首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The monohemic cytochrome c552from Pseudomonas nautica (c552-Pn) is thought to be the electron donor to cytochrome cd1, the so-called nitrite reductase (NiR). It shows as high levels of activity and affinity for the P. nautica NiR (NiR-Pn), as the Pseudomonas aeruginosa enzyme (NiR-Pa). Since cytochrome c552is by far the most abundant electron carrier in the periplasm, it is probably involved in numerous other reactions. Its sequence is related to that of the c type cytochromes, but resembles that of the dihemic c4cytochromes even more closely.The three-dimensional structure of P. nautica cytochrome c552has been solved to 2.2 A resolution using the multiple wavelength anomalous dispersion (MAD) technique, taking advantage of the presence of the eight Fe heme ions in the asymmetric unit. Density modification procedures involving 4-fold non-crystallographic averaging yielded a model with an R -factor value of 17.8 % (Rfree=20.8 %). Cytochrome c552forms a tight dimer in the crystal, and the dimer interface area amounts to 19% of the total cytochrome surface area. Four tighly packed dimers form the eight molecules of the asymmetric unit.The c552dimer is superimposable on each domain of the monomeric cytochrome c4from Pseudomomas stutzeri (c4-Ps), a dihemic cytochrome, and on the dihemic c domain of flavocytochrome c of Chromatium vinosum (Fcd-Cv). The interacting residues which form the dimer are both similar in character and position, which is also true for the propionates. The dimer observed in the crystal also exists in solution. It has been hypothesised that the dihemic c4-Ps may have evolved via monohemic cytochrome c gene duplication followed by evolutionary divergence and the adjunction of a connecting linker. In this process, our dimeric c552structure might be said to constitute a "living fossile" occurring in the course of evolution between the formation of the dimer and the gene duplication and fusion. The availability of the structure of the cytochrome c552-Pn and that of NiR from P. aeruginosa made it possible to identify putative surface patches at which the docking of c552to NiR-Pn may occur.  相似文献   

2.
With the use of proton-proton Overhauser enhancement experiment the spatial arrangement relative to the heme group of amino acid side chains in the heme crevice of horse ferrocytochrome c and ferrocytochrome c-552 from euglena gracilis was investigated. From these data and the known crystal structure for mammalian cytochromes c, individual assignments were obtained for several aromatic residues in horse ferrocytochrome c. This then provided a basis for delineating homologies between the polypeptide conformations near the heme group in horse ferrocytochrome c and ferrocytochrome c-552, for which no crystal structure has as yet been described.  相似文献   

3.
Unique among sulphate-reducing bacteria, Desulfovibrio africanus has two periplasmic tetraheme cytochromes c3, one with an acidic isoelectric point which exhibits an unusually low reactivity towards hydrogenase, and another with a basic isoelectric point which shows the usual cytochrome c3reactivity. The crystal structure of the oxidised acidic cytochrome c3of Desulfovibrio africanus (Dva.a) was solved by the multiple anomalous diffraction (MAD) method and refined to 1.6 A resolution. Its structure clearly belongs to the same family as the other known cytochromes c3, but with weak parentage with those of the Desulfovibrio genus and slightly closer to the cytochromes c3of Desulfomicrobium norvegicum. In Dva.a, one edge of heme I is completely exposed to the solvent and surrounded by a negatively charged protein surface. Heme I thus seems to play an important role in electron exchange, in addition to heme III or heme IV which are the electron exchange ports in the other cytochromes c3. The function of Dva.a and the nature of its redox partners in the cell are thus very likely different.By alignment of the seven known 3D structures including Dva.a, it is shown that the structure which is most conserved in all cytochromes c3is the four-heme cluster itself. There is no conserved continuous protein structure which could explain the remarkable invariance of the four-heme cluster. On the contrary, the proximity of the heme edges is such that they interact directly by hydrophobic and van der Waals contacts. This direct interaction, which always involves a pyrrole CA-CB side-chain and its bound protein cysteine Sgammaatom, is probably the main origin of the four-heme cluster stability. The same kind of interaction is found in the chaining of the hemes in other multihemic redox proteins.The crystal structure of reduced Dva. a was solved at 1.9 A resolution. The comparison of the oxidised and reduced structures reveals changes in the positions of water molecules and polar residues which probably result from changes in the protonation state of amino acids and heme propionates. Water molecules are found closer to the hemes and to the iron atoms in the reduced than in the oxidised state. A global movement of a chain fragment in the vicinity of hemes III and IV is observed which result very likely from the electrostatic reorganization of the polypeptide chain induced by reduction.  相似文献   

