity can become a problem. To cope with such difficulties, we present here the concept of antibody graph associated to a sandwich antibody microarray. Antibody graphs give valuable information about the antibody cross-reactivity network and all the players involved in the sandwich format: capturing and tracer antibodies, the antigenic sample and the degree of cross-reactivity between antibodies. Making use of the information contained in the antibody graph, we have developed a deconvolution method that disentangles the antibody cross-reactivity events and gives qualitative information about the composition of the experimental sample under study. We have validated the method by using a 66 antibody-containing microarray to describe known antigenic mixtures as well as natural environmental samples characterized by 16S-RNA gene phylogenetic analysis. The application of our antibody graph and deconvolution method allowed us to discriminate between true specific antigen-antibody reactions and spurious signals on a microarray designed for environmental monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号