4.
This article reports the first X-ray structure of the soluble form of a c-type cytochrome isolated from a Gram-positive bacterium. Bacillus pasteurii cytochrome c(553), characterized by a low reduction potential and by a low sequence homology with cytochromes from Gram-negative bacteria or eukaryotes, is a useful case study for understanding the structure-function relationships for this class of electron-transfer proteins. Diffraction data on a single crystal of cytochrome c(553) were obtained using synchrotron radiation at 100 K. The structure was determined at 0.97-A resolution using ab initio phasing and independently at 1.70 A in an MAD experiment. In both experiments, the structure solution exploited the presence of a single Fe atom as anomalous scatterer in the protein. For the 0.97-A data, the phasing was based on a single data set. This is the most precise structure of a heme protein to date. The crystallized cytochrome c(553) contains only 71 of the 92 residues expected from the intact protein sequence, lacking the first 21 amino acids at the N-terminus. This feature is consistent with previous evidence that this tail, responsible for anchoring the protein to the cytoplasm membrane, is easily cleaved off during the purification procedure. The heme prosthetic group in B. pasteurii cytochrome c(553) is surrounded by three alpha-helices in a compact arrangement. The largely exposed c-type heme group features a His-Met axial coordination of the Fe(III) ion. The protein is characterized by a very asymmetric charge distribution, with the exposed heme edge located on a surface patch devoid of net charges. A structural search of a representative set of protein structures reveals that B. pasteurii cytochrome c(553) is most similar to Pseudomonas cytochromes c(551), followed by cytochromes c(6), Desulfovibrio cytochrome c(553), cytochromes c(552) from thermophiles, and cytochromes c from eukaryotes. Notwithstanding a low sequence homology, a structure-based alignment of these cytochromes shows conservation of three helical regions, with different additional secondary structure motifs characterizing each protein. In B. pasteurii cytochrome c(553), these motifs are represented by the shortest interhelix connecting fragments observed for this group of proteins. The possible relationships between heme solvent accessibility and the electrochemical reduction potential are discussed.  相似文献   

5.
The crystal structure of the soluble domain of the membrane bound cytochrome c(552) (cytochrome c(552)') from Paracoccus denitrificans was determined using the multiwavelength anomalous diffraction technique and refined at 1.5 A resolution for the oxidized and at 1. 4 A for the reduced state. This is the first high-resolution crystal structure of a cytochrome c at low ionic strength in both redox states. The atomic model allowed for a detailed assessment of the structural properties including the secondary structure, the heme geometry and interactions, and the redox-coupled structural changes. In general, the structure has the same features as that of known eukaryotic cytochromes c. However, the surface properties are very different. Cytochrome c(552)' has a large strongly negatively charged surface part and a smaller positively charged area around the solvent-exposed heme atoms. One of the internal water molecules conserved in all structures of eukaryotic cytochromes c is also present in this bacterial cytochrome c. It contributes to the interactions between the side-chain of Arg36 and the heme propionate connected to pyrrole ring A. Reduction of the oxidized crystals does not influence the conformation of cytochrome c(552)' in contrast to eukaryotic cytochromes c. The oxidized cytochrome c(552)', especially the region of amino acid residues 40 to 56, appears to be more flexible than the reduced one.  相似文献   

6.
Cytochrome c(552) (PH c(552)) from moderately thermophilic Hydrogenophilus thermoluteolus exhibits stability intermediate between those of cytochrome c(552) (HT c(552)) from thermophilic Hydrogenobacter thermophilus and cytochrome c(551) (PA c(551)) from mesophilic Pseudomonas aeruginosa. To understand the mechanism of stabilization of PH c(552), we introduced mutations into PH c(552) at five sites, which, in HT c(552), are occupied by the amino acids responsible for stability higher than the less stable PA c(551). When PH c(552) Val-78 was mutated to Ile, as found in HT c(552), the resulting variant showed increased stability. Mutation of Ala-7, Met-13, and Tyr-34 to the corresponding residues in PA c(551) (Phe, Val, and Phe, respectively) resulted in destabilization. We also found that PH c(552) Lys-43 contributed to stability through the formation of an attractive electrostatic interaction with Asp-39. These results suggest that the intermediate stability of PH c(552) is due to the amino acids at these five sites.  相似文献   

7.
Mesophilic cytochrome c(551) of Pseudomonas aeruginosa (PA c(551)) became as stable as its thermophilic counterpart, Hydrogenobacter thermophilus cytochrome c(552) (HT c(552)), through only five amino acid substitutions. The five residues, distributed in three spatially separated regions, were selected and mutated with reference to the corresponding residues in HT c(552) through careful structure comparison. Thermodynamic analysis indicated that the stability of the quintuple mutant of PA c(551) could be partly attained through an enthalpic factor. The solution structure of the mutant showed that, as in HT c(552), there were tighter side chain packings in the mutated regions. Furthermore, the mutant had an increased total accessible surface area, resulting in great negative hydration free energy. Our results provide a novel example of protein stabilization in that limited amino acid substitutions can confer the overall stability of a natural highly thermophilic protein upon a mesophilic molecule.  相似文献   

8.
Multiheme cytochromes c are important in electron transfer pathways in reduction of both soluble and insoluble Fe(III) by Geobacter sulfurreducens. We determined the crystal structure at 3.2? resolution of the first dodecaheme cytochrome c (GSU1996) along with its N-terminal and C-terminal hexaheme fragments at 2.6 and 2.15? resolution, respectively. The macroscopic reduction potentials of the full-length protein and its fragments were measured. The sequence of GSU1996 can be divided into four c(7)-type domains (A, B, C and D) with homology to triheme cytochromes c(7). In cytochromes c(7) all three hemes are bis-His coordinated, whereas in c(7)-type domains the last heme is His-Met coordinated. The full-length GSU1996 has a 12nm long crescent shaped structure with the 12 hemes arranged along a polypeptide to form a "nanowire" of hemes; it has a modular structure. Surprisingly, while the C-terminal half of the protein consists of two separate c(7)-type domains (C and D) connected by a small linker, the N-terminal half of the protein has two c(7)-type domains (A and B) that form one structural unit. This is also observed in the AB fragment. There is an unexpected interaction between the hemes at the interface of domains A and B, which form a heme-pair with nearly parallel stacking of their porphyrin rings. The hemes adjacent to each other throughout the protein are within van der Waals distance which enables efficient electron exchange between them. For the first time, the structural details of c(7)-type domains from one multiheme protein were compared.  相似文献   

9.
Thermal stability was measured for variants of cytochrome c-551 (PA c-551) from a mesophile, Pseudomonas aeruginosa, and a thermophilic counterpart, Hydrogenobacter thermophilus cytochrome c-552 (HT c-552), by differential scanning calorimetry (DSC) at pH 3.6. The mutated residues in PA c-551, selected with reference to the corresponding residues in HT c-552, were located in three spatially separated regions: region I, Phe7 to Ala/Val13 to Met; region II, Glu34 to Tyr/Phe43 to Tyr; and region III, Val78 to Ile. The thermodynamic parameters determined indicated that the mutations in regions I and III caused enhanced stability through not only enthalpic but also entropic contributions, which reflected improved packing of the side chains. Meanwhile, the mutated region II made enthalpic contributions to the stability through electrostatic interactions. The obtained differences in the Gibbs free energy changes of unfolding [Delta(DeltaG)] showed that the three regions contributed to the overall stability in an additive manner. HT c-552 had the smallest heat capacity change (DeltaC(P)), resulting in higher DeltaG values over a wide temperature range (0-100 degrees C), compared to the PA c-551 variants; this contributed to the highest stability of HT c-552. Our DSC measurement results, in conjunction with mutagenesis and structural studies on the homologous mesophilic and thermophilic cytochromes c, provided an extended thermodynamic view of protein stabilization.  相似文献   

10.
A heterologous overexpression system for mesophilic Pseudomonas aeruginosa holocytochrome c(551) (PA c(551)) was established using Escherichia coli as a host organism. Amino acid residues were systematically substituted in three regions of PA c(551) with the corresponding residues from thermophilic Hydrogenobacter thermophilus cytochrome c(552) (HT c(552)), which has similar main chain folding to PA c(551), but is more stable to heat. Thermodynamic properties of PA c(551) with one of three single mutations (Phe-7 to Ala, Phe-34 to Tyr, or Val-78 to Ile) showed that these mutants had increased thermostability compared with that of the wild-type. Ala-7 and Ile-78 may contribute to the thermostability by tighter hydrophobic packing, which is indicated by the three dimensional structure comparison of PA c(551) with HT c(552). In the Phe-34 to Tyr mutant, the hydroxyl group of the Tyr residue and the guanidyl base of Arg-47 formed a hydrogen bond, which did not exist between the corresponding residues in HT c(552). We also found that stability of mutant proteins to denaturation by guanidine hydrochloride correlated with that against the thermal denaturation. These results and others described here suggest that significant stabilization of PA c(551) can be achieved through a few amino acid substitutions determined by molecular modeling with reference to the structure of HT c(552). The higher stability of HT c(552) may in part be attributed to some of these substitutions.  相似文献   

11.
The complete amino acid sequence of a 26-kDa low redox potential cytochrome c-551 from Rhodocyclus tenuis was determined by a combination of Edman degradation and mass spectrometry. There are 240 residues including two heme binding sites at positions 41, 44, 128, and 132. There is no evidence for gene doubling. The only known homolog of Rc. tenuis cytochrome c-551 is the diheme cytochrome c-552 from Pseudomonas stutzeri which contains 268 residues and heme binding sites at nearly identical positions. There is 44% overall identity between the Rc. tenuis and Ps. stutzeri cytochromes with 10 internal insertions and deletions. The Ps. stutzeri cytochrome is part of a denitrification gene cluster, whereas Rc. tenuis is incapable of denitrification, suggesting different functional roles for the cytochromes. Histidines at positions 45 and 133 are the fifth heme ligands and conserved histidines at positions 29, 209, and 218 and conserved methionines at positions 114 and 139 are potential sixth heme ligands. There is no obvious homology to the low-potential diheme cytochromes characterized from other purple bacterial species such as Rhodobacter sphaeroides. There are therefore at least two classes of low-potential diheme cytochromes c found in phototrophic bacteria. There is no more than 11% helical secondary structure in Rc. tenuis cytochrome c-551 suggesting that there is no relationship to class I or class II c-type cytochromes.  相似文献   

12.
The complete amino acid sequence of the 86-residue heme subunit of flavocytochrome c (sulfide dehydrogenase) from the green phototrophic bacterium Chlorobium thiosulfatophilum strain Tassajara has been determined as follows: APEQSKSIPRGEILSLSCAGCHGTDGKSESIIPTIYGRSAEYIESALLDFKSGA- RPSTVMGRHAKGYSDEEIHQIAEYFGSLSTMNN. The subunit has a single heme-binding site near the N terminus, consisting of a pair of cysteine residues at positions 18 and 21. The out-of-plane ligands are apparently contributed by histidine 22 and methionine 60. The molecular weight including heme is 10,014. The heme subunit is apparently homologous to small cytochromes c by virtue of the location of the heme-binding site and its extraplanar ligands. However, the amino acid sequence is closer to Paracoccus sp. cytochrome c554(548) (37%) than it is to the heme subunit from Pseudomonas putida p-cresol methylhydroxylase flavocytochrome c (20%). The flavocytochrome c heme subunit is only 14% similar to the small cytochrome c555 also found in Chlorobium. Secondary structure predictions suggest N- and C-terminal helices as expected, but the midsection of the protein probably folds somewhat differently from the small cytochromes of known three-dimensional structure such as Pseudomonas cytochrome c551. Analyses of the residues near the exposed heme edges of the cytochrome subunits of P. putida and C. thiosulfatophilum flavocytochromes c (assuming homology to proteins of known structure) indicate that charged residues are not conserved, suggesting that electrostatic interactions are not involved in the association of the heme and flavin subunits. The N-terminal sequence of the flavoprotein subunit of flavocytochrome has also been determined. It shows no similarity to the comparable region of the p-cresol methylhydroxylase flavoprotein subunit from P. putida. The flavin-binding hexapeptide, isolated and sequenced earlier (Kenney, W. C., McIntire, W., and Yamanaka, T. (1977) Biochim. Biophys. Acta 483, 467-474), is situated at positions 40-46.  相似文献   

13.
The coordination of the heme iron in cytochrome c-552 from Euglena gracilis was investigated by 1H NMR studies at 360 MHz. The data imply that the axial heme ligands are His-14 and Met-56 in both the oxidized and the reduced protein. Studies of mixed solutions of ferro- and ferricytochrome c-552, which provided much of the information on the heme structure, also showed that the intermolecular electron exchange is characterized by a bimolecular rate constant of 5-10(6) mol-1-s-1 at 29 degrees C, which is three orders of magnitude faster than the corresponding reaction in solutions of mammalian cytochromes c.  相似文献   

14.
Wen X  Bren KL 《Biochemistry》2005,44(13):5225-5233
Proteins in the cytochrome c (cyt c) family with His-Met heme axial ligation display diverse heme electronic structures as revealed by the NMR spectra of their oxidized (paramagnetic) forms. These variations in electronic structure are thought to result primarily from differences in heme axial Met orientation among cyt c species. The factors determining Met orientation in cyts c, however, remain poorly understood. An additional layer of complexity was revealed with the recent finding that the axial Met in Hydrogenobacter thermophilus cytochrome c(552) (Ht cyt c(552)) is fluxional, sampling two conformations rapidly on the NMR time scale, resulting in an unusual compressed range of heme substituent hyperfine shifts [Zhong, L., Wen, X., Rabinowitz, T. M., Russell, B. S., Karan, E. F., and Bren, K. L. (2004) Proc.Natl. Acad. Sci. U.S.A. 101, 8637-8642]. In this work, the (1)H NMR hyperfine shift pattern of Ht cyt c(552) is drastically altered by making the conservative heme pocket mutation Gln64Asn. The mutant (Ht Q64N) displays a pattern of heme hyperfine shifts with a remarkable resemblance to that of structurally homologous Pseudomonas aeruginosa cyt c(551), which has Asn at position 64 and a single heme axial Met conformation. NMR analysis reveals that Asn64 in Ht Q64N is positioned to interact with the axial Met61, whereas the Gln64 in wild-type Ht cyt c(552) is not. It also is found that the heme axial Met is not fluxional in Ht Q64N and has an orientation similar to that in P. aeruginosa cyt c(551). These results indicate that peripheral interactions with the axial Met play an important role in determining axial Met orientation and heme electronic structure in cyts c.  相似文献   

15.
The interactions of cytochrome c1 and cytochrome c from bovine cardiac mitochondria were investigated. Cytochrome c1 and cytochrome c formed a 1:1 molecular complex in aqueous solutions of low ionic strength. The complex was stable to Sephadex G-75 chromatography. The formation and stability of the complex were independent of the oxidation state of the cytochrome components as far as those reactions studied were concerned. The complex was dissociated in solutions of ionic strength higher than 0.07 or pH exceeding 10 and only partially dissociated in 8 M urea. No complexation occurred when cytochrome c was acetylated on 64% of its lysine residues or photooxidized on its 2 methionine residues. Complexes with molecular ratios of less than 1:1 (i.e. more cytochrome c) were obtained when polymerized cytochrome c, or cytochrome c with all lysine residues guanidinated, or a "1-65 heme peptide" from cyanogen bromide cleavage of cytochrome c was used. These results were interpreted to imply that the complex was predominantly maintained by ionic interactions probably involving some of the lysine residues of cytochrome c but with major stabilization dependent on the native conformations of both cytochromes. The reduced complex was autooxidizable with biphasic kinetics with first order rate constants of 6 X 10(-5) and 5 X U0(-5) s-1 but did not react with carbon monoxide. The complex reacted with cyanide and was reduced by ascorbate at about 32% and 40% respectively, of the rates of reaction with cytochrome c alone. The complex was less photoreducible than cytochrome c1 alone. The complex exhibited remarkably different circular dichroic behavior from that of the summation of cytochrome c1 plus cytochrome c. We concluded that when cytochromes c1 and c interacted they underwent dramatic conformational changes resulting in weakening of their heme crevices. All results available would indicate that in the complex cytochrome c1 was bound at the entrance to the heme crevice of cytochrome c on the methionine-80 side of the heme crevice.  相似文献   

16.
CcmH (cytochromes c maturation protein H) is an essential component of the assembly line necessary for the maturation of c-type cytochromes in the periplasm of Gram-negative bacteria. The protein is a membrane-anchored thiol-oxidoreductase that has been hypothesized to be involved in the recognition and reduction of apocytochrome c, a prerequisite for covalent heme attachment. Here, we present the 1.7A crystal structure of the soluble periplasmic domain of CcmH from the opportunistic pathogen Pseudomonas aeruginosa (Pa-CcmH*). The protein contains a three-helix bundle, i.e. a fold that is different from that of all other thiol-oxidoreductases reported so far. The catalytic Cys residues of the conserved LRCXXC motif (Cys(25) and Cys(28)), located in a long loop connecting the first two helices, form a disulfide bond in the oxidized enzyme. We have determined the pK(a) values of these 2 Cys residues of Pa-CcmH* (both >8) and propose a possible mechanistic role for a conserved Ser(36) and a water molecule in the active site. The interaction between Pa-CcmH* and Pa-apocyt c(551) (where cyt c(551) represents cytochrome c(551)) was characterized in vitro following the binding kinetics by stopped-flow using a Trp-containing fluorescent variant of Pa-CcmH* and a dansylated peptide, mimicking the apocytochrome c(551) heme binding motif. The kinetic results show that the protein has a moderate affinity to its apocyt substrate, consistent with the role of Pa-CcmH as an intermediate component of the assembly line for c-type cytochrome biogenesis.  相似文献   

17.
Five amino acid residues responsible for extreme stability have been identified in cytochrome c(552) (HT c(552)) from a thermophilic bacterium, Hydrogenobacter thermophilus. The five residues, which are spatially distributed in three regions of HT c(552), were replaced with the corresponding residues in the homologous but less stable cytochrome c(551) (PA c(551)) from Pseudomonas aeruginosa. The quintuple HT c(552) variant (A7F/M13V/Y34F/Y43E/I78V) showed the same stability against guanidine hydrochloride denaturation as that of PA c(551), suggesting that the five residues in HT c(552) necessarily and sufficiently contribute to the overall stability. In the three HT c(552) variants carrying mutations in each of the three regions, the Y34F/Y43E mutations resulted in the greatest destabilization, by -13.3 kJ mol(-1), followed by A7F/M13V (-3.3 kJ mol(-1)) and then I78V (-1.5 kJ mol(-1)). The order of destabilization in HT c(552) was the same as that of stabilization in PA c(551) with reverse mutations such as F34Y/E43Y, F7A/V13M, and V78I (13.4, 10.3, and 0.3 kJ mol(-1), respectively). The results of guanidine hydrochloride denaturation were consistent with those of thermal denaturation for the same variants. The present study established a method for reciprocal mutation analysis. The effects of side-chain contacts were experimentally evaluated by swapping the residues between the two homologous proteins that differ in stability. A comparative study of the two proteins was a useful tool for assessing the amino acid contribution to the overall stability.  相似文献   

18.
The complete amino acid sequence of cytochrome c-552 from an extremely thermophilic hydrogen bacterium, Hydrogenobacter thermophilus TK-6 (IAM 12695), was determined. It is a single polypeptide chain of 80 residues, and its molecular weight, including heme, was calculated to be 7,599. The sequence of cytochrome c-552 from H. thermophilus TK-6 closely resembles that of cytochromes c-551 from Pseudomonas species. Moreover, the tertiary structure of Hydrogenobacter cytochrome c-552 is suggested to be similar to that of cytochrome c-551 from Pseudomonas aeruginosa. The sequence similarity between Hydrogenobacter cytochrome c-552 and that of other bacteria physiologically related to H. thermophilus is not high.  相似文献   

19.
The diheme cytochrome NapB constitutes the small subunit of a periplasmic nitrate reductase found in a wide variety of bacterial species, including pathogens. The NapB protein is essential in transferring electrons to the large catalytic subunit NapA, which subsequently reduces nitrate to nitrite. Here we present the crystal structure of a proteolyzed form of recombinant NapB from Haemophilus influenzae, which was determined by the multiple-wavelength anomalous dispersion (MAD) method at 1.25 A resolution. This structure shows an unprecedented fold, confirming that NapB proteins belong to a new class of cytochromes. The two heme groups have nearly parallel heme planes and are stacked at van der Waals distances with an iron-to-iron distance of only 9.9 A, two structural features that are also present in the split-Soret diheme cytochrome c from Desulfovibrio desulfuricans ATCC 27774, which is otherwise unrelated in the peptide chain folding pattern. The two propionate side chains on both heme groups are hydrogen-bonded to each other, a structural characteristic that to date also has not been reported in any other heme protein. The propionates of one of the heme groups are pulled toward the interior of the molecule due to a salt bridge and a number of hydrogen bonds between the propionates and conserved residues. We propose a hypothetical but plausible model of the NapAB complex in which the four redox centers are positioned in a virtually linear configuration which spans a distance of nearly 40 A, suggesting an efficient pathway for the transfer of electrons from NapC, the physiological electron donor of NapB, to a nitrate molecule at the catalytic site of NapA.  相似文献   

20.
Hemes c are characterized by their covalent attachment to a polypeptide via a widely conserved CXXCH motif. There are multiple biological systems that facilitate heme c biogenesis. System I, the cytochrome c maturation (CCM) system, is found in many bacteria and is commonly employed in the maturation of bacterial cytochromes c in Escherichia coli-based expression systems. System III, cytochrome c heme lyase (CCHL), is an enzyme found in the mitochondria of many eukaryotes and is used for heterologous expression of mitochondrial holocytochromes c. To test CCM specificity, a series of Hydrogenobacter thermophilus cytochrome c(552) variants was successfully expressed and matured by the CCM system with CX(n)CH motifs where n = 1-4, further extending the known substrate flexibility of the CCM system by successful maturation of a bacterial cytochrome c with a novel CXCH motif. Horse cytochrome c variants with both expanded and contracted attachment motifs (n = 1-3) were also tested for expression and maturation by both CCM and CCHL, allowing direct comparison of CCM and CCHL substrate specificities. Successful maturation of horse cytochrome c by CCHL with an extended CXXXCH motif was observed, demonstrating that CCHL shares the ability of CCM to mature hemes c with extended heme attachment motifs. In contrast, two single amino acid mutants were found in horse cytochrome c that severely limit maturation by CCHL, yet were efficiently matured with CCM. These results identify potentially important residues for the substrate recognition of CCHL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号